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Modulation frequency dependence of continuous-wave optically/electrically
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Continuous-wave optically and electrically detected magnetic resonance spectroscopy (cwODMR/cwEDMR)
allow the investigation of paramagnetic states involved in spin-dependent transitions, like recombination and
transport. Although experimentally similar to conventional electron spin resonance (ESR), there exist limitations
when applying models originally developed for ESR to observables (luminescence and electric current) of
cwODMR and cwEDMR. Here we present closed-form solutions for the modulation frequency dependence of
cwODMR and cwEDMR based on an intermediate pair recombination model and discuss ambiguities which
arise when attempting to distinguish the dominant spin-dependent processes underlying experimental data. These
include (1) a large number of quantitatively different models cannot be differentiated; (2) signs of signals are
determined not only by recombination but also by other processes like dissociation, intersystem-crossing, pair
generation, and even experimental parameters, such as modulation frequency, microwave power, and temperature;
(3) radiative and nonradiative recombination cannot be distinguished due to the observed signs of cwODMR and
cwEDMR experiments.
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I. INTRODUCTION

Electron spin resonance (ESR) is a useful tool for the
investigation of microscopic properties of paramagnetic states
in a wide variety of materials. In conventional ESR experi-
ments, the total polarization of the investigated spin ensemble
is observed by the measurement of microwave absorption.
In some materials, there are other observables which can
be used to detect electron spin states. For instance, when
electron spins control electronic transitions such as transport
or recombination, macroscopic materials properties such as
photoluminescence, electroluminescence, or conductivity can
change under spin resonance. Figure 1 depicts a conceptual
process of spin-dependent recombination1,2 which can be
detected by optically detected magnetic resonance (ODMR)
spectroscopy and electrically detected magnetic resonance
(EDMR) spectroscopy. The advantage of these EDMR and
ODMR spectroscopies is that they are significantly more sen-
sitive than conventional ESR (spin polarization is usually low)
and provide direct insight regarding how paramagnetic states
in semiconductors affect some of the technologically most
widely used electrical and optical materials properties. ODMR
has been used in a wide range of research areas since its first
invention.3,4 ODMR and EDMR are about 8 to 9 orders more
sensitive than ESR, they both are proven to have single spin
sensitivity,2,5–8 and they both can directly link a paramagnetic
center to a specific luminescence center.5–7,9 Thanks to these
advantages, ODMR can be used to deconvolute unresolved,
overlapping luminescence bands in semiconductors.10 EDMR
provides information about electronically active paramagnetic
centers in a similar way, again, with higher sensitivity than
ESR.2,11 In the early stage (until about the 1980s), ODMR
was mainly conducted on inorganic semiconductors to identify
paramagnetic recombination centers and to investigate their
spin-dependent processes.5,12 It played an important role in in-
vestigating spin-dependent processes especially in amorphous
silicon (a-Si) and revealed a variety of defect states which
influence recombination in a-Si.6,7,10,13–16

Continuous-wave ODMR and EDMR (cwODMR and
cwEDMR) have been used in a wide range of research
fields: They have been used to investigate spin-dependent
transitions involving phosphorous donors in crystalline
silicon,11,17 trapping centers and their recombination dynamics
in nanocrystals,8,18–20 transport and recombination in micro-
crystalline hydrogenated silicon,21 GaN,22,23 and SiC,24 and
spin-dependent recombination in nitrogen vacancy centers
in diamond.25–27 Because cwODMR and cwEDMR can be
used to distinguish overlapping recombination bands and their
dynamics in disordered materials, they have also been used
to investigate (usually amorphous) organic semiconductors:
cwODMR and cwEDMR have provided information about
spin pairs dominating electronic processes and their transi-
tions in conducting polymers,28–39 small molecules,40–42 and
polymer or small molecule/fullerene blends.43,44 The effect
of isotopic modification on magnetic field effects in organic
semiconductors also has been observed by ODMR,45 and
the intersystem-crossing time has been extracted from the
modulation frequency dependence.46

Experimentally, cwODMR and cwEDMR are similar to
conventional ESR except that luminescence intensity and elec-
tric current are measured instead of the microwave absorption.
Two magnetic fields, a static field B0 and oscillating field B1,
are applied to a sample with B0 ⊥ B1. The frequency of the
sinusoidal B1 field is matched with the Larmor frequency of
the paramagnetic center to satisfy the resonance condition.
As for most ESR spectrometers, X-band (≈9.7 GHz) is often
used, a frequency in the microwave (MW) range. In the case of
cwODMR, to allow for optical detection, optical or electrical
excitation of electronic states is necessary. Depending on the
excitation method, photoluminescence-detected magnetic res-
onance (PLDMR) or electroluminescence-detected magnetic
resonance (ELDMR) can be performed. In the case of PLDMR,
constant optical excitation is applied using, for example, a
laser, and the resulting photoluminescence (PL) is detected.
To increase the signal-to-noise ratio, lock-in detection is often
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FIG. 1. Spin-dependent recombination via localized paramag-
netic band-gap states. Excess charge carriers, electrons, and holes
can recombine via a localized paramagnetic state which acts as a
recombination center. If a conduction electron and a unpaired electron
at a paramagnetic recombination center form a spin-singlet pair, the
conduction electron can be captured by the recombination center. An
electron at the recombination center can eventually recombine with
a hole and create a photon. When they form a spin-triplet pair, the
capture probability of the conduction electron by the recombination
center is low and excess carriers contribute to photocurrent. Because
the recombination is dependent on mutual spin orientation, this
recombination rate can be altered by ESR when they are weakly
coupled. Thus, ESR can alter the recombination rate which results
in a change in photoluminescence and photocurrent, which can be
detected optically and electrically, respectively.

employed. Two different modulation methods can be used. One
method involves modulation of the static magnetic field, B0,
as used for conventional cwESR, the other approach is based
on the modulation of the MW amplitude. Experimentally, B0

modulation has been found to give weaker signals than MW
amplitude modulation.5 Square modulation of the microwaves
at a fixed reference frequency is generally used. The PL
intensity reflecting the varying MW amplitude is then fed into
a lock-in amplifier, and both in-phase and out-of-phase signals
are obtained. In some studies found in the literature,21,30,38,41,47

the out-of-phase signal is ignored; however, doing so can result
in the loss of important information, as will be explained later.

When the optical excitation is also modulated, a double
modulated PLDMR (DMPLDMR) becomes possible.38 An
experimental setup for a MW-modulated ODMR experiment
is shown in Fig. 2. For EDMR, the optical detection is replaced
by a current measurement. The metallic contacts needed for
this require a design that prevents the distortion of the MW
field.

For both cwEDMR and cwODMR, the responses
of the observables to the induced magnetic resonances
are determined by the underlying electronic processes.
The time scales on which these processes occur de-
pend on various experimental parameters, such as ex-
citation density6,7,13,18,41,48–50 (or an injection current for
EDMR30,41,51), temperature,6,10,30,41 and MW power (equiva-
lently B1 field strength).6,7,12,17–20,26,40,43,46,52–55 The dependen-
cies of cwODMR and cwEDMR signals on these parameters

FIG. 2. (Color online) Sketch of a cwODMR setup. The basic
principle of cwODMR is the same as that of conventional ESR. Square
microwave modulation can be used instead of B0 field modulation
and a lock-in amplifier is employed to increase the signal-to-noise
ratio.

can allow us to distinguish overlapping transitions and to
understand their dynamics. For cwODMR, spectral informa-
tion also can provide additional information for distinguishing
overlapping luminescence bands.6,10,26

Another experimental parameter that can influence the
observed cwODMR and cwEDMR signals is the modulation
frequency, as the lock-in detected signals depend on the
transient responses to the modulated MW.6,10,13,20,56 Although
its importance has been discussed in conventional ESR
studies,57,58 modulation frequency effects on cwODMR and
cwEDMR have often been ignored in the literature, and, as a
result, studies often reported results obtained using only one
(or a small number) of modulation frequencies (usually the
one which maximized the obtained signal). One can, however,
find a number of reports showing modulation frequency depen-
dencies. Different signals at different modulation frequencies
were reported for the first time by Biegelsen et al.53 Other
investigators have noticed that modulation frequency effects
play an important role in the observed signal, which can change
drastically as a function of the modulation frequency.5,10,13

Qualitative reports of modulation frequency dependencies can
be found in the early ODMR and EDMR literature,5,10,14 which
were sometimes used to identify the overlap of separate spin-
dependent signals.7 Even so, very little systematic research
into modulation frequency effects was undertaken before the
late 1990s, when research into this question became more
common.19,20,26,31,37–39,46,49–51

A number of researchers have attempted to understand
modulation frequency effects by developing rate models.
Dunstan and Davies were the first to develop solutions for
ODMR transients.12 Next, Street and Depinna et al. developed
rate models and found transient solutions.6,13 Lenahan et al.
explained their observed modulation frequency dependence
using a simple rate model described by only one time
constant.15 A number of studies based on the steady-state
solutions of such rate models have been reported.17,18,49,52,54

