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Abstract—One of the most important objects in bioinformatics is a gene product (protein or RNA). For many gene products, functional

information is summarized in a set of Gene Ontology (GO) annotations. For these genes, it is reasonable to include similarity measures

based on the terms found in the GO or other taxonomy. In this paper, we introduce several novel measures for computing the similarity

of two gene products annotated with GO terms. The fuzzy measure similarity (FMS) has the advantage that it takes into consideration

the context of both complete sets of annotation terms when computing the similarity between two gene products. When the two gene

products are not annotated by common taxonomy terms, we propose a method that avoids a zero similarity result. To account for the

variations in the annotation reliability, we propose a similarity measure based on the Choquet integral. These similarity measures

provide extra tools for the biologist in search of functional information for gene products. The initial testing on a group of 194 sequences

representing three proteins families shows a higher correlation of the FMS and Choquet similarities to the BLAST sequence similarities

than the traditional similarity measures such as pairwise average or pairwise maximum.

Index Terms—Similarity measure, fuzzy measure, Choquet integral, Gene Ontology.

Ç

1 INTRODUCTION

THE pace of gene discovery has increased tremendously
over the past 10 years with the emphasis on sequencing

the human genome and various other genomes. With this
increased pace has come the need for tools to assist with the
analysis of similarities between genes and among gene
families. Genes are grouped in various ways, including being
part of gene families, being part of a metabolic pathway, and
being coregulated under various environmental conditions.
The rapid expansion of knowledge about various protein
isoforms that are produced from the same mRNA transcript
but with alternate splicing is also creating needs for new
measures of similarity among genes. In analyzing the
similarity (or dissimilarity) between gene products, the
obvious features to consider are the DNA sequence and the
expression values. However, for many gene products,
additional information is available. One form of information
is symbolic, taking the form of associated Gene Ontology
(GO) terms [1] and terms from a thesaurus used to index the
publications about the gene or gene product [2]. Our goal is to
incorporate these symbolic features into gene similarity
functions that utilize as much common supportive evidence
as possible (especially that information contained in the
ontologic or taxonomic structure) while minimizing the effect
of ambiguity and/or incomplete annotations. This paper

describes several measures for gene product similarity.
These novel similarity measures for gene product compar-
ison, the FMS and Choquet, are based on fuzzy measures
[3], [4] and fuzzy set theory that have been shown to be very
effective in other domains [4], [5].

There are two categories of approaches to compute the
similarity of two objects described by sets of terms that
belong to a taxonomy. In the first category, the terms in the
sets are considered individually; this category can be
further divided into two approaches, pair-based and set-
based. In the second category, the similarity measures use
graph similarity techniques.

In the first category, the first approach is to aggregate the
similarities between all pairs of terms from the two sets. The
pairwise similarities are aggregated using a function such
as maximum or average. Lord et al. [6] used the average of
the pairwise GO term similarities to compute the similarity
between two gene products, while Speer et al. [7] used the
maximum for the same task. A good review of the pairwise
similarities between individual objects that belong to a
taxonomy is given in [8]. In [9], the pairwise similarity
between Gene Ontology (GO) terms was used to search
multiple biological databases. The similarity was computed
using the information content [10] of a GO term. Ganesan
et al. [11] develop several similarity measures for informa-
tion retrieval, using various techniques. One measure
involves a combination between average and maximum,
called Optimistic Genealogy Measure (OGM), based on the
depth in the hierarchy, to compare different customers
based on their buying behavior. In the second approach,
called the “bag of words” approach [12], the similarity is
computed using set similarity measures such as Dice,
Jaccard, or cosine [13]. A generalization on the cosine
measure based on the depth in the hierarchy was one of the
measures assessed by Ganesan et al. [11]. A widely
acknowledged problem with the depth-based similarity is
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that the distance in a taxonomy is not uniform due to the

variation in density of the various subtaxonomies [11].

Many approaches to Web content data mining have been

developed with “bag of words” approaches [14].
In the second category, the objects in each set are

considered as a tree (or graph) that is a part of the original

taxonomy. The similarity between two sets is cast as a tree

(graph) similarity problem. This problem is encountered in

many domains where the information can be represented as

a tree, such as 3D structure matching [15], MESH-based

document retrieval [12], 2D shape recognition [16],

multiagent systems [17], natural language processing [18],

database search [9], etc. In the general case, this problem is

NP-complete [16]. However, various techniques are de-

scribed for computing the similarity in polynomial time

[12], [15], [16], [19].
Fuzzy measures have not been used extensively in

bioinformatics. Use of fuzzy techniques such as fuzzy

clustering [20], fuzzy neural networks [21], fuzzy rule

systems [22], and fuzzy relations [23] has been reported for

microarray analyses. Similar techniques were used in

bioinformatics in applications related to document content

analysis [14].
In this paper, we are extending the work of Lord et al.

