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Abstract

Efforts to quantify the composition of biological communities increasingly focus on functional traits. The composition of
communities in terms of traits can be summarized in several ways. Ecologists are beginning to map the geographic
distribution of trait-based metrics from various sources of data, but the maps have not been tested against independent
data. Using data for birds of the Western Hemisphere, we test for the first time the most commonly used method for
mapping community trait composition – overlaying range maps, which assumes that the local abundance of a given species
is unrelated to the traits in question – and three new methods that as well as the range maps include varying degrees of
information about interspecific and geographic variation in abundance. For each method, and for four traits (body mass,
generation length, migratory behaviour, diet) we calculated community-weighted mean of trait values, functional richness
and functional divergence. The maps based on species ranges and limited abundance data were compared with
independent data on community species composition from the American Christmas Bird Count (CBC) scheme coupled with
data on traits. The correspondence with observed community composition at the CBC sites was mostly positive (62/73
correlations) but varied widely depending on the metric of community composition and method used (R2: 5.661027 to 0.82,
with a median of 0.12). Importantly, the commonly-used range-overlap method resulted in the best fit (21/22 correlations
positive; R2: 0.004 to 0.8, with a median of 0.33). Given the paucity of data on the local abundance of species, overlaying
range maps appears to be the best available method for estimating patterns of community composition, but the poor fit for
some metrics suggests that local abundance data are urgently needed to allow more accurate estimates of the composition
of communities.
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Introduction

Efforts to describe the composition of communities have focused

largely on the occurrence or abundance of species (e.g. [1,2]).

However, increasing attention is being paid to selected traits of

organisms, such as body size or diet for animals, and maximum

height and photosynthetic pathway for plants [3]. While a focus on

the traits of organisms has a longer history in plant ecology, for

example in dynamic global vegetation models (DGVMs; e.g. [4]),

and in freshwater community ecology (e.g. [5]), it has only recently

started to be adopted among animal ecologists (e.g. [6–9]).

A trait-based approach to community and ecosystem ecology is

appealing for a number of reasons. First, the way that species

respond to environmental changes is often related to certain traits

[10–15], referred to as ‘functional response traits’ [16]. Second,

the profile of other traits present in an ecosystem, referred to as

‘functional effect traits’ [16], is expected to determine the

provision and rate of important ecological processes, such as

plant productivity, pollination and seed dispersal [13,17–19].

Finally, from a more practical perspective, the composition in

terms of traits is probably easier to explain and predict than the

particular species present in biological communities [3].

In response to this interest in traits, ecologists are beginning to

generate maps of the trait composition of communities across large

geographical areas [9,20–24]. Useful metrics include the commu-

nity-weighted mean, which is the mean trait value among all

individuals in a community and can inform about the mechanisms

driving community assembly [25], functional richness, which

measures the range of trait values present in a community [26] and

is linked to certain ecosystem processes [18,27], and functional

divergence, which measures the extent to which the individuals

present in a community fill the available trait space [26] and is

likely to be related to other ecosystem processes.

There are a number of challenges to mapping the trait

composition of communities. One of the major challenges is

accounting for the differing relative abundances of species in any

one place. Previous attempts to describe biological communities in

terms of the traits represented have often used species rather than

individuals as the unit of analysis, thus ignoring differences in

abundance among species (e.g. [6,9,13,28], but see [8,29]). In
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some cases it might be sufficient to know the distribution of trait

values among the species present in any one place. However, when

trying to understand the mechanisms underlying community

assembly or the functioning of ecosystems, the number of species

exhibiting a particular trait is likely to be less important than the

number of individuals. The latter will be strongly affected by

interspecific variation in local abundances, with the traits of the

most common species being more strongly represented than those

of rarer species. Species clearly differ widely in abundance and, if

abundance varies systematically with the traits under consider-

ation, will differ in their contribution to the profile of traits present

and probably also in their contribution to ecosystem function.

Here, we investigate whether the accuracy and precision of

maps of the trait composition of communities can be improved by

incorporating estimates of local abundance interpolated from

readily available abundance observations and estimates. We test

for the first time the accuracy of maps of trait composition against

observations. We focus on birds in the Western Hemisphere

because good data on the abundance, distribution and traits of

these species are available. Trait composition of communities was

calculated from observed abundance of species from sites in the

American Christmas Bird Count (CBC) scheme. For metrics of the

trait composition of communities that include differences in the

abundance of species, estimates made without abundance data will

only be accurate if species with particular combinations of traits

are not systematically more or less common than other species. We

tested whether this was the case.

Methods

Data
Distribution maps. We inferred the non-breeding distribu-

tions of 4064 bird species that occur in the terrestrial Western

Hemisphere (95% of the species known to occur in the region [30])

from extent of occurrence maps compiled by NatureServe [30].

We refined extent of occurrence maps by excluding elevations

from a digital elevation model [31] outside the reported

elevational limits in BirdLife International’s World Bird Database

(www.birdlife.org/datazone), to exclude areas which are unlikely

to be inhabited and which otherwise would cause overestimation

of species’ distributions. After refinement, the distribution

polygons were mapped as grids with 20620 km resolution

projected to a cylindrical equal-area WGS1984 (Behrmann)

projection.

Trait data. We focused on four traits of bird species: body

mass, generation length (the average age of breeding individuals),

migratory behaviour and diet. These are likely to be functionally

important: for example, bird diet is related to ecosystem functions

such as pollination and seed dispersal [10], body size is important

in determining food-web structure [32], and migratory behaviour

may impose seasonality on any ecosystem functions performed by

migrating birds. These traits represent only a subset of the many

traits that might inform bird species’ responses to global change or

affect their role in ecosystem functioning; they were chosen as

readily-available examples with which to evaluate the utility of

different approaches for mapping functional traits.