However, to understand the modulation frequency effects, the
exact solutions for the frequency dependence are necessary.
There has been a number of studies to find the solutions for
modulation frequency dependence.8,20,31,37–39,43,46,50 However,
no closed form analytical solutions have been reported, and
important aspects of modulation frequency effects remain
not well understood. This has led to a number of debates
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regarding the underlying physical mechanisms of cwODMR
and cwEDMR signals, because modulation frequency depen-
dencies observed by different groups on similar systems have
sometime led to completely different spin-dependent transition
models. For example, the source of EDMR and ODMR
signals seen in organic semiconductors has been attributed to
both a spin-dependent polaron pair model39,46,59 and a triplet
exciton-polaron quenching model.37,38,56

Lock-in detected cwODMR and cwEDMR signals can
be either positive or negative depending on the shapes of
transient responses.6,10,13,20,56 A variety of spin-dependent
models have been developed based on the observed signs
of cwODMR and cwEDMR signals as well as experi-
mental parameters, like pair generation rates, temperature,
MW power, and modulation frequency. Examples for such
studies exist for a-si,2,6,7,10,12–14,16,53,60 InP nanocrystals,20

II-IV semiconductors,19,61 PbI2 films,48 nanoparticles,18 and
organic semiconductors.30,31,34,35,37,39,42,44,49,50 For instance, it
has been generally accepted that radiative and nonradiative
recombination results in enhancement and quenching of
cwODMR signal, respectively,2,7,18,48,62 and all recombination
processes and all detrapping processes result in quenching
and enhancement of cwEDMR signals, respectively.2,62 The
qualitative explanation for signs of cwODMR signals is
as follows: spin resonance induces mixing between triplet
and singlet pairs, and, because initial states are generally
dominated by triplet pairs due to the fast recombination
of singlet pairs, the number of singlet pairs is increased
at resonance. Thus, the overall transition rate increases.2

Some studies even concluded that a certain channel is
radiative or nonradiative, based on the sign of the ODMR
signal.6,10,13,60 The idea here is that when a nonradiative
recombination process is enhanced under spin resonance,
the competing optically detected radiative channels must be
quenched.

The above examples show how critical it is to understand
how MW modulation affects the observed cwODMR and
cwEDMR signals. In this report, we employ the widely
accepted spin-dependent transition model based on weakly
coupled electron-hole pairs63 and find its closed-form ana-
lytical solutions. We then use this solution to explain how a
broad range of electronic transitions, including recombination,
dissociation, intersystem-crossing, pair generation, and spin
flips, can affect the cwODMR and cwEDMR signals. We show
how serious ambiguities related to the modulation frequency
dependencies can arise, which make it difficult to determine the
fundamental physical processes responsible for the observed
cwEDMR or cwODMR frequency dependence. For example,
extensive ODMR studies have been conducted on organic
semiconductors to determine their dominant recombination
processes. A variety of models have been suggested based on
the observations of the signs of cwODMR and cwEDMR,
such as the singlet exciton-quenching model,35,37,49 the
triplet-triplet annihilation model,50 the polaron-to-bipolaron
decay,30,34 and the polaron pair recombination.39 We show that,
in many cases, the modulation frequency dependence cannot
be used for such assignments, since the sign of these signals
can be negative or positive for both radiative and nonradiative
processes.

II. MODELS FOR THE DESCRIPTION OF
SPIN-DEPENDENT TRANSITION RATES

The first quantitative model explaining spin-dependent
recombination was suggested by Lepin,1 who described a ther-
mal polarization model which predicted a relative change in
photoconductivity of less than 10−6 at 300 K for X-band ESR.
Microwave frequency and temperature dependencies were also
predicted. However, it turned out that this model could explain
neither the signal intensity of more than 10−3 that was observed
in undoped a-Si:H at R.T.1 nor the very weak dependen-
cies on microwave frequency64 and temperature.16,65 These
problems were soon resolved by another model developed
by Kaplan, Solomon, and Mott (KSM model).63 In the KSM
model, intermediate pair states exist prior to a spin-dependent
transition and the spin-pair states may recombine or dissociate.
In addition, it is assumed that spin pairs in the triplet state can
be annihilated only when one of pair partners is flipped by the
spin-lattice relaxation process or the induced ESR, pairs disso-
ciate otherwise. Thus, the recombination of triplet pairs hap-
pens only when they experience a transition to the singlet state.

In the past decades, a number of refinements were intro-
duced to the KSM model, in which spin-spin interactions such
as exchange and dipolar interactions exist within the pair, and
spin-orbit coupling that is weak but not negligible is permitted
such that weak triplet transitions become possible.66 Because
the intermediate pairs, consisting of two spins with s = 1/2,
can experience spin-spin interactions, the pair eigenbasis
consists, in general, of two parallel states (|T+〉 and |T−〉) and
two mixed states (|2〉 and |3〉) which change continuously from
|↑↓〉 and |↓↑〉 to |S〉 and |T0〉, respectively, as the spin-spin
interactions increase. ESR can induce transitions between the
eigenstates of weakly coupled pairs such as |T+〉 ↔ |↑↓〉,
|T−〉 ↔ |↑↓〉, |T+〉 ↔ |↓↑〉, and |T−〉 ↔ |↓↑〉. Thus, when
the spin-spin interaction is weak, there can appear transitions
among all four eigenstates and the transition probabilities
are functions of the spin-spin interaction strength. Note that
transitions of |↓↑〉 ↔ |↑↓〉 are ESR forbidden but possible
due to T1 relaxation, and |2〉 ↔ |3〉 transitions are possible
via mixed relaxation processes. To understand the change of
spin-pair densities by ESR induced transitions, a mathematical
approach will be given. Boehme and Lips have found the ef-
fective changes of spin densities by solving Louville equations
describing the propagation of a spin ensemble during an ESR
excitation.66 The corresponding Hamiltonian is

Ĥ = μBgaŜa + μBgbŜb − J Ŝb · Ŝb

−Dd
[
3Sz

aS
z
b − Ŝb · Ŝb

] + Ĥ1, (1)

where the first two terms correspond to the Zeeman terms of
two pair partners, the third and fourth represent the exchange
and dipolar couplings, respectively, and the last term is the
alternating magnetic field. To describe the weakly coupled
spin pair, the exchange and dipolar coupling constant, J and
Dd , respectively, are assumed to be smaller than the Larmor
separation. The solutions (density matrix elements) for the
corresponding Liouville equation can be found elsewhere.66

The density changes of each spin state are then given by66

ρ1,4(τ ) = ρ0
1,4�

u(τ ),
(2)

ρ2,3(τ ) = ρ0
2,3�

v(τ ) ± ρ0
2,3

J + D

h̄ω�

�w(τ ),
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where indices 1 and 4 represent the states |T+〉 and |T−〉,
respectively, ρ0

i is the initial density, J and D are the exchange
and dipolar coupling constants, respectively, and ω� represents
half of the frequency separation between the states |2〉 and |3〉.
�u(τ ), �v(τ ), and �w(τ ) represent the ESR duration time
(τ ) dependencies. When the Larmor separation (which is the
difference of the two Larmor frequencies within a pair) is
larger than the applied B1 field strength, only one pair partner
can be flipped. In this case, the τ dependencies become

�v(τ ) = γ 2B2
1

�2
sin2

(
�τ

2

)
≡ �(τ ),

(3)
�u(τ ) = 1 − �(τ ), �w(τ ) = 0,

where � = 2πfRabi represents the Rabi frequency of the
flipped pair partner. Therefore, the density changes of each
eigenstates become

ρ1,4(τ ) = ρ0
1,4[1 − �(τ )], ρ2,3(τ ) = ρ0

2,3�(τ ). (4)

Because either one of the state 2 or state 3 is always involved in
a possible transition among four eigenstates, any transition will
cause a decrease or increase of ρ2 or ρ3. Density changes in
states 2 and 3 are equivalent to density changes of singlet- and
triplet-pair states. Therefore, we do not need to deal with four
state problems, and, instead, two pair densities of singlet and
triplet pairs are enough to describe recombination processes as
long as any coherent spin motion is not of interest. Note that
this is a valid statement because the modulation frequency is
typically not faster than the time scale of coherent spin motion
so all coherent phenomena will be averaged out. This is also
the reason why all off-diagonal elements (ρij for i 	= j ) of the
Louville density matrix can be neglected. Therefore, only the
singlet- and triplet-pair densities, ns and nt , will be considered
in the following sections.

