
Visualizing Network Traffic to Understand the Performance of
Massively Parallel Simulations

Aaditya G. Landge, Joshua A. Levine, Katherine E. Isaacs, Abhinav Bhatele, Todd Gamblin,
Martin Schulz, Steve H. Langer, Peer-Timo Bremer, and Valerio Pascucci

Fig. 1. Network traffic resulting from two different runs of the parallel simulation pF3D. This simulation models laser plasma interaction
inside of a hohlraum chamber by decomposing the domain into a set of blocks (left). Depending on how data blocks are mapped
to processor cores (middle), different communication patterns occur. When staggering data placement (bottom right) we observe
significantly more balanced communication compared to a default mapping similar to how the domain is decomposed (top right).

Abstract—The performance of massively parallel applications is often heavily impacted by the cost of communication among compute
nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size
and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in
understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In
order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that
represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify
trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network
topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D
as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D’s performance on
an IBM Blue Gene/P system.

Index Terms—Performance analysis, network traffic visualization, projected graph layouts.

1 INTRODUCTION

Computer simulations fill the gap between theory and experimenta-
tion, allowing scientists to model and study extremely complex phys-
ical phenomena in regimes where experiments are too expensive, too

• A. G. Landge, J. A. Levine, and V. Pascucci are with the Scientific
Computing and Imaging Institute, University of Utah, e-mail:
{aaditya,jlevine,pascucci}@sci.utah.edu.

• K. E. Isaacs is with University of California Davis, e-mail:
keisaacs@ucdavis.edu.

• A. Bhatele, T. Gamblin, M. Schulz, S. H. Langer, and P.-T. Bremer are with
Lawrence Livermore National Laboratory, e-mail:
{bhatele,tgamblin,schulzm,langer1,ptbremer}@llnl.gov.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online
14 October 2012; mailed on 5 October 2012.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

dangerous, or impossible to perform. In particular, scientists are inter-
ested in analyzing biological, climate, and high energy physical phe-
nomena, which require the immense computational power that only a
supercomputer provides. Such a system may consist of tens or hun-
dreds of thousands of compute nodes, each node typically made up of
several processor cores. These nodes communicate using a high speed
interconnection network. To perform massively parallel simulations,
nodes typically interleave local computations with communication be-
tween other nodes in the system. By working together, the nodes can
perform calculations that would require millennia to perform on mod-
ern personal computers.

The most common approach to implement parallel simulations is to
decompose the simulated domain, e.g., a combustion chamber, into a
collection of patches which are then distributed across processes. Each
process is responsible for performing the computation necessary for
its local data patch and intermittently exchanges data with other pro-
cesses to coordinate the global computation. In this work we primarily
focus on communication using the Message Passing Interface (MPI),

2467

 1077-2626/12/$31.00 © 2012 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

the most dominant model for high-performance computing commu-
nication. However, our techniques also apply to other programming
models such as Charm++ [16]. In an MPI program, communication
between processes is expressed through routines that send data be-
tween pairs or sets of processes. Given this frame of reference it is
natural to analyze the message behavior as a graph of communication
where nodes are processes and edges represent data exchanges. There
exist a number of corresponding tools which visualize MPI communi-
cation behavior in this fashion [8, 9, 17, 23].

However, this type of analysis disregards the routing of messages on
the physical network hardware. Different MPI implementations, appli-
cation domain decompositions, or system configurations may realize
communication primitives such as global reductions or all-to-all mes-
saging differently. Furthermore, the mapping of individual processes
to cores strongly influences the network traffic because the length of
message paths may vary, and the paths may interleave or interfere in
complex ways. Moreover, systems like the IBM Blue Gene/P may dy-
namically alter the paths taken by messages. Different physical routes
may even be used for different parts of a message. To fully under-
stand these effects on the network traffic and diagnose performance
bottlenecks one must instead analyze the physical packets sent on the
network. Packets are units of network traffic used for routing within
the hardware interconnect. Here we propose a visualization frame-
work to illustrate and analyze the network traffic of packets on some
of the largest simulations performed on modern supercomputers. In
particular, we show how different process-to-core assignments affect
the network traffic, and, by using carefully designed visualizations, we
gain insights for optimizing the performance.

