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Abstract—This letter reports the initial application of a geodesic
finite-difference time-domain (FDTD) grid to model impulsive
extremely low frequency electromagnetic wave propagation about
the Earth sphere. The two-dimensional transverse-magnetic grid
is comprised entirely of hexagonal cells, except for a small fixed
number of pentagonal cells needed for grid completion. Grid-cell
areas and locations are optimized to yield a smoothly varying area
difference between adjacent cells, thereby maximizing numerical
convergence. The new FDTD grid model is considerably superior
to our previously reported latitude-longitude grid because it is
simpler to construct, avoids geometrical singularities at the poles,
executes about 14 times faster, provides much more isotropic
wave propagation, and permits an easier interchange of data with
state-of-the-art Earth-simulation codes used by the geophysics
community. We verify our new model by conducting numerical
studies of impulsive antipodal propagation and the Schumann
resonance.

Index Terms—Antipodal propagation, extremely low-frequency
(ELF), finite-difference time-domain (FDTD), geodesic grid, Schu-
mann resonance, sphere.

I. INTRODUCTION

PROPAGATION of extremely low-frequency (ELF: 3 Hz–
3 kHz) and very low-frequency (VLF: 3–30 kHz) electro-

magnetic waves in the Earth-ionosphere waveguide is a problem
having a rich history of theoretical investigation extending over
many years (see, for example, [1]–[6]). Currently, ELF/VLF
propagation phenomena form the physics basis of important re-
mote-sensing investigations of lightning and sprites [7], global
temperature change [8], subsurface structures [9], and potential
earthquake precursors [10].

Simpson and Taflove [11]–[15] and Hayakwa et al. [16],
[17] reported the initial applications of the finite-difference
time-domain (FDTD) [18] method to model the complete Earth-
ionosphere waveguide at ELF. Both groups used spherical-
coordinate, latitude-longitude grids based upon fundamental
work by Holland [19]. Hayakawa et al. reported no improve-
ments relative to Holland’s grid, which is subject to increasing
space-cell eccentricity upon approaching the poles due to
converging lines of longitude. In contrast, Simpson and Taflove
reported means to reduce the eccentricity of cells in the polar
regions by a novel adaptive cell-combining technique applied
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to adjacent grid-cells in the east-west direction. This permits
maintenance of the time-step at nearly the level allowed by
the Courant stability condition for the square equatorial cells,
yielding a greatly improved computational efficiency. Relative
to data in the literature, the Simpson–Taflove technique was
demonstrated to provide propagation modeling results accu-
rate to within about 1 dB over the ELF range 50–500 Hz
using only a laboratory computer to generate a high-resolution

three-dimensional (3-D) model of the
global Earth-ionosphere cavity within 100 km of sea level
[14].

While the latitude–longitude gridding technique of [11]–[13]
has shown promise for whole-Earth models of ELF propagation,
it still requires the use of a large parallel computer to model
fine-grained details of the lithosphere that may be important
for simulations of earthquake precursors and remote sensing of
mineral deposits. Therefore, we have pursued alternative whole-
Earth meshes that have the potential for improved efficiency.
In this spirit, this letter reports a new geodesic FDTD grid
model for the Earth-sphere that is considerably superior to
our previously reported latitude-longitude grid. Namely, the
geodesic FDTD grid is: 1) simpler to construct (avoiding the
need for grid-cell combinations upon approaching the poles);
2) executes about 14-times faster; 3) provides much more
isotropic wave propagation; and 4) permits an easier interchange
of data with state-of-the-art Earth-simulation codes used by the
geophysics community. Here, the grid is comprised entirely
of hexagonal cells except for a small fixed number (12) of
pentagonal cells needed for grid completion [20]. Grid-cell
areas and locations are optimized to yield a smoothly varying
area difference between adjacent cells, thereby maximizing
numerical convergence [21].