[1], [6] who investigated semantic similarity measure to

explore the Gene Ontology. We compare our new fuzzy

measures to traditional set similarity measures such as

Jaccard, Dice, and vector cosine and to pairwise similarities

such as average and maximum as applied to the GO. We

show that, by utilizing more information than the tradi-

tional measures, the fuzzy measures correlate better with

the sequence-based similarity measures. These measures

can also be applied to other semantic knowledge sources,

especially those with knowledge structured into taxonomies

such as MeSH.
The proposed fuzzy measure similarities address incon-

sistencies and inabilities of existent numeric comparisons

used for gene products. BLAST scores do not account for

the functions of the proteins, as do annotation-based

similarities. Second, cardinality-based measures (such as

Jaccard and Dice) ignore the information content of the

annotation terms in their construction. A frequently used

annotation term (given, say, by promiscuous domains such

as SH3 and ATP-binding cassettes [29]) could artificially

make two gene products look more similar than they

actually are. Finally, the average of pairwise term informa-

tion content [6] is inconsistent in the sense that self-

similarity is not 1 when a product is annotated with more

than one term. Similarly, the maximum of pairwise term

information content is inconsistent since the similarity

between two gene products that share just one term is 1,

regardless of the rest of their annotation terms. It follows

under this calculation that two gene products that share a

“promiscuous domain” are very similar. Our proposed

measures do not have these inconsistencies. In Section 6, we

give numeric evidence to support this statement with

respect to the collagen family of proteins.

2 BACKGROUND

Given two gene products, G1 and G2, we can consider them
as being represented by collections of terms G1 ¼
fT11; . . . ;T1i; . . . ;T1ng a n d G2 ¼ fT21; . . . ;T2j; . . . ;T2mg.
Based on the two sets, the goal is to define a similarity
between G1 and G2, denoted as sðG1;G2Þ. The Jaccard and
Dice similarity measures are computed as

Jaccard similarity : sJðG1;G2Þ ¼
jG1 \G2j
jG1 [G2j

: ð1Þ

Dice similarity : sDðG1;G2Þ ¼
2jG1 \G2j
jG1j þ jG2j

: ð2Þ

Note that, in both the Jaccard and Dice measures, if
G1 \G2 ¼ ;, the similarity is zero. This seems reasonable at
first glance, but it is possible for two gene products to have
terms that are siblings “deep within” the GO. These gene
products should have nonzero similarity even though their
annotation terms are not identical.

The annotations for the two gene products can be
arranged into binary valued vectors vi 2 <NT, where NT
is the total number of terms in the complete annotation set
(a component of 1 if the annotation is present and 0 else).
Then, various vector space-based similarity measures are
calculated, such as the cosine similarity:

sVðG1;G2Þ ¼
v1 � v2

jv1jjv2j
; ð3Þ

where v1 � v2 is the dot product and j:j represents the length
of the vector (square root of the total number of annotations
for the gene product). One advantage of this approach is
that each gene product is described by an NT-dimensional
feature vector, allowing the use of well-known vector space
clustering algorithms such as c-means and fuzzy c-means
[24]. However, if NT >> 0 (number of GO terms is large),
the vectors vi become long and sparse, making the
clustering more problematic.

In the pairwise approach, similarity is computed con-
sidering the terms pairwise, say sijðT1i;T2jÞ, and then the
values for the pairs are aggregated using, for example, the
average as:

sAVGðG1;G2Þ ¼
Pn

i¼1

Pm
j¼1 sij

mn
: ð4Þ

The problem with the average pairwise similarity is that it
underestimates the similarity. The best illustration of this
fact is that the self-similarity is less than one (sðG1;G1Þ < 1)
if m; n > 1. Without normalization of some sort, the average
is not a true similarity. If the maximum is used instead, the
similarity is overestimated since it is enough that the two
gene products share one term for the similarity to be 1. This
is especially bad for the multidomain protein. Since they
share functions (hence, GO terms), their similarity will be 1,
making impossible any discrimination among them. The
above problems are illustrated in Example 2.

All the above similarity measures can be easily general-
ized if we consider that each term, Tk, has a weight gk

associated with it. For example, the Jaccard similarity
becomes
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sWJðG1;G2Þ ¼
P
fijTi2G1\G2g giP
fjjTj2G1[G2g gj

: ð5Þ

This will be referred to as the weighted Jaccard similarity.
The measures proposed in this paper try to overcome the

limitations mentioned above, i.e., the zero similarity and the
under/overestimation. In addition, the new Choquet
measure tries to better incorporate into the similarity
measure the effect of the reliability of the data elements
(GO terms in our case).

We present a pilot study that demonstrates the promise
of this new approach. The basis of our illustrative
computations is a set of 194 human gene products that
were clustered into three protein families using Markov
clustering (MCL) [25]. The gene products (and their)
families were retrieved on 10 December 2003 using the
ENSEMBL browser (http://www.ensembl.org). Table 1
itemizes several characteristics of these clusters, which we
call the GPD19412:10:03 data. Since this data is dynamic, we
include the date on which it was extracted in the name.