Our contributions in this work focus around the design and appli-
cation of a visualization tool that explores the behavior of the network
traffic. We make use of a context that is both familiar to application de-
velopers and representative of the underlying hardware interconnect.
Few tools exist that directly visualize performance data using a sim-
ilar context [4, 13, 14, 32], and none of these provide the flexibility
or insight of our system. In particular, our approach in visualizing
network traffic is to use projections of the network topology. These
projections are two-dimensional and retain the intrinsic characteristics
of the hardware network while illuminating communication patterns
without visual clutter. We consider three-dimensional torus networks,
common to many HPC systems such as the IBM Blue Gene series.
Consequently, we augment this 2D view with an interactive, linked
3D view that provides a familiar context to application developers on
these platforms.

Together, these linked views assist application developers in two
ways. First, they allow developers to understand trends in application
communication from two illustrative viewpoints. Second, application
developers are able to understand the connection between the map-
ping of MPI processes onto nodes and the resulting network traffic in
runs on massive supercomputers. We conduct case studies using our
approach to evaluate the performance of pF3D, a multi-physics code
used to simulate laser-plasma interaction [5, 35]. These studies high-
light the strengths of the visualization and the insights it provides to
the performance experts on our team.

2 RELATED WORK

Visualizing interconnect traffic for performance analysis requires a
combination of concepts from both the visualization and high perfor-
mance computing (HPC) communities. This section first discusses
the state of the art in performance analysis using network traffic data.
Next, we provide an overview of visualization efforts focused on simi-
lar data modalities and techniques as well as general design principles
relevant to our approach.

2.1 Communication Analysis to Improve Performance

With the growing popularity and complexity of parallel programming
models, visualizations of communication behavior has been included
into several performance tools [9]. One of the most frequently used
visualizations is that of traces of MPI messages sent. This is used in

tools such as ParaGraph [14], JumpShot [8], and Vampir [17]. Con-
ceptually, these views are similar to Gantt charts, and consequently
rarely scale well, so Muelder et al. use visualizations of MPI function
call durations to improve the visualizations of MPI traces [23]. These
tools are interesting in part for the techniques they use, but also be-
cause of the growing availability of performance data. In many cases
however, the ability to achieve performance improvements is sharply
limited by the specific data that can be collected.

Prior performance tools have attempted to correlate application per-
formance with the network traffic behavior. For example, the Tuning
and Analysis Utilities (TAU) software suite [32] and other tools [4, 14]
allow the visualization of message call timings, cumulative instruction
counter values, and other per-core measurements in the context of a
communication trace. TAU, Scalasca [13], and Triva [29] offer em-
bedded views of function call timings and hardware performance data
directly on a 3D torus network topology, providing some notion of
both communication patterns as well as descriptions of hardware re-
source utilization. While these tools show per-core data in the shape
of the hardware network, they do not show the actual traffic that trav-
els over the network. Thus, the user must estimate quantities such as
network bandwidth based on timings; they are not shown directly.

With the advent of high-diameter Cartesian networks in HPC, un-
derstanding communication patterns has grown in importance. On
such networks, the mapping of the simulated domain to network nodes
can severely affect performance [34]. Bhatia et al. show how visualiz-
ing the virtual topology of an application (as opposed to the physical
topology of the network) can give insights [6]. Raponi et al. have
characterized specific patterns than occur on the Blue Gene/P series of
supercomputers [27]. These patterns are useful but they do not tie net-
work behavior to its context within the simulated application domain.

As our ability to collect performance data grows, so do the opportu-
nities for insightful visualization approaches. Modern machines such
as IBM’s Blue Gene series have performance counters that allow the
measurement of raw traffic on links within the hardware network in
addition to the traditional per-core and per-node counters. Schulz et
al. propose to use hardware and network views in a holistic approach
aimed to show performance data across multiple domains [31], and we
build on this approach by tying raw network traffic to application com-
munication structure where possible. Our linked views present perfor-
mance data in contexts that afford better opportunities for insight to
application developers and performance experts.

2.2 Visualizations of Network Traffic
On an abstract level, network traffic in a supercomputer can be thought
of as a graph of communicating processor cores as nodes connected
by edges representing load on particular links of the hardware inter-
connect. General graph visualization has been a long standing re-
search problem and we refer the reader to Herman et al. [15] for an
excellent survey. However, most of these techniques, including hierar-
chical clustering [26], projections into lower dimensional spaces [7],
topologically-driven layouts [2], or edge bundling [11], are primarily
concerned with the creating graph layouts to highlight the topology of
a graph. In our case, the topology of the graph—a 3D torus—is well
known and creating an unstructured layout may obscure this fact. We
are interested in visualizing and analyzing data on the edges of the
graph while maintaining as much of the known context as possible.