An illustration of the resulting spin-pair rate model is given
in Fig. 3. Prior to a spin-pair transition to a singlet state, it is in
the intermediate pair state. This pair is created with a certain
rate, Gs for a singlet pair and Gt for a triplet pair. If this
process is due to optical generation of electron-hole pairs, and
if spin-orbit coupling is infinitely small, Gt can be considered
to be infinitely small. In the other case, if pair generation is
achieved due to electrical injection of an electron and hole,
Gt/Gs = 3 because a pair will be created with a random spin
configuration. The pair can recombine to a singlet ground
state with a recombination rate rs for a singlet pair and rt for
a triplet pair. This pair may dissociate into two free charge
carriers without recombination. This happens at a dissociation
rate, ds for a singlet pair and dt for a triplet pair. Before a pair
recombines or dissociates, it can change its spin configuration
from singlet to triplet or vice versa. This transition is possible
via two spin-mixing processes. One is intersystem crossing,
which is equivalent to a longitudinal spin-relaxation process
which can be defined as a “radiationless transition between two
electronic states having different spin multiplicities.”67 Among
many processes, the spin-lattice relaxation is one which can
cause the intersystem crossing. The intersystem crossing rate
is described by kISC. The other process is ESR-induced spin
mixing, as can be seen from Eqs. (3) and (4). This ESR-
induced transition rate is given by α, which is proportional to

rs

Singlet

ds

rt

Triplet

dt

energy

Intermediate
spin pairs

free charge carrier state

kISC

Spin mixing

Gt Gs

nsnt

FIG. 3. (Color online) The intermediate pair recombination
model (KSM) as relevant for cwODMR and cwEDMR. Triplet and
singlet pairs are formed with two constant generation rates Gt and
Gs , respectively. Those pairs can dissociate into free charge carrier
states with certain probabilities, dt and ds (dissociation rates), or can
recombine to singlet ground state with recombination rates rt and rs . A
spin-mixing process can be introduced by ESR externally and this rate
is described by α. Another spin-mixing process, intersystem crossing,
is described by kISC. Note that nt and ns represent triplet and singlet
pair densities, respectively. They do not necessarily correspond to
eigenstate densities.

the microwave power (∝B2
1 ) and dependent on the spin-spin

interaction controlled oscillator strength of the pair.68

In the following sections, a large number of quantitative
models will be tested with analytical solutions for the ob-
servables of cwEDMR and cwODMR. Using realistic values
for each transition probability, we consider experimentally
relevant values for the cwODMR experiment. A wide range of
transition rates have been reported. Examples include PL life-
times in a-Si which span 11 orders of magnitude from 10−9 s
to 102 s,69 bound pair decay (e-h pair dissociation) lifetimes
of 5 × 10−5 s in polymer-fullerene blends,70 fluorescence life-
times of 2 × 10−7 s and phosphorescence lifetimes of 10−4 s in
conjugated polymers,71 microsecond-millisecond time scales
of recombination in nanocrystalline TiO2 thin films,72 radiative
decay rates of 106 ∼ 107 s−1, nonradiative decay rates of
109 ∼ 1010 s−1, dissociation rates of 107 s−1 in organic
semiconductors,73 and a lower limit for the intersystem-
crossing time of 10−5 s in organic semiconductors.74 In the
following, we vary the electronic transition rates, including
recombination, dissociation, intersystem crossing, and flip-
flop, in the range between 10−4 and 109 s−1 to cover as wide
a range of experimentally observed parameters as possible.

A. Rate equations

CwODMR is fundamentally similar to conventional ESR
spectroscopy the one major modification is that the observable
of ODMR is not the magnetization but the change in the
number of photons induced by ESR. Generally, lock-in
detected modulation of the B0 or the B1 field is used to
enhance the resulting ODMR signal. For B1 field modulation,
square modulated microwaves are continuously applied, and
the response to this excitation contains various harmonic
frequency components. In the following we will focus on this
kind of experiment.
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Based on the rate model described in Sec. II, two coupled
rate equations for the singlet and triplet pair densities can be
written as

dns

dt
= Gs − Csns + α(nt − ns) − kISC(ns − Fns)

+ kISC[nt − (1 − F )nt ], (5)

dnt

dt
= Gt − Ctnt + α(ns − nt ) − kISC[nt − (1 − F )nt ]

+ kISC(ns − Fns), (6)

where F is the Fermi-Dirac distribution function, F =
(1 + e

�E
kT )−1, which approaches one at low temperature and

1/2 at high temperature and is used here to consider
thermalization.18,20,46 �E is the energy separation between
pure singlet and pure triplet states. Once a general analytical
solution is derived in the following, we randomly will choose
F to be 0.25 in all numerical calculations to describe the
two-level spin system which represents neither a complete
thermalization nor complete polarization. It should be noted
that α is turned on and off for each half-cycle because of the
square modulated microwave with frequency of 1/T . Cs and
Ct are singlet and triplet pair annihilation rate coefficients,
respectively. They consist of recombination and dissociation
rate coefficients, Cs,t = rs,t + ds,t . Some aspects with regard
to radiative and nonradiative recombination rate coefficients
should be mentioned: For radiative recombination, the spatial
correlation between the electron and the hole influence the
transition probability, so rt and rs depend on the separation
between an electron and hole.21,75 Therefore, because the
higher generation rate results in less separation, the radiative
recombination probability is also a function of the generation
rate. However, this effect will not be considered in this study,
as we assume that the average separation is larger than the
localization radii of electrons and holes. Note that this tran-
sition corresponds to the radiative tunneling in hydrogenated
amorphous silicon.75 Nonradiative recombination includes all
recombination processes which are not mediated by emission
of photons but phonons and hot carriers: phonon emission,
Auger processes, surface and interface recombination, and
recombination through defect states.76 Nonradiative processes
quench radiation efficiency in both organic semiconductors77

and inorganic semiconductors.76 As treated by List et al.49 and
Dyakonov et al.,47 we consider both radiative and nonradiative
recombination processes and, thus, Cs = (rs + rs,nr + ds) and
Ct = (rt + rt,nr + dt ), where the subscript nr indicates nonra-
diative recombination.

Given the above definitions, the luminescent intensity and
electric conductivity become

I ∝ rsns + rtnt (7)

and

σ ∝ dsns + dtnt , (8)

respectively. We note that electric conductivity is also
determined by the carrier lifetime and mobility but ignored
them because they are merely multiplied to the total dissocia-
tion rate [the right term in Eq. (8)]74 so they will not affect the
time dependence nor modulation frequency dependence. Non-
radiative recombination behaves as a pair annihilation process
as other radiative recombination and dissociation, but it does
not appear as proportionality constants in Eqs. (7) and (8). In
the following sections, only radiative recombination will be
considered (rs,nr, rt,nr = 0) for simplicity and the contributions
of nonradiative recombination will be discussed in Sec. VII. It
shall be noted that there are many more complicated scenario
for ODMR detected spin-dependent transitions conceivable,
including ODMR signals due to nonradiative spin-dependent
transitions which compete with non-spin-dependent radiative
processes. The stochastical description of these processes with
rate equations is more complex but leaves the conclusions
made in the following for directly detected radiative
spin-dependent processes unchanged.

Rate equations similar to Eqs. (5) and (6) can be found
throughout the literature. However, usually only steady-state
solutions were found for the consideration of cwODMR
and cwEDMR experiments.17,49,78 In some cases, only the
time dependence was considered.12,13,43 Modulation frequency
dependence solutions have also been reported, but there
have been no reports of closed-form analytical solutions.
Some solutions reported in the literature were obtained from
a simplified rate model,15,31,50 some solutions were based
on the steady state,37,38 and some solutions based on the
rate model reported here were solely reported as numerical
solutions8,20,39,46,59 or the described observable was not the
number of photons or electrons but total spin densities.31,39,46

One solution given by Hiromitsu et al. was based on an
assumed steady state for the half-cycle where the MW is off.43

The rate equations corresponding to Eqs. (5) and (6) are
solved for the two separated time regions where the pulse is
on and off, and the closed-form solutions can be explicitly
expressed as

ns1(t) = A11e
−m11t + A21e

−m21t + n0
s1, (9)

nt1(t) = B11e
−m11t + B21e

−m21t + n0
t1, (10)

ns2(t) = A12e
−m12(t− T

2 ) + A22e
−m22(t− T

2 ) + n0
s2, (11)

nt2(t) = B12e
−m12(t− T

2 ) + B22e
−m22(t− T

2 ) + n0
t2, (12)

where ns1 and nt1 are the singlet and triplet populations
when the MW pulse is on and ns2 and nt2 are the singlet and
triplet populations when the MW pulse is off. Those solutions
consist of double exponential functions as is often found in
the literatures regarding pulsed experiments.66,74,79,80

The introduced constants in the above solutions are sum-
marized below,

m1j = Cs + w1j + Ct + w2j − √
(Cs + w1j − Ct − w2j )2 + 4w1jw2j

2
, (13)

m2j = Cs + w1j + Ct + w2j + √
(Cs + w1j − Ct − w2j )2 + 4w1jw2j

2
, (14)
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n0
sj = w2jGt + (Ct + w2j )Gs

(Cs + w1j )(Ct + w2j ) − w1jw2j

, (15)

n0
tj = w1jGs + (Cs + w1j )Gt

(Cs + w1j )(Ct + w2j ) − w1jw2j

, (16)

w11 = α + kISC(1 − F ), w21 = α + kISCF, w12 = kISC(1 − F ), w22 = kISCF, (17)

where j = 1 or 2. It should be noted that the exponents, m1j

and m2j , are independent on either the generation rates or
the modulation frequency. It can be easily seen that m2j is
decided by the fastest rate coefficient, but it is difficult to
predict m1j . However, it is clear that m2j is always larger
than m1j . Two constant terms, n0

sj and n0
tj , are the steady-state

solutions which the system assumes for very low modulation
frequency.17,39,46,49,78 It should also be noted that the singlet
and triplet pair populations will approach values at the end
of each half-cycle which are, at the same time, the initial
values of the following half-cycle. Therefore, the frequency
dependence can be explained in terms of the differences
between the populations at the end of each half-cycle,39,46

ns1(T/2) − ns2(T ) and nt1(T/2) − nt2(T ). However, lock-in
detected signals are not simply decided by these quantities. The
observables are not the population changes but the changes in
the number of photons, which incorporates both the population
change and the recombination probability.