Data on mass, generation length and migratory behaviour were

taken from BirdLife International’s World Bird Database. The

data on body mass therein were compiled from various sources,

primarily [33]. Data on generation length were based on published

and unpublished estimates for age at first breeding, survival, and

longevity, applied to the formulae recommended by the IUCN

Standards and Petitions Subcommittee [34]. Where species-

specific values of mass and generation length were not available

(for 270 and 87 species, respectively), estimates were made based

on mean values for congeners. As values of mass and generation

length were highly right-skewed, they were log-transformed in all

analyses.

Species were assigned to four migratory classes: non-migrants,

nomads, altitudinal migrants, and latitudinal/longitudinal mi-

grants. Nomadic species move in response to resources that are

sporadic and unpredictable in distribution and timing, and may

congregate, but not predictably in terms of location and timing.

Altitudinal migrants regularly or seasonally make cyclical move-

ments to higher or lower elevations with predictable timing and

destinations. Latitudinal/longitudinal migrants are species for

which a substantial proportion of the global or regional population

makes regular or seasonal cyclical movements beyond the

breeding range, with predictable timing and destinations. This

includes species that may be migratory only in part of their range/

population, short-distance migrants and migrants that occasionally

respond to unusual conditions in a semi-nomadic way.

Diet data were compiled by one of us (CHS) from the literature,

primarily from the Handbook of the Birds of the World ([35]; for a

detailed description and a complete list of sources see [10]).

Species were classified as having one of six diets: fruit, nectar,

other plant material (including herbivorous omnivores), inverte-

brates, vertebrates, or mixed (including all other omnivores).

Complete trait data were available for 3960 species, including

species for which mass and generation length values were

interpolated from values for congeners. 104 species with incom-

plete trait data were excluded from our analyses to ensure

consistency in the calculations across all methods of calculation

and across all measures of community trait composition. Excluded

species represented 33 different bird families and thus are unlikely

to constitute a functionally unique set of species.

Abundance data. Observed abundance data for 2715 species

were taken from 2466 sites (Figure 1) in the Christmas Bird Count

(CBC) dataset, for ten years between 2000 and 2009 [36]. This

dataset was chosen over other datasets, such as the North

American Breeding Bird Survey, because of the larger spatial

extent covered, including countries in Central and South America.

CBC sites are almost entirely located in the northern hemisphere,

with only 20 sites located south of the Equator. Counts were made

each year on one day between 14th December and 5th January,

with observers following specified routes within a circle of 24-km

diameter [36]. The durations of the counts and number of people

sampling differed among sites and years. Therefore, abundances

were first corrected for sampling effort by dividing by the total

duration of the count, then averaged across all years in which a

given species was recorded at a site and rounded up to the nearest

integer. Sites were split into training and evaluation subsets. To

evaluate the accuracy of trait maps (see below), we reserved data

from 68 CBC sites (henceforth ‘evaluation sites’) where sampling

had occurred in at least five years. For evaluation sites, we used

one site from each of the Canadian provinces, one from each of

the United States, and one from each of the countries of Mexico,

Belize, Costa Rica, Panama and Ecuador (see Figure 1). One of

the evaluation sites was in the southern hemisphere. Pairwise

distances between sites ranged from 23 to 9533 km (median:

2289 km). Thus, spatial autocorrelation should not present a

major problem for the analyses. To ensure that this was the case,

we repeated all analyses using spatial autoregressive models. The

remaining 2398 CBC sites were used for developing the maps.

For one of the mapping methods, we also used estimates of the

total global population size of bird species derived from BirdLife

International’s World Bird Database, available for 1324 of 3960

species. Estimates were taken from a wide variety of sources and

Functional Trait Maps: Abundance vs. Occurrence
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were based on published estimates, surveys, censuses, inferences

from distribution size, estimated population densities, and expert

opinion. For species whose total population estimates consisted of

minimum and maximum estimates, the mid-point of these values

was taken. Because our study area was confined to the Western

Hemisphere, we converted these estimates of global population

size to estimates of total population size in the Western

Hemisphere. To do this, we used a list of all countries in which

each species was known to be resident or to overwinter. For each

species, the global population estimate was reduced according to

the ratio of the total area of these occupied countries in the

Western Hemisphere to the total area of occupied countries in the

whole world.

Environmental data. One of our mapping methods used

three environmental variables: annual mean temperature and total

annual precipitation, from the WorldClim dataset Version 1.4

[37], and absolute minimum temperature, calculated from

WorldClim variables following Skov & Svenning [38]. Two

additional environmental variables, growing degree days and

water balance (sensu Skov & Svenning [38]), were considered

initially but were excluded because they correlated strongly with

annual mean temperature (R2 = 0.901 and 0.927 respectively).

Mapping community trait composition
Four methods were used to map species and trait composition

based on the distribution maps and trait data (henceforth

‘distribution-based estimates’; Figure 2), making different assump-

tions about the relative abundance of species, thus requiring

different amounts of data and accounting for different numbers of

species: a) distribution maps for the 3960 species were overlaid,

assuming that every species had the same abundance and that this

was equal everywhere within each species’ range; b) each species

was assumed to be equally abundant throughout its range, but

each species was allowed to differ in its abundance, estimated by

dividing an estimate of each species’ total population size in the

Western Hemisphere (available for 1324 species) by its distribution

area (number of grid cells in the distribution map); c) the same as

method (b), but abundance for each species was estimated as the

mean abundance of the species across the 2398 CBC sites not used

for evaluation (data available for 2464 species); and d) abundances

were allowed to vary both among species and within the

distribution of each species, by modelling abundance at the 2398

non-evaluation CBC sites against three environmental variables

(mean annual temperature, total annual precipitation and absolute

minimum temperature) using generalized additive models fitting

smoothing splines with 5 degrees of freedom. These models

explained a high proportion (mean 60%, range 17–93%) of the

variation in the abundance of the 503 species with at least 30

records in the CBC dataset. Each method included only those

species for which the appropriate abundance data were available:

a) n = 3960; b) n = 1324; c) n = 2449; d) n = 503 species. To check

that the perceived relative accuracy of methods was not simply a

result of the varying numbers of species, we recalculated the

metrics for all methods including only the 351 species for which all

of the methods could be applied (i.e. those species with complete

distribution, abundance and trait data).