These three gene families were chosen for several
reasons. First, each family had multiple well-characterized
genes, many of which are involved in human disorders
when mutated and all of which could be considered very
similar in both structure and function. Second, several of
the genes, especially the receptor precursor genes, were
characterized by multiple isoforms represented by the
multiple sequences and, thus, representing extremely
similar gene products. Third, the MCL clustering available
through ENSEMBL had pulled together these gene families,
allowing us a cluster method by which to benchmark our
results. Fourth, the gene families were distinct from one
another, but, in some cases, could be considered as having
similar functions at a higher level that might be represented
in the Gene Ontology (such as having catalytic activity).
Thus, our sample had a range of similarities between genes
and gene products. We were fortunate because there was
quite a range of similarities between members of a gene
family, with the myotubularins being quite similar, the
receptor precursors having many isoforms, and the collagen
alpha chains being quite diverse. The 194 human sequences
are mapped to 27 genes (see Table 1).

To validate our similarity measures, we began with the
same approach as in Lord et al. [6] by computing the
correlation between the new measures and a sequence-based

similarity. Unlike Lord et al. [6], we normalized the BLAST

[26] bit scores, fsij : sij 2 ½0; 1�; 1 � i; j � 194g, using:

sðseqi; seqjÞ ¼
srawðseqi; seqjÞ

minfsrawðseqi; seqiÞ; srawðseqj; seqjÞg
; ð6Þ

where sraw is the natural logarithm of the BLAST bit score

between seqi and seqj.
The sequence-based similarity matrix obtained is shown

in Fig. 1. The range of the numbers in Fig. 1 is [0, 1], 1 (dark)

indicating high similarity (low distance).

3 FUZZY MEASURE-BASED SIMILARITY MEASURE

The fuzzy measure similarity (FMS) is based on the concept

of fuzzy measure, a generalization of probability measure.

In this context, the terms in a combined set describing two

gene products will be considered as “information sources”

that support the similarity of the two genes. Let G ¼
fT1; . . . ;Tng be a finite set of terms describing a gene
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Characteristics of the GPD19412:10:03 Data Set

Fig. 1. The BLAST Sequence similarity matrices for the three gene

families (the 194 sequences are presorted by family and by gene as

shown in Table 1).



product. A fuzzy measure, g, is a real valued function

g : 2G ! ½0; 1�, satisfying the following properties:

1. gð;Þ ¼ 0 and gðGÞ ¼ 1.
2. gðAÞ � gðBÞ if A � B.

Note that the normal additivity condition of probability

theory is replaced by the weaker condition of monotonicity

(property 2). For a fuzzy measure g, let gi ¼ gðfTigÞ. The

mapping Ti ! gi is called a fuzzy density function. The fuzzy

density value, gi, is interpreted as the (possibly subjective)

importance of the single information source Ti in determining

the similarity of two genes. Fuzzy measures are quite general

since they only require two simple properties to be satisfied.

However, it is often the case that the densities can be extracted

from the problem domain or supplied by experts. The key to

using fuzzy measures involves finding ones that can be built

out of the densities. One of the most useful classes of fuzzy

measures is due to Sugeno [4]. A fuzzy measure g is called a

Sugeno measure (g�-fuzzy measure) if it additionally satisfies

the following property [3]:

3. For all A;B � G with A \ B ¼ ;.

g�ðA [ BÞ ¼ g�ðAÞ þ g�ðBÞ þ �g�ðAÞg�ðBÞ
for some � > �1:

ð7Þ

The subscript � will be omitted unless needed for simplicity.

If the densities are known, the value of� for any Sugeno fuzzy

measure can be uniquely determined for a finite set G using

(7) and the facts G ¼
Sn

i¼1 fTig and g�ðGÞ ¼ 1, which leads to

solving the following equation for:

ð1þ �Þ ¼
Yn

i¼1

ð1þ �giÞ: ð8Þ

This equation has a unique solution for � > �1 [3]. We

mention that if n ¼ 1, we use gðT1Þ ¼ g1 instead of gðT1Þ ¼ 1,

as follows from property 1. This insures that two genes that

share two GO terms are more similar than two genes that

share just one GO term.
For our application, the set of fuzzy density values is

constructed from the information sources in the set G in a

simple fashion, adapting the approach in [10]. The densities

are computed as the information content for the particular

term determined from a given corpus, SWISS-PROT in our

case. In particular, for each term, Tk, in the GO, we counted

the number of occurrences in the corpus of the term or any

of its children and converted it to a probability, i.e.,

pðTkÞ ¼
countðTk þ children of Tk in corpusÞ

countðall GO terms in corpusÞ

� �

1 � k � jGOj:

Then, we define the density gk ¼ gðfTkgÞ by

gk ¼ icðTkÞ ¼ � lnðpðTkÞ= max
Tj2GO

� lnðpðTjÞ
� �

; ð9Þ

where icðTkÞ is the information content of Tk computed as

in [10]. The denominator is used to scale the values into the

interval [0, 1].