B. Boundary conditions

Because the spin populations assume the steady state
only as the modulation frequency f → 0, the time-dependent
solutions must be solved to explain the transient behavior at
arbitrary modulation frequencies. To find the exact solution,
the expressions for the eight unknown coefficients Aij and Bij

(i, j = 1 or 2) in Eqs. (9), (10), (11), and (12) must be derived
by application of eight boundary conditions. The boundary
conditions used as well as the subsequent derivation of the
analytic form of the coefficients are given in Appendix A.

Equations (A14), (A15), (A16), and (A17) represent exact
and general analytical solutions for the singlet and triplet
density functions during a cwODMR modulation cycle. We
are, thus, in a position to determine the temporal evolution of
the cwODMR observable.

III. TRANSIENT BEHAVIOR OF CWODMR

The observable in cwODMR is the emission rate of photons,
and, as described in Eq. (7), the time dependence can be
obtained by adding the contribution from the singlet and
triplet pair populations multiplied by the singlet and triplet
recombination rate coefficients, respectively. Thus,

I1 = (rsA11 + rtB11)e−m11t + (rsA21 + rtB21)e−m21t

+ rsn
0
s1 + rtn

0
t1, (18)

I2 = (rsA12 + rtB12)e−m12(t− T
2 ) + (rsA22 + rtB22)e−m22(t− T

2 )

+ rsn
0
s2 + rtn

0
t2, (19)

where I1 and I2 are the photon emission rates due to
recombination of both singlet and triplet pairs when the pulse
is on and off, respectively. The dash-dotted curve in Fig. 4 is a
numerical example of the time dependence. Because m1j and
m2j are always positive and m2j > m1j , the first and second
terms in both Eqs. (18) and (19) determine the slower and faster
decays, respectively. It is difficult to predict which response
will show an enhancement or quenching behavior because the
overall response depends not only on m1j and m2j but also on
rsAij + rtBij . Since the coefficients of all exponential terms
have very complicated dependencies on a variety of parameters
[see Eqs. (A14), (A15), (A16), and (A17)], it is clear that sign
predictions depend on the magnitudes of many parameters at
the same time. Using the above solution, we have been able to
reproduce a wide variety of cwODMR transients reported in
the literature.6,10,12,13,20

IV. MODULATION FREQUENCY DEPENDENCE

The time-dependence solutions, Eqs. (18) and (19), are
the collective responses to the modulated B1 field over all
frequency ranges. However, in experimental implementations
which utilize a lock-in technique, only the component of

FIG. 4. (Color online) A time transient calculated from a nu-
merical model described by a combination of parameters as rs =
104 s−1, rt = 100 s−1, ds = 102 s−1, dt = 106 s−1, kISC = 10−2 s−1,
α = 105 s−1, F = 0.25, Gs = 1023 s−1, and Gt = 1020 s−1. The
dash-dotted curve shows the overall response obtained from Eqs. (18)
and (19). The blue solid and red dashed curves are the in-phase and the
out-of-phase components described by Is1 sin( 2π

T
t) and Ic1 cos( 2π

T
t),

respectively. See details in the text.
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the transient signal which has the same frequency as the
reference will be obtained. With lock-in quadrature detection,
both the in- an out-of-phase components are available. While
the out-of-phase components have often been ignored in the
literature,21,30,38,41,47 we note that the out-of-phase components
contain important information, which has been sometime ad-
dressed in longitudinally detected electron spin resonance.57,58

The details of the modulation frequency dependence
solutions are given in Appendix B. We are, thus, able to
find an analytic expression for the in-phase and out-of-
phase components of the transient during a MW modulated
cwODMR experiment. These are given by

Vin = V01

2
cos(ϕ1) = 1

2
Is1, (20)

Vout = V01

2
sin(ϕ1) = 1

2
Ic1, (21)

where V01 is the magnitude of the first harmonic component,
Is1 and Ic1 are the amplitudes of the first sine and cosine
components, and ϕ1 = tan−1( Ic1

Is1
) (see Appendix B).

Thus, the in-phase and out-of-phase cwODMR signals are
the Fourier coefficients of the lowest frequency sine and cosine

terms of the Fourier series solution [Eq. (B1)], respectively.
Examples are shown in Fig. 4 to explain the decomposed
in-phase and out-of-phase components of the time response.
It should be noted that the cwEDMR solutions can also be
obtained by replacing rs and rt in front of the exponential
functions in Eqs. (18) and (19) with ds and dt , respectively, as
shown in Eq. (8).79

Similarly, the solutions for B0-field-modulated cwODMR
and cwEDMR can be found in the same way as for microwave-
modulated cwODMR and cwEDMR. While the difference
between these two modulation techniques is that the spin
resonance is modulated by a square function and a harmonic
function, respectively, the lock-in detected observables are
identical since the lock-in technique is sensitive only to the
lowest harmonic component in either case.

A. At low modulation frequency

We use the low-modulation-frequency limit to check the
solution of our model by verifying that these solutions can
explain the cwODMR response. From the solutions above, the
low-frequency behavior is seen to be

Vin,lf = (rs + rt )(Gt + Gs)α + (rt rs + rsw22 + rtw12)(Gt + Gs) + rtdsGt + rsdtGs

(Cs + Ct )α + (Cs + w12)(Ct + w22) − w12w22

2

π

− (rt rs + rsw22 + rtw12)(Gt + Gs) + rtdsGt + rsdtGs

(Cs + w12)(Ct + w22) − w12w22

2

π
, (22)

Vout,lf = 0. (23)

The out-of-phase component vanishes since the transient
response can easily follow the slow modulation. The in-phase
component shows a typical microwave power dependence:
It vanishes at small power (when α → 0) and it becomes
saturated at high power (i.e., it has a nonzero constant value).
The MW power dependencies of Eqs. (22) and (23) will be
explained in the Sec. V.

B. Ambiguity of cwODMR measurements

To understand the modulation frequency dependence of
cwODMR, we inspected a large number of quantitative
models. There is an extremely large number of possible
qualitative and quantitative relationships between the model
parameters. To limit the number of cases that we inspected, we
choose a number of relationships between these parameters.
We considered that (i) the triplet recombination coefficient is
the smallest one among all the recombination and dissociation
rate coefficients (rt < rs , ds , dt ) (unless otherwise noted)
and (ii) the singlet dissociation rate coefficient is smaller
than the triplet dissociation rate coefficient (ds < dt ), which
means that the singlet intermediate state is assumed to be
energetically lower than the triplet intermediate state (unless
otherwise noted). Under these assumptions, a large number of

quantitative models were investigated by varying rt , rs , ds , dt ,
kISC, and α in the range from 10−4 to 109 s−1. We investigated
almost 1000 different variations of the relationship between
those parameters.

After inspecting these cases, we find that it is almost impos-
sible to distinguish some of the quantitative models based on
their modulation frequency behaviors. Figure 5 illustrates this
ambiguity. Figures 5(a), 5(b), and 5(c) show nearly identical

FIG. 5. (Color online) Three different quantitative models result
in indistinguishable frequency dependencies. Each quantitative model
is determined by a different set of parameters. Refer to Table I for all
used values.

115204-7



LEE, PAIK, MCCAMEY, AND BOEHME PHYSICAL REVIEW B 86, 115204 (2012)

FIG. 6. (Color online) Seven distinguishable patterns of the
modulation frequency dependence of cwODMR have been found out
of almost 1000 quantitative models. (c), (d), and (f) are equivalent with
(a), (b), and (e), respectively, but with opposite signs. The parameters
used for this data are listed in Table I.

frequency dependencies of three very different quantitative
models. The frequencies at which the in-phase signals have
their maximum slope and the out-of-phase signals show their
local maximum values are almost identical, and their shapes
are also indistinguishable. The patterns shown in Fig. 5
represent, in fact, the most common frequency dependency that
we have found in the tested quantitative models. This illustrates
the difficulty in extracting correct values for the corresponding
coefficients from a simple frequency dependence–one can find
a wide range of values which can reproduce it. This ambiguity
is one of the most significant disadvantages of cwODMR
or cwEDMR. It puts many interpretations of cwODMR data
reported in the literature in question.