In this respect our application is more akin to techniques such as
past visualizations of AT&T’s long distance phone network [3] or the
PortVis tool to display TCP traffic [20]. In these cases the graph topol-
ogy is known and thus a single, domain-driven layout is employed. For
example, given that AT&T’s network consists of switches and lines
in well known geographic locations, creating a corresponding, geo-
graphic graph layout is a natural solution. However, such layouts are
highly application dependent. Additional work has been done in at-
tempts to understand flow across a network by comparing graph-based
flow visualization with TreeMaps for local network monitoring [19].
Here too, both the problem space and necessary analysis techniques
are highly application dependent. Summers et al. [36] applied existing
visualization techniques to a network model of ASCI Q (a retired su-

2468 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

percomputer at Los Alamos National Laboratory). This work focused
on visualizing fat tree networks with the goal of improving modeling
techniques for future architectures rather than providing new perfor-
mance analysis results. To our knowledge the work presented here is
the first to visualize and explore packet-level network data with mea-
surements from a real system for performance analysis.

Beyond graph layouts, many of the standard design principles for
effective visualizations apply to our setting. It is well known that inter-
acting with the graph through zooming, highlighting, or linked views
provides significant insights [21]. Coordinated views have been pro-
posed for visualizing graphs in the context of email communication
networks [24]. Filtering out unnecessary details and using fisheye-
style distortion to maintain appropriate context [12] are popular tech-
niques for graph visualization. Shneiderman provides one such survey
for general practices with graphical interfaces [33]. The philosophies
of overview first, zoom and filter, and details on demand are good
practices that we have incorporated into our visual tool. We expand
upon these by augmenting with selection and interaction. In particu-
lar, we make use of interactive legends for more effective data explo-
ration [28]. We additionally make use of color, size, and transparency
to highlight important trends in the data [18].

3 NETWORK PERFORMANCE ANALYSIS

The performance of many massively parallel applications is dominated
by communication costs. As the degree of parallelism increases, this
problem intensifies as more processors contend for communication
bandwidth. To avoid scalability problems, it is paramount that de-
velopers optimize the use of the hardware interconnect. However, ap-
plications are typically written in terms of data exchanges between
(groups of) processes managing portions of the simulated domain.
Even for experts it is difficult to predict how a set of high level data ex-
changes will be expressed on the hardware interconnect, because both
the messaging layer and hardware routers are free to decompose and
redistribute to optimize the transfer. Our ultimate goal is to understand
how and why problems such as network contention and unnecessary
dependencies form, so that we can avoid them. In this section, we re-
view the more common high level MPI communication primitives and
why a packet level analysis is necessary. Subsequently, we discuss
the particulars of our case study by explaining some relevant idiosyn-
crasies of the Blue Gene/P system and the pF3D application.

3.1 Application-Level Communication
Parallel physics simulations typically decompose their domain into a
collection of work units and assign the computation of each work unit
to a different process in the simulation. Periodically, processes must
exchange messages to fetch data that is not in local memory. One com-
mon framework for this type of communication is the Message Passing
Interface (MPI), which provides developers with point-to-point and
collective communication primitives (see Fig. 2). As the names sug-
gest, a point-to-point message sends data from one process to another.
A collective communication involves a group of processes (such as
all-to-all, broadcast and reduce), all of which must participate in the
communication. In MPI, collective primitives take place using a com-
municator, an abstraction for a set of communicating processes. An
all-to-all sends all processes in a communicator a subset of data from
all other processes (this is frequently used for parallel matrix transposi-
tion). Similarly, for a broadcast/reduce, a single process sends/receives
data to/from all other processes in the communicator.

However, MPI implementations rarely implement these collective
communication patterns directly. Instead they use more sophisticated
routing algorithms, e.g., binary broadcast trees, or they exploit special
hardware features. On IBM Blue Gene/P supercomputers, for exam-
ple, broadcasts can be implemented in hardware on particularly shaped
partitions using a “deposit bit” allowing messages passing through a
node to deliver (or deposit) a copy of the message. This leads to an
almost even network traffic pattern away from the broadcast root, as
seen in the Fig. 2(c).