Example 1. Calculation of a Sugeno measure for a gene

product term set. The set of supporting GO terms for the

sequence with GenBank ID AAN03650 (COL24A1 gene) is:

G ¼ fT1 ¼ 5201ðextracellular matrix structural componentÞ;
T2 ¼ 7155ðcell adhesionÞ;T3 ¼ 5581ðcollagenÞg:

The associated densities are fgkg ¼ f0:58; 0:44; 0:65g,
calculated as described above. Then, we solve (8) as

1þ � ¼ ð1þ 0:58�Þð1þ 0:44�Þð1þ 0:65�Þ ) � ¼ �0:86:

The Sugeno measure becomes:

gðfT1gÞ ¼ g1 ¼ 0:58; gðfT2gÞ ¼ g2 ¼ 0:44;

gðfT3gÞ ¼ g3 ¼ 0:65;gðfT1;T2gÞ ¼ g1 þ g2 þ �g1g2 ¼ 0:8:

Similarly,

gðfT1;T3gÞ ¼ 0:9; gðfT3;T2gÞ ¼ 0:84; gðGÞ ¼ 1:

Given the above development, we define our similarity

measure [27].

Definition 1. Fuzzy measure-based similarity (FMS). The

similarity sFMSðG1;G2Þ between two sets G1 and G2 of terms

is defined as:

sFMSðG1;G2Þ ¼
g1ðG1 \G2Þ þ g2ðG1 \G2Þ

2
; ð10Þ

where g1 is the Sugeno measure defined on G1 from the

densities fg1ig and g2 is the Sugeno measure defined on G2

from the densities fg2jg.
Example 2. Case 1: Similarity calculations for two gene

products from the same family: Consider the sequence

G1 with GenBank ID AAH35609 (MTMR4 gene) and the

sequence G2 with GenBank ID AAH12399 (MTMR8

gene). These are two members of the same family and,

hence, should be quite similar to each other. The GO

terms associated with the above sequences are

G1 ¼ fT1 ¼ 4721ðprotein phosphatase activityÞ;
T2 ¼ 6470ðprotein amino acid dephosphorylationÞ;
T3 ¼ 8270ðzinc ion bindingÞg

and

G2 ¼ fT1 ¼ 4721ðprotein phosphatase activityÞ;
T2 ¼ 6470ðprotein amino acid dephosphorylationÞ;
T4 ¼ 16787ðhydrolase activityÞg:

The sets of related densities are fg1ig ¼ f0:52; 0:57; 0:54g
and fg2ig ¼ f0:52; 0:57; 0:33g. Here, the set of common

terms that supports the similarity of G1 and G2 is

fT1;T2g.
To calculate the FMS, we need to build the two

measures. The Sugeno measure for G1 has � ¼ �0:84,
resulting in the measure of the common set of
g1ðfT1;T2gÞ ¼ 0:84. The Sugeno measure for G2 has
� ¼ �0:72, resulting in g2ðfT1;T2gÞ ¼ 0:88. Hence, the
FMS similarity, sFMS, is:
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sFMSðG1;G2Þ ¼
g1ðfT1;T2gÞ þ g2ðfT1;T2gÞ

2

¼ 0:84þ 0:88

2
¼ 0:86:

Other similarity measures for the same two proteins are

given in Table 2.

The above two myotubularin genes should have high
similarity since they belong to the same ENSEMBL

myotubularin family. From Table 2, we see that the FMS

value is closest to the BLAST and Smith-Waterman

scores. The worst value is given by the pairwise average

that grossly underestimates the similarity. From the

above example, we see that the FMS is more sensitive to

the elements that the two term sets have in common: If

the common elements have a high information content,
then the similarity is stronger. This fact agrees with our

intuition about similarity. Another consequence of the

same idea is that while, in the vector cosine similarity,

the noncommon elements have no contribution (they are

multiplied by zero), in FMS, they do contribute

implicitly since the fuzzy measures are defined a priori

for each term set.

Case 2: Similarity calculations for two gene products

from different families. Consider the sequence G1 with

GenBank ID AAC12865 (MTMR2 gene) and the sequence

G2 with GenBank ID AAF59902 (COL5A3 gene). Since

the first sequence is a member of the myotubularins and

the second belongs to the alpha collagens, their similarity

should be low. The GO terms associated with the above

sequences are

G1 ¼ fT1 ¼ 4722;T2 ¼ 4725;T3 ¼ 16787;T4 ¼ 6470;

T5 ¼ 7517ðmuscle developmentÞ;T6 ¼ 8151;

T7 ¼ 8372;T8 ¼ 8138g

and

G2 ¼ fT1 ¼ 5201;T2 ¼ 7155;T3 ¼ 7397;

T4 ¼ 7517ðmuscle developmentÞ;T5 ¼ 5581;

T6 ¼ 5588g:

The set of related densities for G1 are:

fg1ig ¼ f0:6134; 0:8778; 0:3274; 0:5713; 0:5139; 0:2026;

0:3545; 0:7093g;

while those for G2 are:

fg2ig ¼ f0:8778; 0:7093; 0:3274; 0:5713; 0:2222; 0:2474g:

Here, the only common term is T15 ¼ T24 ¼ 7517.
Hence, the FMS similarity is sFMS ¼ 0:5713. Other
similarity measures for the same two proteins are given
in Table 3.