Using each of the four methods, for each trait individually and

for all traits together, we generated maps of community-weighted

mean trait values, functional richness and functional divergence.

For categorical traits (migratory behaviour and diet), community

weighted mean trait values were calculated as the proportion of

individuals (or species) in each class. Functional richness was

calculated as the range of trait values present for continuous traits

and as the number of classes present for categorical traits. To

Figure 1. Sites with Christmas Bird Counts between 2000 and
2009. Black crosses are sites used in the generation of trait maps
(n = 2398), whereas white circles are sites used for evaluating the maps
(n = 68). In Behrmann cylindrical equal-area projection.
doi:10.1371/journal.pone.0044019.g001

Figure 2. The basic scheme for generating and evaluating
maps of the trait composition of bird communities. The maps
were generated by combining i) trait data, ii) refined distribution maps
and iii) various types of abundance data. We used four estimates of
abundance (a–d) for generating the maps, based on three basic
assumptions about the abundance of bird species: 1) that all species
have an equal abundance (of one) in all grid cells (black text); 2) that
species differ in abundance from one another, but with no spatial
variation in abundance within species (blue text); and 3) that
abundance varies both among species and spatially (red text). The
maps were evaluated using iv) trait data and v) local abundance data
from the Christmas Bird Count sites. Note (*) that the abundance data
from the CBC sites were divided into a set for generating the maps
(2398 sites) and a set for evaluating the resulting maps (68 sites). Note
also ({) that the same trait data were used for generating and
evaluating the maps.
doi:10.1371/journal.pone.0044019.g002

Functional Trait Maps: Abundance vs. Occurrence
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calculate functional richness for all traits together, we first reduced

the trait data of species using principal coordinates analysis (using

the dudi.pco function in the ade4 package [39] in R Version

2.14.1 [40]), on a Gower-distance matrix of pairwise distances

among species in trait space (using the gowdis function in the FD

package [42] in R). We then calculated functional richness as the

volume of a convex hull enclosing the principal coordinates of the

species present in each grid cell (using the convhulln function in

the geometry package [41] in R). Functional richness was only

calculated using the method that ignored differences in species

abundance, because functional richness measures by their nature

cannot account for abundance. Functional divergence was

calculated using the Rao index [26]:

Rao~
X

s[SC

X

s0[SC

AsAs0

A2
:d(s,s0)

Where As and As’ are the abundances of species s and s’ in a

community of total abundance A and containing Sc species, and

d(s,s’) is the trait distance between species s and s’. Trait distances

were calculated for each trait individually and for all traits together

using Gower distances (using the gowdis function in the FD

package [42] in R). Resulting values of the Rao diversity index

were corrected to the numbers equivalent of the index following

Jost [43], and as recommended by several authors as a more

intuitive measure of diversity [44,45], as follows:

FDiv~
1

1{Rao

We chose to use the Rao index as a commonly used and easily

calculated measure of functional divergence, rather than other

available metrics such as those based on a ‘functional dendrogram’

[46], but whether our results hold for these other metrics is an

important topic for further study.

We also generated a map of species richness, to test the ability of

overlaid distribution maps to capture this basic measure of the

composition of communities.

Comparing observed and distribution-based estimates of
metrics

Values of each of the trait composition metrics were calculated

from local observed abundances at the CBC evaluation sites, and

compared to the distribution-based estimates of the metrics using

linear regression (see also Figure 2). We assessed whether local

species composition at the evaluation sites was captured well by

the range maps, by computing the Jaccard index of similarity

between CBC-based and distribution-based estimates of species

composition. This index varies from zero, if the local and

distribution-based estimates share no species in common, to one,

if the estimates are identical.

Ignoring differences in the abundance of species will only be a

problem for mapping trait metrics if species’ abundances in grid

cells are biased with respect to the traits in question. For example if

small-bodied species are more abundant on average than large-

bodied species, then estimates of the distribution of trait values will

be biased if it is assumed that species are equally abundant. On the

other hand, if variations in abundance are random with respect to

trait values, then estimates of the distribution of trait values should

be unbiased. To test for a relationship between trait values and

abundance, for each CBC site, we correlated log-transformed

species abundance with body mass and generation length, and

tested differences in (log-transformed) abundance with respect to

migratory behaviour and diet using analysis of variance.

Computational implementation and statistical analysis
All maps were generated using custom-built C# code developed

in MicrosoftH Visual Studio 10.0 (code available from TN on

request). The precision of the distribution-based estimates was

measured using R2 and the accuracy of the estimates by assessing

departures from a fitted slope of zero. To test that the results were

not influenced by spatial autocorrelation in the values of the

metrics among CBC sites, the same analyses were repeated using

simultaneous autoregressive (SAR) models. To do this, spatial

weights were calculated based on the longitude and latitude

coordinates of the evaluation sites using the tri2nb and nb2listw

functions in the spdep package [47] in R. Spatial autoregressive

models were then developed, using these weights, with the

errorsarlm function in the spdep package. The results might be

biased if species with particular combinations of traits are more

easily detected than smaller species. To test this, we used a

generalized linear model with a quasi-Poisson distribution of errors

to relate the number of CBC sites at which a species was recorded

to its (log-transformed) range size (measured as the number of 20-

km grid cells in the refined range maps) and two traits

hypothesized to have an effect on species’ detectability: body

mass and migratory behaviour.