Of the nearly 1000 models we tested, we were able to
describe them all with only seven frequency dependency
patterns. These are shown in Fig. 6. We find that those patterns
are determined mostly by the recombination rate coefficients,
the microwave power, the spin-mixing rates, as well as the
generation rates. How each parameter influences the frequency
dependence will be discussed in the following sections. The
most trivial cases, seen in Figs. 6(a) and 6(c), will be discussed
first.

C. Trivial case (small spin-mixing rates)

To understand the behavior of the response to the mod-
ulation frequency, the trivial patterns will be discussed.
“Trivial” means that the spin-mixing rates, both kISC and α,
are negligible when compared to all the other rates. In this
case, only the spin-pair annihilation processes determined by
the recombination and dissociation rate coefficients become
dominant. All the patterns in Fig. 5 as well as the patterns
in Figs. 6(a) and 6(c) are obtained under the assumption of
insignificant spin-mixing rates, kISC and α. The pattern in
Fig. 6(c) is identical to the one in 6(a) but inverted due to
different ratios between Gs and Gt . We found that the sign
of the lock-in detected signal depends on almost all transition
processes as one can deduce from Table I.

The most often seen patterns displayed in Figs. 6(a) and
6(c) can be described qualitatively as following: At low
frequencies, the in-phase signal has a constant nonzero value
with no out-of-phase component. This is because the approach
to the steady state takes place on a time scale that is much
faster than the modulation period, and the recorded transient
response looks like the applied microwave pulse train shown in
Fig. 7(a). The in-phase and out-of-phase responses are not sig-
nificantly changed until the modulation frequency approaches
the slowest time constant, m−1

1j , as one can see from the
low-frequency responses in Fig. 5. For all cases in Fig. 5 and in
Fig. 7, m1j and m2j are in the ranges of 102 s−1 ∼ 106 s−1 and
104 s−1 ∼ 106 s−1, respectively. As the modulation frequency
approaches m1j , the system begins to lag behind the applied
MW modulation, and the overall response ceases to resemble
the simple harmonic function. This results in a decrease of the
in-phase signal and an increase of the out-of-phase signal as
seen in Fig. 7(b). At very high frequencies, much faster than
than the fastest time constant, m−1

2j ∼ 10−6 s−1, both the in- and
out-of-phase components tend to approach zero. This behavior
is explained by the exponential decay functions which become
linear with small arguments and, thus, they become constants
(no change) when the period, T → 0.15,50

D. Recombination, dissociation, and flip-flop

Because cwODMR measures emission rates of photons,
which are usually determined by the dominant singlet recom-
bination rate rsns , one might expect that rs has a dominant role
in determining the frequency-dependence pattern. In general,
this is not the case though: Other rate coefficients, especially
spin-mixing rates, can dominate the behavior of a cwODMR
signal. Figure 8 shows one of the most frequently observed
examples of the frequency-dependence patterns influenced by
both rs and α.

When α is small, increasing rs has little impact on the
observed frequency dependence [Figs. 8(a) and 8(b)]. The
most significant effect is a shift of the frequencies where
both the in-phase and the out-of-phase components show their
maximum rate changes. This is due to the increase of the time
constants, m−1

ij , from m1j ∼ 104 s−1 and m2j ∼ 106 s−1 to
m1j ∼ 106 s−1 and m2j ∼ 107 s−1, due to very fast rs . It should
be noted that dt is 106 s−1 in all examples in Fig. 8 and rs is
107 s−1 in Figs. 8(b) and 8(d). The frequency dependence also
shows little change when rs remains small and α is increased
[Fig. 8(c)]. This corresponds to Figs. 6(a) and 6(c). However,
when α becomes fast enough to compete with the slower time
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TABLE I. Parameters used for the calculation of some of the data in this report. All values have a unit of s−1 except for F , which is unitless.

Figure number rs rs,nr rt ds dt kISC α F Gs Gt f

4 104 0 1 102 106 10−2 105 0.25 1023 1020 104

(a) 102 0 1 104 106 10−2 103 0.25 1023 1020 –
5 (b) 104 0 10−1 10 102 10−2 10−1 0.25 1025 1020 –

(c) 104 0 1 102 106 10−2 103 0.25 1020/3 1020 –

(a) 104 0 1 102 103 10−2 10−3 0.25 1024 1020 –
(b) 106 0 1 102 104 10−2 107 0.25 1022 1020 –
(c) 104 0 1 102 103 10−2 10−3 0.25 1020/3 1020 –

6 (d) 106 0 1 102 104 10−2 107 0.25 1020/3 1020 –
(e) 106 0 104 1 102 104 10−3 0.25 1024 1020 –
(f) 106 0 104 1 102 104 10−3 0.25 1020/3 1020 –
(g) 1 0 10−1 102 104 106 10−3 0.25 1020/3 1020 –

(a) 102 0 1 104 106 10−2 10−3 0.25 1022 1020 –
(b) 107 0 1 104 106 10−2 10−3 0.25 1022 1020 –

8
(c) 102 0 1 104 106 10−2 108 0.25 1022 1020 –
(d) 107 0 1 104 106 10−2 108 0.25 1022 1020 –

(a) 102 0 1 104 106 102 101 0.25 1022 1020 –
(b) 107 0 1 104 106 10−2 101 0.25 1022 1020 –

8
(c) 102 0 1 104 106 108 101 0.25 1022 1020 –
(d) 107 0 1 104 106 108 101 0.25 1022 1020 –

(a) 106 0 1 102 104 10−2 – 0.25 1022 1020 103

10 (b) 106 0 1 102 104 10−2 – 0.25 1022 1020 104

(c) 106 0 1 102 104 10−2 – 0.25 1022 1020 107

(a) 106 0 1 102 104 10−2 101 0.25 1022 1020 –
11

(b) 106 0 106 102 104 10−2 101 0.25 1022 1020 –

12 104 0 1 – – 1 1 0.25 Gs + Gt = 1016 –

(a) 104 1 10−1 10 102 10−2 10−1 0.25 1025 1020 –
(b) 104 1 10−1 10 102 10−2 10−1 0.25 1025 1020 –

13
(c) 1 104 10−1 10 102 10−2 10−1 0.25 1025 1020 –
(d) 1 104 10−1 10 102 10−2 10−1 0.25 1025 1020 –

constant, m−1
1j (or even faster than m−1

2j ), and rs is faster than
any dissociation rate coefficients, a more complicated fre-
quency dependence emerges. The in-phase signal now has
a local extremum. The out-of-phase signal shows not only

FIG. 7. (Color online) Calculated transient behaviors at different
modulation frequencies. Black dash-dot line is overall response and
blue solid line and red dashed line are in-phase and out-of phase
components of it. Parameters are the same with those in Fig. 5(a).
The three graphs are normalized by the same scaling factor. Thus, the
relative intensities among three graphs can be compared.

the local extremum (as in the simple pattern) but also a
zero-crossing point, due to a sign change [Fig. 8(d)]. This
pattern corresponds to Figs. 6(b) and 6(d). In this section,
the intersystem-crossing rate, kISC, was chosen to be small to
investigate the influence of α. We note that this pattern also
appears when kISC becomes large with a small α, as explained
further in the following section. Note that for cwODMR
experiments this pattern appears only when rs becomes faster
than any dissociation rate coefficient and α or kISC is fast,
too. It can also be seen for cwEDMR experiments when
the dissociation rate coefficients and α or kISC are fast (not
shown here). We can therefore infer that dissociation has a
similar effect on cwEDMR experiments as recombination on
cwODMR experiments.