II. GEODESIC FDTD GRID

Fig. 1 illustrates an example of the layout of a spherical
geodesic grid for the two-dimensional (2-D) transverse-mag-
netic (TM) case of Maxwell’s equations. This sample grid has
a total of 642 planar cells, of which 630 are hexagons and
12 are pentagons [20]. For purposes of efficient mapping into
the computer memory, this grid can be divided into five equal
panels of size cells, where and .
Fig. 2(a) shows the five grid panels of Fig. 1 after unwrapping
and stretching them flat. The cells at the North and South Poles
can be arbitrarily connected to any of the five panels. Fig. 2(b)
illustrates how the five grid panels of Fig. 1 can be assigned
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Fig. 1. General layout of a 642-cell, 2-D geodesic grid covering the complete
Earth-sphere. Each grid cell is planar. The grid is divided into five equal panels
with im5 = 18 and jm = 10 [20].

logically Cartesian coordinates, and how all five panels can
then be laid side-by-side to constitute an overall ( and

) logically Cartesian grid. This powerful interpretation
of a spherical geodesic grid as a single logically Cartesian grid
for purposes of efficient computer processing can be imple-
mented for a variety of meshing densities over the sphere, as
shown in Table I.

Regardless of the grid resolution, we note that all but 12 of
the cells are planar hexagons. Each of the hexagonal cells has
and components distributed as shown in Fig. 3(a). Fig. 3(b)
illustrates how the and components are distributed about
each of the 12 planar pentagons.

Reference [21] describes in detail an optimization procedure
for selecting the areas and locations of the hexagonal and pen-
tagonal grid cells on the sphere to insure numerical consistency
and to maximize the order of accuracy in the context of the
Laplace operator. We have found that this optimization proce-
dure also maximizes the observed accuracy of wave propaga-
tion about the sphere as governed by the 2-D TM Maxwell’s
equations.

III. FDTD ALGORITHM

A. Basic Algorithm

Ampere’s Law in integral form [18] can be applied to de-
velop an FDTD time-stepping relation for the electric field
at the center of the th grid cell. For example, referring to
Fig. 3(a), for a hexagonal cell, we have

(1)

where is the time-step, is the th wall length of the
cell centered around (where is equal to 1, 2, or 3),
and is the area of the cell centered around .

Fig. 2. (a) Five (im5 = 18, jm = 10) grid panels of Fig. 1 after unwrapping
and stretching them flat. The grid cells at the North and South Poles can be
arbitrarily connected to any of the five panels. (b) Illustration of how the cells
in the five grid panels of Fig. 1 can be assigned logically Cartesian coordinates,
and how all five panels can then be laid side-by-side to constitute an overall
(im = 90 and jm = 10) logically Cartesian grid [20].

TABLE I
HORIZONTAL (im5) AND VERTICAL (jm) NUMBER OF CELLS FOR THE

FIVE PANELS AT DIFFERENT RESOLUTIONS

Fig. 3. Details of the grid-cell geometry. (a) Hexagonal cell. (b) Pentagonal
cell.
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Similarly, referring to Fig. 3(b), the update for at the center
of a pentagonal cell at mid-latitude is given by

(2)

In the same manner, the updates for at the center of a pen-
tagonal cell at the North and South Poles are given, respectively,
by

(3)

(4)

where the and the or component having the in-
dicated coordinates from each of the five panels are used.

The FDTD time-stepping algorithm is completed by speci-
fying the updates for the -fields using Faraday’s Law in inte-
gral form [18]. For example, referring to the grid cells shown in
Figs. 3(a) and 3(b), we have, for the distance between
adjacent ’s at , (5)–(7), as shown at the bottom of the
page.

B. Grid Wrap-Around (Periodic Boundary Condition)

For each of the five panels, only the components for
which and , along
with the components for the two pentagons at the North and
South Poles are updated according to the algorithm presented in

above. The ghost field components, i.e. for
, , ,

and , along with
and for the four panels not updating the
North and South Poles, are then filled after each time step by
setting them equal to the corresponding component in the
neighboring panel.