We see that, in this case, the weighted Jaccard and the
FMS perform best while the pairwise maximum grossly
overestimated the similarity value.

However, so far, the FMS has the same problem as the
one previously mentioned for the vector cosine similarity
and Jaccard similarity, that is, if G1 \G2 ¼ ;, then the
similarity is zero. In this case, we have no information
about the relation between the two sets. In the next
section, we describe a method that solves this problem
when the objects in the set belong to a taxonomy.

4 AUGMENTING THE FMS FOR SETS OF ONTOLOGY

OBJECTS

The Gene Ontology is a Directed Acyclic Graph where a
child node is considered a more specialized object than the
parent node. As in the previous section, assume that the
objects in the GO have associated densities fgig, for
example, the information content formed from studying a
corpus, like SWISS-PROT. The key is that the further down
one goes in the tree, the higher the associated densities are.

Consider the same sets G1 ¼ fT11; . . . ;T1i; . . . ;T1ng and
G2 ¼ fT21; . . . ;T2j; . . . ;T2mg, where T1i;T2j 2 GO. The idea
of the proposed method is to augment each set as:
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Gþ1 ¼ G1 [ fT1i;2jg and Gþ2 ¼ G2 [ fT1i;2jg; ð11Þ

where fT1i;2jg is the set of nearest common ancestors (NCA)

of every pair ðT1i;T2jÞ. For each pair, the NCA is

determined by the same Perl scripts that were used by

Lord et al. in [6]. The resulting augmented intersection is:

½G1 \G2�þ ¼ ½Gþ1 \Gþ2 � ¼ ½G1 \G2� [ fT1i;2jg: ð12Þ

Using the augmented intersection, ½G1 \G2�þ, the augmen-

ted FMS (AFMS), denoted by sAFMSðG1;G2Þ, is defined as:

sAFMSðG1;G2Þ ¼
gþ1 ð½G1 \G2�þÞ þ gþ2 ð½G1 \G2�þÞ

2
; ð13Þ

where gþk is the fuzzy measure computed on Gþk ; k ¼ f1; 2g.
Example 3. AFMS calculation for reasonably similar gene

products. Let us compute the GO similarity between the

sequence with GenBank ID AAL02227 (COL21A1 gene)

described by

G1 ¼ fT1 ¼ 5198ðstructural molecular activityÞ;
T2 ¼ 7155ðcell adhesionÞg

and the sequence BAB13947 (COL27A1 gene) described by

G2 ¼
fT3 ¼ 5201ðextracellular matrix structural constituentÞ;
T4 ¼ 5581ðcollagenÞg:

We see that all of the Jaccard, Dice, cosine, and FMS

similarity measures are 0 for this case. However, the two

sequences are obviously similar since they are both in the

collagen alpha 1 family. Also note that T3 is a child in the

GO of T1.
The augmented sets are: Gþ1 ¼ fT1;T2g and

Gþ2 ¼ fT1;T3;T4g. Since NCAðT3Þ ¼ T1 (see Fig. 2) and
the root node is ignored because its information content
is 0 (common for all terms), the augmented intersection
is ½G1 \G2�þ ¼ fT3g. Hence, the augmented FMS is:

sAFMSðG1;G2Þ ¼
0:42þ 0:42

2
¼ 0:42:

We mention that, for the same case, the augmented
Jaccard similarity is 0.25 and the augmented vector
cosine similarity is 0.4. We conclude that the augmenta-
tion procedure works for all set-based similarity mea-
sures by taking advantage of the hierarchical structure of
GO and adds value by taking advantage of the ontology
structure.

5 CHOQUET FUZZY INTEGRAL-BASED SET

SIMILARITY MEASURE

Fuzzy integrals have been shown to be very useful for
evidence fusion [3], [4], [5]. Fuzzy integrals combine the
objective evidence supplied by each information source (the
s-function in our scenario and discussed below) and the
expected worth of each subset of information sources (via a
fuzzy measure as above) to assign confidence to hypotheses
and to rank alternatives in decision-making. This is a
nonlinear combination of information and the worth of
these information sources with respect to the decision is in
dealing with the reliability in both forms of data.

For the purpose of comparing two gene products
described by sets of GO terms, suppose that G1 ¼
fT11; . . . ;T1i; . . . ;T1ng and G2 ¼ fT21; . . . ;T2j; . . . ;T2mg. Let
X ¼ G1 �G2 and s : X! ½0; 1� be a similarity function, i.e.,
sijðT1i;T2jÞ is the similarity between the pair of GO terms
ðT1i;T2jÞ. To simplify the notation, we reorder the term
pairs and label them by a single subscript so that
X ¼ T1;T2; � � � ;Tnmf g. The elements of X (pairs of GO
terms) are considered to be sources of information that
support the similarity of genes G1 and G2 to degree sðTkÞ,
where Tk ¼ ðT1i;T2jÞ for some i and j.