E. The influence of intersystem crossing
on cwODMR experiments

Because the intersystem-crossing rate, kISC, represents a
spin-mixing process, it acts in a similar way as α, even though
α is modulated in time. To investigate the influence of kISC,
α is chosen to be small in this section. When kISC is slow, very
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FIG. 8. (Color online) Role of the singlet recombination rate, rs .
When rs is small, no significant change in the frequency-dependence
pattern is found when α is increased [from (a) to (c)]. But for large
rs , a pattern change is observed when α is increased [from (b) to
(d)]. All four quantitative models have the same parameters except
(a) rs = 102 s−1, α = 10−3 s−1, (b) rs = 107 s−1, α = 10−3 s−1,
(c) rs = 102 s−1, α = 108 s−1, and (d) rs = 107 s−1, α = 108 s−1.
The values for the other parameters used for this data are listed in
Table I.

little change of the frequency dependence as a function of rs

is seen, similarly to the behavior described in the previous
section [Figs. 9(a) and 9(b)]. In contrast to the case of large
α and small rs , a major change in the frequency dependence
can be seen at fast kISC and slow rs [Fig. 9(c)]. A second local

FIG. 9. (Color online) Role of the intersystem-crossing rate,
kISC. At small rs , local extrema appear on both the in-phase and
out-of-phase signal at the high-frequency region, when kISC becomes
large [from (a) to (c)]. At large rs , the in-phase signal shows local
extrema and the out-of-phase signal shows a sign change as kISC

is increased [from (b) to (d)]. All four quantitative models
have the same combinations of parameters but (a) rs = 102 s−1,
kISC = 10−2 s−1; (b) rs = 107 s−1, kISC = 10−2 s−1; (c) rs = 102 s−1,
kISC = 108 s−1; and (d) rs = 107 s−1, kISC = 108 s−1. The other
parameters used for this data are listed in Table I.

extremum appears in the out-of-phase component and a small
bump at high frequency in the in-phase component. When
both kISC and rs compete with each other, a new pattern appears
[Fig. 9(d)]. This pattern is similar to that in Fig. 8(d) and similar
to the pattern in Figs. 6(e) and 6(f) when Vin,lf → 0 at small α

[Eq. (22)]. The other important observation is that the sign
changes in both in-phase and out-of-phase components. These
sign changes due to kISC is explained in Sec. VII.

F. Pair generation

Due to spin-selection rules, optically generated electron-
hole pairs (the geminate state) are formed in singlet states and
remain in this configuration unless strong spin-orbit coupling
is present.81 Thus, we can assume Gs  Gt . Figure 6(a)
corresponds to this case in which the in-phase and the
out-of-phase components are always negative and positive,
respectively. This case represents the frequency dependence of
photoluminescence-detected ODMR (PLDMR). In contrast to
optical generation, the spin configuration of electron-hole pairs
formed electrically, i.e., via electrical injection, is determined
by spin statistics and we can assume 3Gs ≈ Gt . All parameters
in Figs. 6(a) and 6(c) are the same except that Gs = 104 × Gt

in Figs. 6(a) and 3Gs = Gt in Fig. 6(c). We can see from
these calculations that electroluminescence-detected ODMR
(also called ELDMR) can show the opposite sign compared
to PLDMR, for very similar underlying physical processes.
It should be noted that this inversion could be found only for
certain parameter sets, and this inversion can also happen when
3Gs 	= Gt . For example, the sign of the in-phase component
also becomes positive (not shown here) if every parameter re-
mains the same except for Gs = 10 × Gt . Thus, cwODMR can
result in a positive in-phase and a negative out-of phase signal
even though Gt is smaller than Gs . This is because the sign
inversion is also determined by rate coefficients and not just
the generation rates. These cases will be discussed in Sec. VII.

V. POWER DEPENDENCE

The spin-flip rate coefficient, α, is proportional to the
applied microwave power.68 Thus, we can calculate the power
dependence of cwODMR signals. Examples are shown in
Fig. 10. For low modulation frequencies [see Fig. 10(a)], a
simple saturation behavior is predicted by Eqs. (22) and (23).
Note that the out-of-phase component is not always zero but
approaches zero at low frequencies, as expected from Eq. (23).
The saturation characteristics becomes more complicated as
the modulation frequency increases. At 104 Hz, the in-phase
component shows a local extremum before it returns to a
saturation value [Fig. 10(b)]. Experimentally, this behavior
has been reported recently for low magnetic field cwEDMR on
crystalline silicon interface defects.17 At high modulation fre-
quency, the in-phase component shows the usual saturation be-
havior (even though its saturation occurs at very higher power)
but the out-of-phase component shows a local extremum
before it approaches a saturation value. It also has a different
sign than at lower frequencies [Fig. 10(c)]. This shows that one
can find opposite signs of in-phase and out-of-phase signals at
high MW power and high MW modulation frequencies.
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FIG. 10. (Color online) MW power dependence. All four quan-
titative models have the same combination of parameters except
for (a) f = 103 Hz, (b) f = 104 Hz, and (c) f = 107 Hz. At low
modulation frequencies, typical saturation curves can be found. At
high modulation frequencies, a nontrivial saturation behavior occurs.
Refer to Table I for the values used for the other parameters.

VI. SIGNAL SIGN DEPENDENCIES ON THE
MODULATION FREQUENCY

Sign changes of cwEDMR and cwODMR signal have been
found in InP nanoparticles20 and organic semiconductors.39,46

The sign change of the cwODMR response in organic semicon-
ductor has been attributed to the imbalance between changes
in the numbers of singlet and triplet pairs when the pulse is
on and off, which are equivalent to ns1(T/2) − ns2(T ) and
nt1(T/2) − nt2(T ) in our model. The zero-crossing point of
the modulation frequency dependence function has also been
used to estimate the intersystem-crossing time.39,46 According
to those reports, the zero crossing can appear at a certain
frequency where the increase of the number of singlet pairs is
matched with the decrease of the number of triplet pairs so the
change in the total number of pairs is zero. However, we show
here that the zero crossing can be due to not only the imbalance
of changes between singlet and triplet pairs but also to other
more complicated relationships between physical parameters.

As can be seen in the solutions of the rate equations given
above, the frequency dependence is not simply obtained from
ns1(T/2) − ns2(T ) and nt1(T/2) − nt2(T ) but has a compli-
cated dependence on various parameters. Among the quantita-
tive models tested here, zero-crossing behavior is rarely seen.
Figure 11 shows one example: no zero crossing is observed for
small rt , but when rt increases and becomes very close to rs ,
zero crossing is observed [Figs. 11(a) and 11(b)]. It should be
noted that the origin of this zero crossing is not obvious because
of the complexity of the solutions, although we note that
ns1(T/2) − ns2(T ) and nt1(T/2) − nt2(T ) do not meet each
other at the zero-crossing point in this case, in contrast to the
model described elsewhere.39,46 Thus, the imbalance between
changes in ns and nt cannot be the reason for the observed
zero crossing. We note that zero crossing also can appear
due to an overlap of two different spin-dependent mechanisms
whose signs are opposite (e.g., in cwODMR of a radiative and a
nonradiative channel). Note, however, that all zero-crossing ef-
fects demonstrated here resulted from a single spin-dependent
process. The existence of zero crossing indicates that one can
observe different signs of cwODMR and cwEDMR signals
from identical samples at different modulation frequencies.

FIG. 11. (Color online) Example of a modulation frequency
dependence function showing a change from non-zero-crossing
pattern to a zero-crossing pattern. The only difference between the
two quantitative models can be found in the triplet recombination rate
coefficients. (a) rt = 100 s−1; (b) rt = 106 s−1. Values for the other
parameters are listed in Table I.

VII. THE INTERPRETATION OF CWEDMR AND
CWODMR SIGNAL SIGNS

The signs of the cwEDMR and cwODMR signals long
have been considered important indicators for the nature of
electronic transitions. For example, it has been generally
accepted that radiative recombination results in positive in-
phase ODMR signals.2,7,18 However, the recent observations
of sign changes20,39,46 at certain frequencies suggest that signs
may depend on complicated processes and the interpretation
based exclusively on the sign of a modulated cwODMR or
cwEDMR signal is not possible.

CwEDMR and cwODMR signal signs are determined by
the transient responses of optical or electrical observables to a
repeated change between on- and off-resonance, as described
in Sec. IV. Because the time constants and prefactors of the
double exponential functions in Eqs. (9), (10), (11), and (12)
are functions of all the transition rate coefficients, there are
many scenarios which can produce quenching and enhance-
ment signals for both radiative and nonradiative ODMR signals
as well as for EDMR signals. Many transitions compete with
each other. For instance, recombination as well as dissociation
are pair annihilation processes but only recombination causes
PL while dissociation does not. Thus, when a radiative
recombination process is slow and dissociation is fast, the
resonant response may lead to quenching. This example
shows that the following qualitative description of the sign
of cwODMR signals is important.

The study of the sign change of cwODMR signals as
functions of all individual parameters is beyond the scope
of this work. Instead, only the low-modulation-frequency
behavior will be discussed.