IV. RESULTS

We now report the results of numerical experiments designed
to test the efficiency and accuracy of our new geodesic FDTD
grid model for 2-D TM electromagnetic wave propagation
about the lossless Earth-sphere. The idea here is to track an
impulsive circular cylindrical wave in time and space as it
propagates radially outward from a filamentary current source,
travels completely around the Earth-sphere model, and then
propagates radially inward to the antipode. Results are shown
for a geodesic FDTD grid with 40 962 cells (
and ) spanning the Earth-sphere, with the time step

. For this simulation, implemented in Fortran 90 on
a Dell 530 workstation running Linux, the required computer
memory is 3.3 MB and the running time 2.5 min for a single
wave circumnavigation of the Earth-sphere. In comparison, a
comparably resolved latitude-longitude FDTD grid of the type
introduced in [11] and [12] would require 2.4 MB and 34 min
running time on the same computer. We see that the geodesic
FDTD grid executes about 14-times faster while requiring only
about 1.4-times more data storage in two dimensions.

Fig. 4 is a snapshot visualization of the electric field calcu-
lated using the new geodesic FDTD grid model projected onto
the surface of the Earth-sphere as the radiated wave converges to
the antipode. Superimposed on this visualization is: 1) a sample
computed contour of equal-amplitude electric field; and 2) a
circle centered at the antipode that is drawn to have a radius
matching as well as possible that of the equal-amplitude elec-
tric field contour. We see that there is negligible deviation of the
computed equal-amplitude electric field contour from the circle.
This means that the impulsive numerical wave has propagated
from its source point almost completely to the antipode in an az-
imuthally isotropic manner despite passing through regions of
hexagonal and pentagonal grid cells of varying areas. By way of
comparison, using this same test, the azimuthal isotropy of wave
propagation within the latitude-longitude FDTD grid introduced
in [11] and [12] is poorer by approximately one order-of-mag-
nitude for grids of comparable spatial resolution.

Fig. 5 graphs the calculated time-waveform of the electric
field at the antipode for the first two circumnavigations of the
Earth-sphere. This figure shows the 180 phase reversals of the

(5)

(6)

(7)
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Fig. 4. Visualization of the electric field projected onto the surface of the
Earth-sphere as the radiated wave converges to the antipode. Note that the white
contour of calculated equal-amplitude electric field coincides almost exactly
with a black dotted circle centered on the antipode.

Fig. 5. Calculated time-waveform of the electric field at the antipode for the
first two circumnavigations of the Earth-sphere.

electric-field at the antipode first calculated by Wait [4]. Fur-
ther, this figure shows a 0.134-s circumnavigation period, cor-
responding to a 7.46-Hz fundamental resonance of the lossless
2-D Earth model. This is virtually the same as that obtained pre-
viously by a comparably resolved latitude–longitude FDTD grid
[11], [12].

V. CONCLUSION AND ONGOING WORK

We have presented a new geodesic FDTD grid model for
2-D TM electromagnetic wave propagation about the Earth-
sphere that is considerably superior to our previously reported
latitude-longitude grid. The new grid model is simpler to con-
struct, avoids geometrical singularities at the poles, executes
about 14-times faster, and provides much more isotropic wave
propagation. It will also permit an easier interchange of data
with state-of-the-art Earth-simulation codes widely used by the
geophysics community.

We are currently extending the 2-D TM FDTD spherical
geodesic grid discussed here to a fully 3-D space lattice filling

the complete Earth-ionosphere volume. This will permit ac-
counting of vertical as well as horizontal inhomogeneities of
the excitation, atmosphere, and Earth. We plan to couple this
model to emerging whole-Earth geophysical codes now under
development for the study of seismic phenomena, including
earthquake precursors [22].
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