The confidence of the similarity is based on the
confidence of each type of annotation (see Table 4). The
confidence of a pair of terms, cijðT1i;T2jÞ, could be assigned
as cijðT1i;T2jÞ ¼ fðcðT1iÞ; cðT2jÞÞ, where f can be the max-
imum, average, or minimum operator and cðT1iÞ and cðT2jÞ
are the respective reliabilities of assigning the annotations
T1i and T2j. In the language of fuzzy measures, cijðT1i;T2jÞ
represents the fuzzy density of the information source Tk ¼
ðT1i;T2jÞ for a fuzzy measure g over X. If X is a discrete set
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Fig. 2. View of GO containing the terms from Example 3 and their associated information-based weights.



(as it is here), the Choquet similarity can be computed as

follows:

sChoquetðG;G2Þ ¼
Xnm

i¼1

sðTðiÞÞ � sðTðiþ1ÞÞ
� �

� gðSiÞ; ð14Þ

where the function values are reordered so that

sðTð1ÞÞ 	 sðTð2ÞÞ 	 � � � 	 sðTðnmÞÞ;
sðTðnmþ1ÞÞ ¼ 0;

Si ¼ Tð1Þ; � � � ;TðiÞ
� �

;

and g is the fuzzy measure generated by the set of

densities fcijg.
Example 4. Choquet integral-based set similarity. Consider

the same gene products as in Example 2, Case 1, G1 ¼
AAH35609 ( M T M R 4 g e n e ) a n d G2 ¼ AAH12399

(MTMR8 gene). The GO terms associated with the above

sequences together with their source codes are

G1 ¼ fT1 ¼ 4721ðTASÞ;T2 ¼ 6470ðIEAÞ;T3 ¼ 8270ðNRÞg;
G2 ¼ fT1 ¼ 4721ðISSÞ;T2 ¼ 6470ðNASÞ;T4 ¼ 16787ðNRÞg:

For each type of annotation, we associated a numeric

value related to the reliability of that annotation (see

Table 4).
We note that, in Table 4, we show only the six types of

annotations that are present in our data set. For the
extended set of types of GO annotations, the reader is
referred to the GO Web site (www.geneontology.org).
Also, the numeric values attached to each annotation
type were chosen somewhat arbitrarily. They only obey
the relation (www.geneontology.org): TAS > ISS > IEA >
NAS. However, the Choquet integral framework allows
for the computation of the above numeric values given
target similarities for a set of gene products.

The reliability values for these two sets are fc1ig ¼
f1; 0:6; 0:1g and fc2ig ¼ f0:8; 0:4; 0:1g. (Recall that the
densities represent the importance of the single source of
information in establishing similarity.). The pairwise
similarity matrix and the related densities (combined
using min) are given below:

sðT1i;T2jÞ ¼
0:52 0:33 0

0:1 0:1 0

0 0 0:58

�������

�������
;

cðT1i;T2jÞ ¼
0:8 0:4 0:1

0:6 0:4 0:1

0:1 0:1 0:1

�������

�������
;

where, for example, c11 ¼ minðcðT11Þ, cðT21ÞÞ ¼ 0:8, and

s11 ¼ sðT11;T21Þ ¼ 0:52. From the above matrices, the

ordered pairwise term similarities are fsðTðiÞÞg ¼
f0:58; 0:52; 0:33; 0:1; 0:1; 0; 0; 0; 0g and the corresponding

pairwise densities are

fcðiÞg ¼ f0:1; 0:8; 0:4; 0:4; 0:6; 0:1; 0:1; 0:1; 0:1g:

In this paper, we use the following decomposable

measure [28]: gðfcð1Þ; cð2ÞgÞ ¼ minð1; gðfcð1ÞgÞ þ gðfcð2ÞgÞÞ.
There are many choices for the form of the measure. We

chose this one because of the ease of implementation.

Hence, the Choquet similarity in this case becomes:

sChoquet ¼ ½0:1ð0:58� 0:52Þ þ 0:9ð0:52� 0:33Þ
þ 1ð0:33� 0:1Þ þ 1ð0:1� 0:1Þ þ 1ð0:1� 0Þ ¼ 0:5:

The above value is between the average (0.28) and

max (1) and depends on the reliability values assigned to
the sources of annotation. The underlying hypothesis is

that using annotation uncertainty (reliability) can help us

model part of our uncertainty about the similarity of the

two sequences. As the knowledge of various components

of the GO annotations becomes more certain or changes

with new experiments, then the weights of the evidence

used to calculate the Choquet measure can be easily

adjusted. This is particularly useful in a situation like
gene function where the knowledge is changing rapidly.