Results

The total local abundance of bird communities, estimated using

the three mapping methods that incorporated abundance data,

correlated positively with observed total local abundance at the

Christmas Bird Count (CBC) sites, although the fit of these

relationships varied depending on the method used (R2 values

were: 0.34 where local abundance was estimated as a species’

estimated total population size divided by range size; 0.52 where

local abundance was estimated as the average abundance across

CBC sites; and 0.57 where local abundance was modelled against

environmental variables to capture spatial variation; see Table 1

for full results).

In terms of precision (R2 values), the correspondence between

distribution-based and CBC-based estimates of community trait

composition varied widely (R2 from 5.761027 to 0.82, median of

0.12), although most (62/73) relationships were positive (Figures 3–

5; Table 1). Simply overlaying range maps and ignoring

differences in local abundance produced the most precise estimates

in 9 out of 17 cases (median R2 = 0.29), using total population size

of each species to estimate local abundance gave the most precise

estimate in 1 case (median R2 = 0.04), taking the average

abundance at CBC sites for each species as an estimate of local

abundance gave the most precise estimates in 2 cases (median

R2 = 0.09), and using spatial models of local abundance gave the

most precise estimates in 5 cases (median R2 = 0.11).

In terms of accuracy (approximation to a slope of one in the

relationship between distribution-based and local estimates of the

trait metrics), overlaying range maps was best in 7 out of 17 cases

(mean slope estimate = 0.40), using total population size of species

was best in 3 cases (mean slope estimate = 0.23), taking the

average abundance of species at CBC sites was best in 1 case

(mean slope estimate = 0.25), and using spatial models of local

abundance for each species was best in 6 cases (mean slope

estimate = 0.27; Figures 3, 4, 5; Table 1). For all methods, most

relationships between distribution-based and CBC-based metrics

had a slope that was significantly less than one. That is to say, the

Functional Trait Maps: Abundance vs. Occurrence
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Table 1. Full results of the relationships between distribution-based and CBC-based estimates of community composition.

Trait Metric Method Correlation Departure from unity slope

R2 P Slope t P

Mass CWM Range maps 0.29 ,0.001 0.3 11.9 ,0.001

Total population 0.17 ,0.001 0.42 4.94 ,0.001

Mean of records 0.19 ,0.001 0.33 8.04 ,0.001

GAM models 0.17 ,0.001 0.4 5.31 ,0.001

FRICH Range maps 0.55 ,0.001 0.82 1.89 0.031

FDIV Range maps 0.0084 0.46 20.044 17.9 ,0.001

Total population 0.00048 0.86 20.017 10.5 ,0.001

Mean of records 0.0013 0.77 20.028 10.8 ,0.001

GAM models 0.0029 0.66 20.064 7.26 ,0.001

Generation length CWM Range maps 0.31 ,0.001 0.42 7.42 ,0.001

Total population 0.25 ,0.001 1 0.109 0.46

Mean of records 0.17 ,0.001 0.35 6.68 ,0.001

GAM models 0.17 ,0.001 0.34 7.14 ,0.001

FRICH Range maps 0.48 ,0.001 0.51 7.38 ,0.001

FDIV Range maps{ 0.097 0.0097 0.22 9.19 ,0.001

Total population 0.041 0.099 0.29 4.18 ,0.001

Mean of records{ 0.086 0.015 0.28 6.37 ,0.001

GAM models 0.14 0.0019 0.41 4.76 ,0.001

Migratory behaviour CWM
(non-migratory)

Range maps 0.54 ,0.001 0.47 10.2 ,0.001

Total population 0.032 0.14 0.26 4.32 ,0.001

Mean of records 0.035 0.12 0.2 6.12 ,0.001

GAM models{ 0.084 0.018 20.28 11.2 ,0.001

CWM
(nomadic)

Range maps 0.38 ,0.001 1.2 1.22 0.11

Total population 0.67 ,0.001 0.42 15.9 ,0.001

Mean of records 0.58 ,0.001 0.43 12.4 ,0.001

GAM models 0.6 ,0.001 0.52 8.96 ,0.001

CWM
(altitudinal migrants)

Range maps 0.14 0.0016 0.81 0.776 0.22

Total population 0.017 0.29 0.022 48 ,0.001

Mean of records 0.22 ,0.001 0.56 3.4 ,0.001

GAM models 0.11 0.0066 0.28 7.33 ,0.001

CWM
(full migrants)

Range maps 0.54 ,0.001 0.52 8 ,0.001

Total population 0.036 0.12 0.27 4.34 ,0.001

Mean of records 0.039 0.11 0.21 6.19 ,0.001

GAM models{ 0.075 0.024 20.26 11.2 ,0.001

FRICH Range maps 0.36 ,0.001 0.98 0.143 0.44

FDIV Range maps 0.53 ,0.001 0.58 6.28 ,0.001

Total population{ 0.07 0.029 20.25 11.2 ,0.001

Mean of records 0.004 0.61 20.062 8.9 ,0.001

GAM models 0.025 0.2 20.14 10.6 ,0.001

Diet CWM
(fruit)

Range maps 0.28 ,0.001 0.29 12.3 ,0.001

Total population 0.16 ,0.001 0.23 11.7 ,0.001

Mean of records 0.089 0.014 0.29 6.15 ,0.001

GAM models 0.013 0.36 0.15 5.06 ,0.001

CWM
(nectar)

Range maps 0.8 ,0.001 1.1 2.04 0.023

Functional Trait Maps: Abundance vs. Occurrence
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distribution-based estimates of community trait composition

under-estimated observed community trait composition at higher

observed values. Example maps are shown in Figure 6.