A. For the case of radiative recombination

As mentioned in Sec. II A, only radiative recombination
has been considered so far and the solution for the in-phase
cwODMR signal when radiative recombination is dominant at
low modulation frequency is given in Eq. (22). A quantitative
analysis has been done by calculating Vin,lf while changing
some parameters; for the example shown in Fig. 12 we assumed
that both singlet and triplet dissociation probabilities are not
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FIG. 12. (Color online) Sign changes due to various rate coef-
ficients. (a) In-phase intensities of the zero-modulation-frequency
component as a function of Gt/Gs and d/rs . To distinguish positive
values and negative values, different color scales are used (positive in
upper left corner and negative in lower right corner). The black dotted
line describes the boundary separating positive values and negative
values. (b) and (c) are two randomly chosen two-dimensional subsets
of the data in (a) representing a generation-rate ratio dependence and
dissociation-rate ratio dependence. These slices are shown as white
dashed lines in (a). Intensities in (a), (b), and (c) are normalized
but in the same scale. (d) Changes in the numbers of singlet pairs,
n0

s1 − n0
s2, as a function of the same parameters as in (a). (e) Changes

in the number of triplets pairs, n0
t1 − n0

t2, as a function of the same
parameters as in (a). Intensities in (d) and (e) are normalized but in
the same scale. All calculations in this figure are obtained from the
same condition of rs = 104 s−1, rt = 1 s−1, kISC = 1 s−1, α = 1 s−1,
F = 0.25, Gs + Gt = 1016 s−1.

distinguishable, two mixing rate coefficients, kISC and α, are
slower than any other recombination and dissociation, and
total generation rate, Gs + Gt is fixed to 1016 s−1, rt to 1 s−1,
and F to 0.25. Figure 12(a) shows the zero frequency in-phase
cwODMR signal, Vin,lf , as a function of the relative ratio of the
triplet generation rate to the singlet generation rate, Gt/Gs ,
and the ratio of the dissociation rate coefficient to the singlet
recombination rate coefficient which is fixed to rs = 104 s−1.
Color reflects the normalized intensity of Vin,lf . It should be
noted that positive and negative values are intentionally placed
in different scales to make them clearly distinguishable. One
can find two noticeable features. (i) The intensity tends to
increase as Gt/Gs becomes larger and becomes negative at
low Gt/Gs , as in Fig. 12(b). (ii) The intensity also depends
on the dissociation rate coefficients: When d is larger or
smaller than the singlet recombination rate coefficient rs , Vin,lf

becomes very small and shows an extremum and sign change.
Figures 12(a), 12(b), and 12(c) show that the signs are positive
at high triplet generation rates and low dissociation rates or,
equivalently, high recombination rates. When dissociation is
not fast, signs are positive as long as triplet generation is not
slower than singlet generation rate. This means that changing
pair generation between optical and electrical can induce a sign
change in cwODMR. This behavior can be more easily under-

stood by consideration of competing singlet and triplet pairs. In
Figs. 12(d) and 12(e), the differences n0

s1 − n0
s2 and n0

t1 − n0
t2

are plotted for the same parameters as in Fig. 12(a). Note
that the low-frequency solution for the in-phase cwODMR
signal, Vin,lf , is proportional to rt (n0

s1 − n0
s2) + rs(n0

t1 − n0
t2).

Both plots show different behavior compared to Vin,lf but
the boundaries dividing positive and negative values are very
similar. When the pair annihilation is dominated only by
singlet recombination, one can infer that the number of singlet
pairs quickly decreases in the steady-state off-resonance
condition. Thus, the steady state is dominated by triplet pairs.
Consequently, a resonant MW converts triplet pairs to singlet
pairs, and it increases the number of singlet pairs which results
in an enhancement of cwODMR signal.

This qualitative pictures applies to the region where n0
s1 −

n0
s2 is positive and n0

t1 − n0
t2 is negative, in the upper left regions

in Figs. 12(a), 12(d), and 12(e), for example. In contrast, if
the triplet generation is too low (Gt < rt+dt

rs+ds
Gs) [lower left

corners in Figs. 12(a), 12(d), and 12(e)], only a small number
of triplet pairs forms during the off-resonance steady state, and
the steady state at off-resonance is dominated by singlet pairs.
In this case, spin-resonance-induced changes to the number of
singlet pairs can become negative.

The statements above are based on the assumption of low
kISC and α. When kISC becomes larger than the other rates,
sign changes are observed as in Fig. 9 and patterns of Vin,lf (not
shown here) similar to the pattern in Fig. 12 are found, although
slight shifts of boundaries dividing positive and negative are
seen. Similar shifts have been found at different F and α.
These shifts can be explained by the expression

Gs

Gt

= − (rs + ds)(w22 − w21) + w22w11 − w21w12

(rt + dt )(w11 − w12) + w22w11 − w21w12
, (24)

which is obtained from Eq. (22) by setting Vin,lf = 0. This
formula explains that the boundary separating the positive
and negative values in Fig. 12(a) is dependent on all rate
coefficients. Consequently, cwODMR and cwEDMR signs
also depend on intersystem-crossing rate kISC, the temperature
(note that F is a function of temperature), and the MW power
α. We note again that sign changes can also occur at a certain
modulation frequencies, as explained above.

B. For the case of nonradiative recombination

Finally, we want to address the question of whether radiative
and nonradiative recombination results in opposite cwODMR
signal signs. We have checked a number of quantitative models
and two examples are shown in Fig. 13. In contrast to all other
cases discussed above, the nonradiative singlet recombination
coefficients, rs,nr, is taken into account. In Figs. 13(a) and 13(c),
rs,nr is assumed to be smaller than rs to simulate the modulation
frequency dependence in which radiative recombination is
dominant. In Figs. 13(b) and 13(d), rs,nr is assumed to be
larger than rs to investigate the nonradiative process. It should
be mentioned again that rs,nr contributes to the pair annihilation
process but it does not contribute to the radiative emission rate
term, as explained in Sec. II A. Note that Fig. 13(a) shows
one of the modulation frequency dependence patterns that are
discussed above. The in-phase signal is negative even though
rs is most dominant because Gs  Gt .
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FIG. 13. (Color online) The sign of cwODMR signals can be
negative when radiative recombination is dominant as in (a) and
positive when nonradiative recombination is dominant as in (b). In
contrast, the signs of cwEDMR do not differ [(c) and (d)]. Used
common values for each rate parameters can be found in Table I.
[(a) and (c)] rs = 104, rs,nr = 1. [(b) and (d)] rs = 1, rs,nr = 104.

Figure 13(b) shows a zero-crossing behavior, thus, the
in-phase component can be positive and negative even though
rs,nr is dominant. In contrast to the cwODMR cases, the signs
of the cwEDMR in-phase signals are positive in both cases,
as shown in Figs. 13(c) and 13(d). To summarize, our results
show that cwODMR signals can be negative and positive for
both radiative and nonradiative recombination processes. Any
conclusion about the nature of a spin-dependent recombination
process from the sign of an observed cwODMR signal is,
therefore, speculative and should be confirmed with additional
evidence.

We conclude that dissociation, recombination, the ratio
between singlet and triplet generation, intersystem crossing,
temperature, modulation frequency, MW power, and the nature
of recombination (radiative or nonradiative) can all determine
the sign of cwODMR signals.

VIII. SUMMARY AND CONCLUSION

A set of rate equations based on an intermediate pair
recombination model are presented and generalized analytical
solutions have been obtained. These solutions have been used

to calculate modulation frequency dependencies of cwEDMR
and cwODMR signals. We have investigated how experimental
parameters affect these modulation frequency dependencies
which revealed that a large number of quantitatively differ-
ent models show nondistinguishable modulation frequency
dependence patterns. This implies that the interpretation of
cwODMR and cwEDMR experiments can be very ambiguous.
We further showed that the sign of cwODMR and cwEDMR
signals depends on most of the rate coefficients, as well as
experimental parameters such as temperature, MW power, and
modulation frequency. Thus, there are many variables which
can reverse the sign of cwEDMR and cwODMR signals and,
consequently, conclusions about the radiative or nonradiative
nature of an observed spin-dependent transition based solely
on the sign of an observed spin-dependent process or its
modulation frequency dependence is not possible.
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APPENDIX A: BOUNDARY CONDITIONS AND EXACT
SOLUTIONS FOR THE PAIR DENSITIES

Four of the boundary conditions can be easily found from
the periodicity of the solution: ns1(0) = ns2(T ), nt1(0) =
nt2(T ), ns1( T

2 ) = ns2( T
2 ), and nt1( T

2 ) = nt2( T
2 ). From these

boundary conditions, we obtain

A1 + A2 + n0
s1 = A3e

(−m12T/2) + A4e
(−m22T/2) + n0

s2, (A1)

B1 + B2 + n0
t1 = B3e

(−m12T/2) + B4e
(−m22T/2) + n0

t2, (A2)

A1e
(−m11T/2) + A2e

(−m21T/2) + n0
s1 = A3 + A4 + n0

s2, (A3)

B1e
(−m11T/2) + B2e

(−m21T/2) + n0
t1 = B3 + B4 + n0

t2. (A4)

After each half-cycle, the number of singlet and triplet pairs
are decreased or increased. These changes depend on the given
rate coefficients: The number of singlet or triplet pairs are
increased by pair generation, decreased by the dissociation
and recombination processes, or either decreased or increased
by spin mixing. From this condition, the other four equations
can be found as

ns1

(
T

2

)
− ns1(0) = Gs

T

2
+

∫ T
2

0
[w21nt1 − (Cs + w11)ns1]dt, (A5)

ns2(T ) − ns2

(
T

2

)
= Gs

T

2
+

∫ T

T
2

[w22nt2 − (Cs + w12)ns2]dt, (A6)

nt1

(
T

2

)
− nt1(0) = Gt

T

2
+

∫ T
2

0
[w11nt1 − (Ct + w21)nt1]dt, (A7)

nt2(T ) − nt2

(
T

2

)
= Gt

T

2
+

∫ T

T
2

[w12nt2 − (Ct + w22)nt2]dt. (A8)
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By plugging Eqs. (9)–(12) into (A5)–(A8), we obtain