An alternative similarity definition that accounts for

the information reliability is the weighted Jaccard

formula in which we multiply the information content

of each term by its confidence factor (denoted as

Reliability Weighted Jaccard, RWJ). In this case, the

similarity from Example 4 becomes:

sRWJ ¼ ð0:52 
minð0:8; 1Þ þ 0:57 
minð0:4; 0:6ÞÞ=
ð0:52 
minð0:8; 1Þ þ 0:57 
minð0:4; 0:6Þ
þ 0:33 
 0:1þ 0:54 
 0:1Þ ¼ 0:88:

We note that the first two GO terms, although

common to both gene products, do not have the same

annotation confidence in both sets. Here, we used “min”

to combine the confidences of the same term in different

sets, although other operators such as average could be

used.

In the next section, we validate the GO similarity

measure introduced in this paper by investigating its

correlation to sequence-based similarity measures.
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TABLE 4
Numeric Values Chosen for the Reliability of the GO Annotation



6 GO SIMILARITY BETWEEN MYOTUBULARIN,
RECEPTOR PRECURSOR, AND COLLAGEN

PROTEIN FAMILIES

The GO similarity for the above 194 sequences was
computed as follows: First, the GO terms were extracted
for each sequence using the ENSEMBL browser (http://
www.ensembl.org/) in December 2003. Next, the densities
for each applicable GO term were defined as normalized
information content. The density, gk, for term Tk is
computed from (9), as in Lord et al. [1], [6]. The count of
GO annotations of SWISS-PROT was performed in Septem-
ber 2003, where the total number of GO annotations in
SWISS-PROT was found to be 83,468. Hence, the normal-
ization factor was � lnð1=83; 468Þ ¼ 11:33. Then, the com-
plement of similarities was calculated on the term
intersection sets using the information theoretic densities.

In Fig. 3, we show the three similarity matrices (Jaccard,
cosine, and FMS) obtained for all 194 sequences. To more
easily assess the similarity, the sequences were ordered in
advance in the order of Table 1, that is, 1 to 21 are sequences
from the myotubularin family, 22 to 108 are sequences from
the receptor precursor family, and 109 to 194 are sequences
from the collagen alpha family.

As we see from Fig. 3, in general, the similarity among
the members of the same family is high while the similarity
between families is low for all three similarity measures.
Since most sequences that belong to the same gene have
similar annotation, we expect to see dark squares on the
diagonal of the similarity matrix.

In Fig. 4, we display the three similarity matrices
obtained using the augmented version of the above

similarities (augmented Jaccard, augmented cosine, and
augmented FMS) for the GPD19412:10:03 data set.

Comparing Fig. 4 to Fig. 3, more details appear in the
upper right and lower left corners of the three family
similarity matrices since the augmentation procedure
replaces most of the zeros with nonzero values. This
stronger within family similarity should produce more
consistent agreement with the extracted ENSEMBL families
during clustering. Note also that there is now more
similarity between the three families since the augmenta-
tion procedure takes high-level genetic functions and
processes into account.

To quantitatively assess the GO similarities, we compute
the correlation between the GO similarities and the
sequence similarity. Lord et al. [6] used a similar procedure
to show that the average pairwise GO similarity is
correlated to BLAST bit scores. To plot the GO similarity
against the BLAST score, we used 10 BLAST bins (0.1 apart).
For each bin, we averaged the GO similarity of the
corresponding gene products. The value of the averages is
then used by the plotting procedure. The average values for
several GO similarities are shown in Fig. 5.

We can make several observations here. First, apparently
the maximum pairwise aggregation has the highest correla-
tion to BLAST. However, it also has the higher average
standard deviation per bin (0.13 compared to 0.1 for FMS
and about 0.7 for the others in Fig. 5). Second, it does not
appear that the weighted Jaccard similarity is better than
the unweighted Jaccard. Third, we see that the AFMS is
better correlated to BLAST than FMS for values lower that
than 0.7. This is due to the extra nonzero values that AFMS
produces in those cases where the intersection of the two
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Fig. 3. GO similarity matrix for 194 human sequences. (a) Jaccard similarity. (b) Cosine similarity. (c) Fuzzy measure similarity.

Fig. 4. Augmented GO similarity matrix for 194 human sequences. (a) Augmented Jaccard similarity. (b) Augmented cosine similarity.

(c) Augmented fuzzy measure similarity.



annotation sets is empty. At high values, this effect is not
present anymore.

The above observations were performed on averaged GO
similarities for each sequence similarly bin not considering
the standard deviation of each bin. To assess the point-by-
point correlation between GO similarities and the BLAST
sequence similarity, one can use the correlation coefficient
(see Table 5).

From Table 5, we see that maximum no longer correlates
best to BLAST. In this case, the best correlation was
obtained by the augmented fuzzy measure similarity
(AFMS), although it is not striking. The average aggrega-
tion, together with the Jaccard measures, had the worst
correlation. Overall, the correlation values in Table 5 are
low. Looking at Fig. 1, we see that the BLAST scores
between members of the collagen family (lower left corner)
are not consistent. By contrast, in Fig. 3 and Fig. 4, the

values in the same area are very high for the GO measures.
This discrepancy produces a low overall correlation coeffi-
cient. We now use an alternative “target similarity” for
comparison. Since we know the family assignment, we can
compare the GO similarity to the ideal-case similarity
matrix defined as:

sidealði; jÞ ¼
1 if i; j are in the same family
0 else:

	

For this case, the correlation coefficients are given in
Table 6.