The map of species richness, generated by overlaying range

maps, corresponded very closely with observed species richness at

the CBC sites (R2 = 0.90; Table 1). However, the estimate of

specific species composition generated by overlaying range maps

did not always match the species composition estimated by the

Christmas Bird Counts (Jaccard indices of compositional similarity

ranged from 0.17 to 0.69, with a mean of 0.47).

Accounting for spatial autocorrelation by using SAR models did

not alter the results substantially: in 8 out of 73 cases, the

relationship was significant for the non-spatial models but non-

significant for the spatial models (marked with a { in Table 1), but

importantly the relative accuracy of the four methods was

unchanged (for full spatial model results see Table S1, Appen-

Table 1. Cont.

Trait Metric Method Correlation Departure from unity slope

R2 P Slope t P

Total population 0.69 ,0.001 0.69 5.52 ,0.001

Mean of records 0.82 ,0.001 0.79 4.46 ,0.001

GAM models 0.77 ,0.001 0.78 4.25 ,0.001

CWM
(other plant material)

Range maps 0.38 ,0.001 0.25 19.5 ,0.001

Total population{ 0.068 0.032 0.27 5.96 ,0.001

Mean of records 0.12 0.0044 0.2 11.6 ,0.001

GAM models 0.23 ,0.001 0.42 6.06 ,0.001

CWM
(invertebrates)

Range maps{ 0.3 ,0.001 0.23 18 ,0.001

Total population 0.079 0.021 0.26 6.68 ,0.001

Mean of records 0.091 0.012 0.22 9.1 ,0.001

GAM models 0.33 ,0.001 0.59 3.86 ,0.001

CWM
(vertebrates)

Range maps 0.12 0.0034 0.17 14.6 ,0.001

Total population 0.011 0.39 0.1 7.84 ,0.001

Mean of records 0.45 ,0.001 0.44 9.49 ,0.001

GAM models 0.51 ,0.001 0.93 0.629 0.27

CWM
(mixed)

Range maps 0.0036 0.63 0.024 19.6 ,0.001

Total population 0.0065 0.51 20.093 7.71 ,0.001

Mean of records 0.0064 0.52 0.048 12.8 ,0.001

GAM models{ 0.089 0.014 0.23 8.65 ,0.001

FRICH Range maps 0.49 ,0.001 0.58 5.69 ,0.001

FDIV Range maps 0.011 0.4 0.032 25.9 ,0.001

Total population 0.00055 0.85 0.015 12.4 ,0.001

Mean of records 0.00059 0.84 0.012 15.8 ,0.001

GAM models 0.044 0.088 0.16 8.77 ,0.001

All traits FRICH Range maps 0.45 ,0.001 0.8 1.77 0.04

FDIV Range maps 0.18 ,0.001 0.17 18.3 ,0.001

Total population 0.0037 0.62 20.054 9.71 ,0.001

Mean of records 5.7E-07 1 0.00052 11.8 ,0.001

GAM models 0.024 0.21 0.1 10.8 ,0.001

Species richness Range maps 0.9 ,0.001 0.99 0.332 0.37

Total abundance Total population 0.41 ,0.001 0.22 24.1 ,0.001

Mean of records 0.34 ,0.001 0.35 10.9 ,0.001

GAM models 0.52 ,0.001 0.4 12.5 ,0.001

For each of the four traits considered (mean mass, generation length, migratory behaviour and diet) and for all traits together, we calculated community-weighted
mean trait values (CWM), functional richness (FRICH) and functional divergence (FDIV). The overall fit of the relationship between distribution-based estimates and
observed community composition at the Christmas Bird Count sites was measured using a correlation test (R2 and P-values reported). Departures from a fitted
relationship of y = x (i.e. a slope of 1) were assessed using a t-test (slope, t and P-values reported). For each metric the results of the strongest correlation and the
smallest departure from one are shown in bold. {s indicate comparisons that were significant for these non-spatial models but that were non-significant for the spatial
autoregressive models (for full spatial model results see Appendix S1).
doi:10.1371/journal.pone.0044019.t001
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dix S1). The relative accuracy of the four mapping methods was

not biased by the smaller number of species included in some

methods: the results were very similar when all metrics were

generated for only the 351 species with sufficient distribution, trait

and abundance data for all four methods (Figures S1-S3 and

Table S1, Appendix S2).

As expected, among bird species observed at CBC sites, there

were more smaller-bodied species than larger-bodied species

(Figure S4a, Appendix S3). However, the average local abun-

dance of species was not strongly related to body mass (mean

Pearson correlation coefficient across all sites was 20.02560.003).

Similarly, more species had shorter than longer generation length

(Figure S4b, Appendix S3), but average recorded local abundance

was not related to generation length (mean Pearson correlation

coefficient across all sites was 20.01660.003). Finally, local

abundance did not generally differ with migratory behaviour

(across all 2378 sites with sufficient data, analyses of variance

revealed a significant difference – P,0.05 – for 55 sites, mean

F = 1.04) or with diet (across 2383 sites with sufficient data,

analyses of variance were significant for 7 sites, mean F = 3.10).

The apparent lack of correlations between the traits of species

and their local abundances may reflect a failure to detect a

relationship, arising from an effect of traits on the detectability of

species and thus on estimated local abundance. This appeared to

be the case to some extent: larger-bodied, migratory species with

large range sizes were recorded at significantly more sites than

small-bodied, non-migratory species with small range sizes.

However, the effect of body mass on detectability was weak, with

most of the variation in the number of sites at which a species was

recorded being explained by range size and migratory behaviour

(deviances explained: overall 46.7%; range size 19.7%; mass 3.9%;

migratory behaviour 24.0%).