A1[e(−m11T/2) − 1] + A2[e(−m21T/2) − 1] = −w21B1 − (Cs + w11)A1

m11
[e(−m11T/2) − 1] − w21B2 − (Cs + w11)A2

m21
[e(−m21T/2) − 1],

(A9)

A3[e(−m12T/2) − 1] + A4[e(−m22T/2) − 1] = −w22B3 − (Cs + w11)A3

m12
[e(−m12T/2) − 1] − w22B4 − (Cs + w12)A4

m22
[e(−m22T/2) − 1],

(A10)

B1[e(−m11T/2) − 1] + B2[e(−m21T/2) − 1] = −w11A1 − (Ct + w21)B1

m11
[e(−m11T/2) − 1] − w11A2 − (Ct + w21)B2

m21
[e(−m21T/2) − 1],

(A11)

B3[e(−m12T/2) − 1] + B4[e(−m22T/2) − 1] = −w12A3 − (Ct + w22)B3

m12
[e(−m12T/2) − 1] − w12A4 − (Ct + w22)B4

m22
[e(−m22T/2) − 1].

(A12)

Note that Gs + w21n
0
t1 − (Cs + w11)n0

s1 = 0, Gs + w22n
0
t2 − (Cs + w12)n0

s2 = 0, Gt + w11n
0
s1 − (Ct + w21)n0

t1 = 0, and
Gt + w12n

0
s2 − (Ct + w22)n0

t2 = 0 are used here, which are obtained from Eqs. (15) and (16).
Solving Eqs. (A1)–(A4), (A9)–(A12), and by introducing the parameters βij = Cs+w1j −m1j

w2j
, �n0

s = n0
s2 − n0

s1, �n0
t = n0

t2 − n0
t1,

and γij = e−mij
T
2 , we realize that Bij = Aijβij and four simplified equations⎛

⎜⎜⎜⎝
1 1 −γ12 −γ22

β11 β21 −β12γ12 −β22γ22

γ11 γ21 −1 −1

β11γ11 β21γ21 −β12 −β22

⎞
⎟⎟⎟⎠

⎛
⎜⎝

A11

A21

A12

A22

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

�n0
s

�n0
t

�n0
s

�n0
t

⎞
⎟⎟⎟⎠ (A13)

are obtained for Aij .
Equation (A13) is a fully determined system of linear equations which can be solved. This leads to the solution

A22 = {[
(β21 − β11)

(
�n0

s − γ11�n0
s

) − (
�n0

t − β11�n0
s

)
(γ21 − γ11)

]
[(β21 − β11)(β11γ11γ12 − β12)

− (β11γ12 − β12γ12)(β21γ21 − β11γ11)] − [(β21 − β11)(γ11γ12 − 1) − (β11γ12 − β12γ12)(γ21 − γ11)]

× [
(β21 − β11)

(
�n0

t − β11γ11�n0
s

) − (
�n0

t − β11�n0
s

)
(β21γ21 − β11γ11)

]}/{[(β21 − β11)(γ11γ22 − 1)

− (β11γ22 − β22γ22)(γ21 − γ11)][(β21 − β11)(β11γ11γ12 − β12) − (β11γ12 − β12γ12)(β21γ21 − β11γ11)]

− [(β21 − β11)(γ11γ12 − 1) − (β11γ12 − β12γ12)(γ21 − γ11)][(β21 − β11)(β11γ11γ22 − β22)

− (β11γ22 − β22γ22)(β21γ21 − β11γ11)]}, (A14)

A12 = {
(β21 − β11)

(
�n0

s − γ11�n0
s

) − (
�n0

t − β11�n0
s

)
(γ21 − γ11) − [(β21 − β11)(γ11γ22 − 1)

− (β11γ22 − β22γ22)(γ21 − γ11)]A22
}/

[(β2 − β11)(γ11γ12 − 1) − (β11γ12 − β12γ12)(γ21 − γ11)], (A15)

A21 = [(
�n0

t − β11�n0
s

)
(β21γ21 − β11γ11) − (β11γ12 − β12γ12)(β21γ21 − β11γ11)A12

− (β11γ22 − β22γ22)(β21γ21 − β11γ11)A22
]/

[(β21 − β11)(β21γ21 − β11γ11)], (A16)

A11 = �n0
s − A21 + γ12A12 + γ22A22. (A17)

APPENDIX B: MODULATION FREQUENCY
DEPENDENCE SOLUTIONS

To find the in-phase and out-of-phase components at a given
modulation frequency, it is better to find the Fourier series of
Eqs. (18) and (19), and the frequency responses will be decided
from the Fourier coefficients according to the definition of the

Fourier series,

IFs(t) = I0

2
+

∞∑
l=1

[
Ic cos

(
2lπ

T
t

)
+ Is sin

(
2lπ

T
t

)]
,

(B1)
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Ic = 2

T

∫ T

0
I (t) cos

(
2lπ

T
t

)
dt, (B2)

Is = 2

T

∫ T

0
I (t) sin

(
2lπ

T
t

)
dt. (B3)

The obtained two coefficients as well as the zero frequency
component then are

Ic = 2m11

T
(rsA11 + rtB11)

[
1 − e−m11T/2 cos(lπ )

m11
2 + 4l2π2/T 2

]

+ 2m21

T
(rsA21 + rtB21)

[
1 − e−m21T/2 cos(lπ )

m21
2 + 4l2π2/T 2

]

+ 2m12

T
(rsA12 + rtB12)

[
cos(lπ ) − e−m12T/2

m12
2 + 4l2π2/T 2

]

+ 2m22

T
(rsA22 + rtB22)

[
cos(lπ ) − e−m22T/2

m22
2 + 4l2π2/T 2

]
, (B4)

Is = 4lπ

T 2
(rsA11 + rtB11)

[
1 − e−m11T/2 cos(lπ )

m11
2 + 4l2π2/T 2

]

+ 4lπ

T 2
(rsA21 + rtB21)

[
1 − e−m21T/2 cos(lπ )

m21
2 + 4l2π2/T 2

]

+ 4lπ

T 2
(rsA12 + rtB12)

[
cos(lπ ) − e−m12T/2

m12
2 + 4l2π2/T 2

]

+ 4lπ

T 2
(rsA22 + rtB22)

[
cos(lπ ) − e−m2

22T/2

m22
2 + 4l2π2/T 2

]

+ (
rs�n0

s + rt�n0
t

)[cos(lπ ) − 1

lπ

]
, (B5)

I0 = 2

T
(rsA11 + rtB11)

(
1 − e−m11T/2

m11

)

+ 2

T
(rsA21 + rtB21)

(
1 − e−m21T/2

m21

)

+ 2

T
(rsA12 + rtB12)

(
1 − e−m12T/2

m12

)

+ 2

T
(rsA22 + rtB22)

(
1 − e−m22T/2

m22

)

+ rs

(
n0

s1 + n0
s2

) + rt

(
n0

t1 + n0
t2

)
. (B6)

The Fourier series in Eq. (B1) can be simplified by introducing
V0 =

√
Ic

2 + Is
2 and ϕ = tan−1( Ic

Is
) as below,

IFs(t) = I0

2
+

∞∑
l=1

V0 sin(2lπf t + ϕ), (B7)

where f = 1/T is the frequency of the square modulation. A
lock-in amplifier multiplies the input signal by its own internal
reference signals, sin(ωLt + θL) and cos(ωLt + θL), to detect
in-phase and out-of-phase signals, respectively. Thus, the in-
phase Vin and out-of-phase Vout signals are

Vin = I0

2
VL sin(ωLt + θL)

+
∞∑
l=1

VLV0

2
{cos[(2lπf − ωL)t + ϕ − θL]

− cos[(2lπf + ωL)t + ϕ + θL]}, (B8)

Vout = I0

2
VL cos(ωLt + θL)

+
∞∑
l=1

VLV0

2
{sin[(2lπf + ωL)t + ϕ + θL]

+ sin[(2lπf − ωL)t + ϕ − θL]}. (B9)

where VL is the amplitude of the reference signals. After these
signals pass through a low-pass filter, only the non-ac signals
will remain. Moreover, the frequency of the internal reference
signal is fixed such that it has the same phase as the external
reference signal. Thanks to this condition, ωL ≈ 2πf , the in-
phase and out-of-phase signals become

Vin = V01

2
cos(ϕ1) = 1

2
Is1, (B10)

Vout = V01

2
sin(ϕ1) = 1

2
Ic1, (B11)

where V01 = V0, Is1 = Is , Ic1 = Ic, and ϕ1 = ϕ at l = 1, θL is
usually set to zero, and VL is set to 1.
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