The correlations are much higher in this case. Again, the
fuzzy measure has the highest degree of correlation. The
augmented fuzzy measure has a lower correlation than the
nonaugmented version since, by design, it has nonzero
elements for genes outside the same family.

We present the results of the correlations for the
similarity measures that account for the reliability of the
annotations in Table 7 and display them in Fig. 6.

The Choquet similarity correlates better with the BLAST
sequence similarity than the reliability weighted Jaccard
does. However, the Jaccard-based similarity has the
advantage of being faster.

To provide supportive evidence that FMS mirrors hu-
man-expert opinion of close relationships between proteins
that are scored as similar by it, consider the following:
Myllyharju and Kivirikko [30] propose a division of the
collagen superfamily into nine families. In light of their
classification, we will give two examples of similar and
dissimilar gene products from our data set. The similarities
are computed using BLAST, Jaccard, and FMS. Myllyharju
and Kivirikko group COL1A2 and COL24A1 as fibril
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Fig. 5. GO average similarity score versus normalized BLAST bit score.

TABLE 6
Correlation Coefficient between GO Similarity and the Ideal-Case Similarity

TABLE 5
Correlation Coefficient between GO Similarity and BLAST Similarity

TABLE 7
Correlation Coefficient for the Measures Using the Information Reliability



forming collagens in one group and COL21A1 in another
group as fibril associated collagens. The results of the three
similarity measures are given in Table 8.

Jaccard is clearly inconsistent since the value for the
similar pair is smaller than that for the less similar pair.
BLAST values are very small since no function is taken into
account in its computation. FMS values are clearly con-
sistent. First, the less similar pair is still “somewhat” similar
since they belong to the same superfamily (collagen), while
the value for the similar pair within the same family is very
high, as it should be.

To demonstrate that the above examples are not
accidental, we performed one more experiment. We were
interested to find out how is the clustering of our collagen
data set (85 gene product sequences) compared to the
classification made by Myllyharju and Kivirikko. From the
nine collagen families mentioned by Myllyharju and
Kivirikko, we have in our data set representatives of three
collagen families only: fibril forming collagens (FFC):
{COL1A1, COL2A1, COL3A1, COL5A3, COL24A1,
COL27A1}, type IV collagens {COL2A1, COL2A2, COL2A3,
COL2A6}, and the fibril associated collagens with inter-
rupted triple helices (FACIT) {COL9A1, COL9A2,
COL21A1}. The clustering was performed using fuzzy
c-means (using a suggestion from [31]) to group the

85 sequences into three clusters. When the FMS similarity

was used, the members of the three families were classified

perfectly, i.e., all members of the same family ended up in a

single cluster. When the Jaccard similarity was used, the

members of the FACIT family were merged into the type IV

collagen family. With BLAST, the families were mixed

together in the final three clusters and, hence, no family

structure could be identified.
The relative execution time of the above similarities is

given in Table 9, with Jaccard similarity being chosen as

reference. Although the assessment is dependent of our

implementation (MATLAB code), it offers an idea of the

execution time versus accuracy trade-off.
While the Jaccard-based measures are the fastest, their

correlations to the sequence-based similarities are the worst.

If one desires (and has the computational means) to trade

computation time for accuracy, the fuzzy measures are the

method of choice.

7 CONCLUSIONS

In this paper, we investigated several novel measures that

can be used to assess the similarity of two gene products

based on the GO terms describing them. These similarity

measures are intended to provide extra tools for the

biologist in search of functional information about gene

products. The methods presented here can be extended to

other sets of annotations, such as motifs, domains, literature

articles, etc.
The fuzzy measure similarity utilizes the Sugeno fuzzy

measure with fuzzy densities calculated using an information

theoretic approach. For the case when the intersection of the

two sets is empty, we proposed an augmentation procedure

that avoids forcing the resulting similarity to be zero by taking

advantage of the structured nature of the ontology. We also

proposed a method based on the Choquet integral to include

the quality (reliability) of the annotation in the similarity

measure. We showed that the proposed similarities correlate

better to BLAST than the previously used approaches,

average and maximum pairwise similarity.
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Fig. 6. Correlation between GO similarities that uses the reliability of the

annotations and BLAST sequence similarity.

TABLE 9
Relative Execution Time of the GO-Based Similarity Procedures

TABLE 8
Comparison of Three Similarity Measures Values to the Expert’s Opinion



Since the FMS provides a different “look” at gene

product similarity, we believe that it could be used in

conjunction with other sequence-based similarity tools

(such as BLAST) to improve clustering and knowledge

discovery in gene product databases.
As future research, we plan to scale up our experiments

to much larger gene product databases and to investigate

the fusion of GO similarity with those calculated from

sequence, expression, motif, etc., to produce more effective

tools for knowledge discovery. We also intend to test our

approach on microarray experimental data.
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