Discussion

Previous attempts to map the distribution of traits and trait-

based diversity metrics have involved overlaying distribution maps

and have generally ignored differences in abundance among

species [9,20–24]. It will not always be necessary to account for

abundance, but for some applications, such as understanding

ecosystem processes and functioning, a consideration of abun-

dance may be essential. It is not clear the extent to which estimates

of trait-based metrics that do not account for abundance are a

good proxy for observed values. This is the first time that the maps

Figure 3. Correlation between distribution-based and CBC-based values of community composition metrics based on continuous
traits. For each of the two continuous traits considered – body mass and generation length – maps were generated of community-weighted mean
trait value (CWM; a, d, f, i), functional richness (FRICH; b, g) and functional divergence (FDIV; c, e, h, j). Observed values were calculated from recorded
abundances at 68 Christmas Bird Count (CBC) evaluation sites. Distribution-based estimates of the metrics were generated using four methods, but
only results from the best two methods are presented here: 1) overlaying range maps (black symbols); and 2) overlaying range maps with estimates
of species abundance that vary among species and within species’ ranges (red symbols). Abundance was estimated by modelling recorded
abundances with respect to three environmental variables using generalized additive models. Lines represent y = x. Full results for all four methods
are presented in Table 1.
doi:10.1371/journal.pone.0044019.g003
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of the trait composition of communities have been compared with

independent abundance data. We found that the correspondence

between distribution-based estimates of community trait and

species composition and the observed composition at the

Christmas Bird Count evaluation sites varied widely and none of

the four methods gave uniformly good results even for functional

richness, which does not require abundance data for its

calculation. This latter result was probably because overlaying

range maps did not give an accurate estimate of species composition

at all sites, even though estimates of species richness corresponded

very well with species richness recorded in the Christmas Bird

Counts. The low correspondence between estimates of species

composition from range maps and observed species composition at

the CBC sites was probably the result of two opposing effects: cases

where the range maps predicted species to be present that were not

detected were probably the result of the well-known over-

prediction of extent-of-occurrence range maps [48], whereas

species that were detected but not estimated to be present by the

range maps were probably vagrants or scarce visitors. Neverthe-

less, for most metrics of trait composition, most estimates based on

range maps and limited abundance data showed a positive

relationship with estimates of the same metrics derived from the

Christmas Bird Counts.

Importantly, for most metrics of community composition, the

method of overlaying range maps produced nearly as good or

better estimates of community composition, both in terms of

accuracy and precision, than did the methods that included

abundance, although even for this method the fit between

distribution-based estimates and observed composition varied

widely depending on the trait and metric considered. The fact that

the methods that included abundance estimates failed to improve

the estimated trait composition of communities was almost

certainly because the methods used to estimate local abundance

corresponded at best moderately with the abundance of bird

communities observed in the Christmas Bird Counts (R2 values

ranged from 0.34 to 0.52). In the following paragraphs, we will

discuss the results for each of the community composition metrics

separately.

Functional richness measures the range of different trait values

present in a community and has been shown in some cases to

correlate positively with measures of ecosystem functioning [18].

In this study, functional richness was generally the best estimated

of the trait metrics considered, both for individual traits and for all

traits together (Table 1). This is probably because its calculation

relies only on an estimate of species composition and does not

involve any assumption about abundance. The lack of a perfect

match between the distribution-based and CBC-based estimates of

Figure 4. Correlation between distribution-based and CBC-based values of community composition metrics based on categorical
traits. For each of the two categorical traits considered – migratory behaviour and diet – maps were generated of community-weighted mean trait
value (CWM; a, d, f, i), functional richness (FRICH; b, g) and functional divergence (FDIV; c, e, h, j). For the categorical traits, community-weighted mean
was calculated as the proportion of birds in each of the trait classes. Observed values were calculated from recorded abundances at 68 evaluation
Christmas Bird Count (CBC) sites. Distribution-based estimates of the metrics were generated using four methods, with the best two shown here, as in
Fig. 3. Lines represent y = x. Full results for all four methods are presented in Table 1.
doi:10.1371/journal.pone.0044019.g004
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functional richness was because species composition at the CBC

sites was imperfectly estimated by overlaying range maps. This

mismatch in species composition estimates explains to some degree

the mismatch between the distribution-based and CBC-based

estimates of all of the other metrics.

The trait composition of communities can also be measured as

the mean trait value of species in the community, weighted by

those species’ relative abundances (community-weighted mean

trait values; e.g. [19]). These community-weighted mean trait

values have been shown to be associated with rates of important

ecosystem processes [19] and with environmental gradients [49].

In this study, estimates of the community-weighted mean values of

the two continuous traits considered, made by overlaying range

maps and ignoring abundance, showed a positive albeit relatively

weak correlation with observed values at the CBC sites, which

accounted for differences in abundance (R2 values of 0.29 and

0.31; Figure 3a and 3f). Estimates of the proportion of individuals

in a community exhibiting a particular migratory behaviour or

belonging to a particular diet guild also correlated positively in

every case with observed values from the CBC sites, although R2

values varied widely (0.003 to 0.8; Figure 3). The additional

mismatch between distribution-based and CBC-based estimates of

community-weighted mean trait values, beyond that for functional

richness, suggests that more accurate estimates of abundance could

improve the distribution-based estimates. However, none of the

methods tested here for estimating local abundances gave results

that were better than simply overlaying range maps.

The functional trait composition of communities can also be

measured as the extent to which individuals in a community fill

trait space (functional divergence). As with community-weighted

mean trait values and functional richness, it has been suggested

that functional divergence is related to the functioning of

ecosystems and the delivery of ecosystem services [9,16,50]. In

this study, even with the best method, estimates of functional

divergence based on all four traits showed a relative weak

association with observed values from the CBC sites. This

appeared to be owing to the fact that the range of values

estimated was much lower than the range of values observed at the

CBC sites (Figure 4), suggesting that much greater variation in

functional divergence is apparent when accounting for differences

in species abundance than when only species identity is

considered. Functional divergence with respect to individual traits

was even more poorly estimated, indeed showing virtually no

correspondence at all with observed communities. As for

functional divergence based on all traits, estimated values typically

spanned a much smaller range than observed values. To some

extent this is expected because local observations of abundance are

subject to additional sources of variation including interannual

variation in species abundance, environmental heterogeneity not

captured at the resolution of the maps, and measurement error

(e.g. failure to detect species). Nevertheless, the results suggest that

it will be very difficult to capture information about the variability

in the functional traits represented in biological communities

accurately without detailed information on the abundance of each

species. Nevertheless, as with community-weighted mean trait

Figure 5. Correlation between distribution-based and CBC-
based values of community composition metrics based on all
traits together. Maps were generated of functional richness (FRICH; a)
and functional divergence (FDIV; b, c). Functional divergence was
measured using the Rao index. Observed values were calculated from
recorded abundances at 68 evaluation Christmas Bird Count (CBC) sites.
Distribution-based estimates of the metrics were generated using four
methods, with the best two shown here, as in Fig. 3. Lines represent
y = x. Full results for all four methods are presented in Table 1.
doi:10.1371/journal.pone.0044019.g005

Figure 6. Examples of maps of the trait-based metrics with values at the CBC sites overlaid. a) community-weighted mean value of (log-
transformed) body mass; b) functional richness based on all four functional traits (body mass, generation length, migratory behaviour and diet)
measured as the volume of a convex hull enclosing all species positions in trait space; and c) functional divergence measured using the Rao index.
Colour schemes for the rasters and for the points are the same. Displayed using the Behrmann cylindrical equal-area projection.
doi:10.1371/journal.pone.0044019.g006
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values, none of the methods tested here for estimating local

abundances gave better results than simply overlaying range maps

and ignoring differences in abundance.

Given that in any one location species are known to differ

greatly in abundance, it is perhaps surprising that overlaying

distribution maps gave the maps of community trait composition

that showed the best fit to observed trait composition. However,

for the purposes of mapping trait distributions, ignoring differences

in abundance will only be a problem if the average local

abundance of species is related to the traits under consideration.

For example, it has been shown that body mass often correlates

with abundance [51]. However, for sites in the Christmas Bird

Count, while there were a greater number of small-bodied than

large-bodied bird species recorded, the average local abundance of

small species was not greater than that of large-bodied species.

That is to say, the observation that sites tend to contain a greater

number of small than large individuals is accounted for by there

being a greater number of small than large species. We also found

no evidence of a relationship between average local abundance

and the other traits considered. A relationship between traits and

average local abundance might have been masked if the traits had

a strong effect on species detectability. This was the case for some

of the traits considered: large-bodied, migratory species with large

range sizes were observed at significantly more CBC sites than

small-bodied non-migratory species with small range sizes,

although the effect of body mass was weak. Probability of

detection in birds is also related to conspicuousness of vocalisations

[52] and species’ specialisation [53] but we did not consider these

traits here.

Finally, a metric that is not trait based, but will continue to be of

interest to ecologists, is local species richness. We found that the

maps of species richness produced by the distribution overlap

method correlated strongly with observed species richness at the

evaluation sites (Table 1). It has been shown by others (e.g. [48])

that overlaying maps of the extent of occurrence of species tends to

overestimate local species richness owing to errors of commission.

However, this was not the case here (Figure 5), probably because

we refined distributions excluding areas outside the recorded

elevational limits of each species. It is interesting to note that while

species richness was very well estimated, the species composition

estimated by overlaying range maps did not correspond particu-

larly well with the species composition observed at all CBC sites.

It is important to note that this study considered only one

taxonomic group. Furthermore, the abundance data used covered

the northern hemisphere more extensively than the southern

hemisphere, and the range maps are likely to be more accurate for

North America than for South America. Therefore, caution is

needed in interpreting the estimates of community trait compo-

sition for the southern part of the study area considered here.

Further work is needed to test whether our results apply to regions

outside North America and for other taxonomic groups. Overall

though, it would seem that, given more numerous and geograph-

ically wide-ranging data on the abundance of a greater proportion

of species, it might be possible to improve the estimation and

mapping of abundance and traits, but such data are lacking at

present even for birds, which are among the best studied of the

taxonomic groups. However, in the absence of detailed abundance

data, overlaying distribution maps appears to be the best method

available at present and produced apparently accurate maps for at

least some of the metrics of community trait composition

considered here.

Supporting Information

Appendix S1 Results of simultaneous autoregressive
(SAR) models of the relationships between distribu-
tion-based and Christmas Bird Count-based estimates
of community composition.

(DOC)

Appendix S2 For species with complete distribution,
trait and abundance data, correlations between distri-
bution-based and Christmas Bird Count-based values of
the community abundance and trait composition met-
rics.

(DOC)

Appendix S3 Frequency distributions of species with
respect to body mass and generation length.

(DOC)

Acknowledgments

We thank: Matthew Smith, Derek Tittensor, Greg McInerny and Mark

Vanderwel for helpful comments on a draft of this manuscript; Fleming

Skov for providing an Excel spreadsheet for calculating growing degree

days; Bob Ridgely and Nature Serve for compiling the distribution maps of

the birds of the Western Hemisphere; and the Audubon Society and the

many volunteers who have collected and compiled the Christmas Bird

Count data. CHS is grateful to Sherron Bullens, Debbie Fisher, David

Hayes, Beth Karpas and especially Kathleen McMullen for their dedicated

help with the world bird ecology database.

Author Contributions

Conceived and designed the experiments: TN JPWS DWP. Performed the

experiments: TN. Analyzed the data: TN. Contributed reagents/

materials/analysis tools: SHMB CHS. Wrote the paper: TN JPWS SHMB

CHS DWP.

References

1. Orme CDL, Davies RG, Olson VA, Thomas GH, Ding T-S, et al. (2006) Global

patterns of geographic range size in birds. PLoS Biology 4: e208.doi:10.1371/

journal.pbio.0040208.

2. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-

use change on the global diversity of birds. PLoS Biology 5: e157.doi:10.1371/

journal.pbio.0050157.

3. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community

ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

doi:10.1016/j.tree.2006.02.002.

4. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, et al. (2003) Evaluation of

ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ

dynamic global vegetation model. Global Change Biology 9: 161–185.

doi:10.1046/j.1365-2486.2003.00569.x.

5. Menezes S, Baird DJ, Soares AMVM (2010) Beyond taxonomy: a review of

macroinvertebrate trait-based community descriptors as tools for freshwater

biomonitoring. Journal of Applied Ecology 47: 711–719. doi:10.1111/j.1365-

2664.2010.01819.x.

6. Stevens RD, Cox SB, Strauss RE, Willig MR (2003) Patterns of functional

diversity across an extensive environmental gradient: vertebrate consumers,

hidden treatments and latitudinal trends. Ecology Letters 6: 1099–1108.

doi:10.1046/j.1461-0248.2003.00541.x.

7. Cumming GS, Child MF (2009) Contrasting spatial patterns of taxonomic and

functional richness offer insights into potential loss of ecosystem services.

Philosophical Transactions of the Royal Society of London Series B: Biological

Sciences 364: 1683–1692. doi:10.1098/rstb.2008.0317.

8. Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, et al. (2010) Spatial

mismatch and congruence between taxonomic, phylogenetic and functional

diversity: the need for integrative conservation strategies in a changing world.

Ecology Letters 13: 1030–1040. doi:10.1111/j.1461-0248.2010.01493.x.

9. Fritz SA, Purvis A (2010) Phylogenetic diversity does not capture body size

variation at risk in the world’s mammals. Proceedings of the Royal Society of

London Series B: Biological Sciences 277: 2435–2441. doi:10.1098/

rspb.2010.0030.

Functional Trait Maps: Abundance vs. Occurrence

PLOS ONE | www.plosone.org 10 August 2012 | Volume 7 | Issue 8 | e44019
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25. Shipley B, Vile D, Garnier É (2006) From plant traits to plant communities: a
statistical mechanistic approach to biodiversity. Science 314: 812–14.

doi:10.1126/science.1131344.

26. Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to
functional diversity indices. Ecological Monographs 80: 469–484. doi:10.1890/

08-2225.1.
27. Philpott SM, Soong O, Lowenstein JH, Pulido AL, Lopez DT, et al. (2009)

Functional richness and ecosystem services: bird predation on arthropods in

tropical agroecosystems. Ecological Applications 19: 1858–1867. doi:10.1890/
08-1928.1.

28. Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007) Low functional diversity
and no redundancy in British avian assemblages. Journal of Animal Ecology 76:

977–985. doi:10.1111/j.1365-2656.2007.01271.x.

29. Mason NWH, MacGillivray K, Steel JB, Wilson JB (2003) An index of
functional diversity. Journal of Vegetation Science 14: 571–578. doi:10.1111/

j.1654-1103.2003.tb02184.x.
30. Ridgely RS, Allnutt TF, Thomas B, McNicol DK, Mehlman DW, et al. (2007)

Digital Distribution Maps of the Birds of the Western Hemisphere, Version 3.0.
NatureServe, Arlington, Virginia, USA. Available:http://www.natureserve.org/

getData/birdMaps.jsp. Accessed 26 May 2012.

31. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, et al. (2007) The Shuttle

Radar Topography Mission. Reviews of Geophysics 45: RG2004. doi:10.1029/

2005RG000183.

32. Williams RJ, Purves DW (2011) The probabilistic niche model reveals

substantial variation in the niche structure of empirical food webs. Ecology

92: 1849–1857. doi:10.1890/11-0200.1.

33. Dunning JB (1993) CRC Handbook of Avian Body Masses. Boca Raton,

Florida, USA: CRC Press. 384 p.

34. IUCN Standards and Petitions Subcommittee (2010) Guidelines for Using the
IUCN Red List Categories and Criteria, Version 8.0. Available:http://intranet.

iucn.org/webfiles/doc/SSC/RedList/RedListGuidelines.pdf. Accessed 26 May

2012.

35. Del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the Birds of the World.

Barcelona, Spain: Lynx Edicions. 16 vols.

36. National Audubon Society (2010) The Christmas Bird Count Historical Results.
Available:http://www.christmasbirdcount.org. Accessed 26 May 2012.

37. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high

resolution interpolated climate surfaces for global land areas. International
Journal of Climatology 25: 1965–1978. doi:10.1002/joc.1276.

38. Skov F, Svenning J-C (2004) Potential impact of climatic change on the

distribution of forest herbs in Europe. Ecography 27: 366–380. doi:10.1111/
j.0906-7590.2004.03823.x.

39. Chessel D, Dufour A-B (2012) ade4: Analysis of Ecological Data: Exploratory

and Euclidean Methods in Environmental Sciences. R Package Version 1.5-0.
Available:http://cran.r-project.org/web/packages/ade4. Accessed 26 May

2012.

40. R Development Core Team (2010) R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

41. Barber CB, Habel K, Grasman R, Gramacy RB, Stahel A, et al. (2012)

geometry: Mesh Generation and Surface Tesselation. R Package Version 0.3-1.
Available:http://cran.r-project.org/web/packages/geometry. Accessed 26 May

2012.
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