While point-to-point messages are easiest to understand, even their
behavior is not entirely obvious. In practice, a given process can be

(a) (b) (c)

Fig. 2. Communication patterns for (a) point-to-point, (b) all-to-all, and
(c) broadcast from the bottom left and center of a group of 25 nodes in
the plane. Nodes colored red are sources, while nodes colored blue are
destinations. Actual collected network traffic (colored by packets/link on
edges) is shown in the bottom row.

assigned to any of the available compute nodes and thus the way pro-
cesses are mapped heavily influences how far messages must travel
and whether their paths may interfere. Despite being conceptually
simple, understanding how a collection of point-to-point messages in-
teract with each other on the hardware interconnect is often non-trivial.
MPI implementations add additional complexity because communica-
tion primitives may be highly optimized for specific parallel machines.
The communication algorithm depends on the configuration, hard-
ware, shape/size of the communicator, and/or the MPI library. This
makes it practically impossible for application developers to predict
the network traffic from non-trivial communication.

Our tool enables even non-experts to visualize packet-level traffic
based on direct measurements. This provides insight into how and why
particular implementation choices affect performance. Furthermore,
as discussed in detail in Section 5, our tool provides an intuitive way
to compare the behavior of different process-to-node mappings and
a means to explain their effect on performance. As we will show,
the performance of a parallel application is intimately tied to not only
what messages are sent, but also how efficiently these messages can
be sent along the network. This leaves application developers with the
problem of node mapping, or determining how best to take a known
set of processes and allocate them onto the available CPU cores of the
system to balance computation and communication.

3.2 IBM Blue Gene/P
In our case study we focus on the IBM Blue Gene/P (BG/P) supercom-
puters, such as the “Intrepid” system at Argonne National Laboratory,
“Dawn” at Lawrence Livermore National Laboratory, and “Jugene” at
Jülich Supercomputer Center, as well as numerous other systems on
the TOP500 list of supercomputers [1]. Furthermore, the BG/P suc-
cessor, the Blue Gene/Q, features a very similar architecture. The first
installation, “Sequoia” at Lawrence Livermore National Laboratory,
is currently the world’s most powerful supercomputer. For this pa-
per, the most relevant aspects of the BG/P’s design are its 3D torus
network (used by 12 of the top 100 systems as of June 2012) and its
dynamic packet routing (common to both BG/P as well as 15 BG/Q
systems in the top 100). In a 3D torus, each node is connected to six
neighbors in 3D space through six links. Blue Gene systems dynam-
ically route and split messages along shortest Manhattan paths within
the Cartesian network (see Fig. 4). The dynamic routing means that,
depending on the network traffic, messages on BG/P may take any of
multiple possible shortest paths. Additionally, different portions of a
large messages are split and distributed among the potentially shortest
paths. This makes predicting network traffic difficult. On the other
hand, the network topology remains fixed as a 3D torus for practical
use cases.

3.3 Data Collection
Despite this complexity in the hardware, a major advantage of the
BG/P system is its comprehensive set of performance counters (in-
cluding counters for network activity) and its sophisticated set of data
instrumentation tools. These allow for the collection of performance

2469LANDGE ET AL: VISUALIZING NETWORK TRAFFIC TO UNDERSTAND THE PERFORMANCE OF MASSIVELY PARALLEL…

Minimaps for giving
context once user zooms
in. Color based on the
mean link values for the
links in that plane. Three
different orientations
allow a user to look
with perspective along
the x, y, or z directions.
These views also give
an overview of the
communication behavior.

Interactive legend for
selecting range of val-
ues to be viewed. Axes
showing current orienta-
tion of the view. Click-
ing on any of the direc-
tions shows links in only
that direction.

The 3D view supports linked selection of
nodes with the 2D view as well as interactions
of zooming, rotation, and panning.

The 2D view displays nodes without occlusion. By de-
fault, we show half of the links in the horizontal and half
in the vertical direction orthogonal to the viewpoint. All
diagonal links are shown, but with much shorter lengths.

The 2D view supports highlight planes on a
mouseover. The 2D view also supports zooming
and panning as well as node selection.

Fig. 3. An overview of our visualization tool, illustrating the minimaps, interactive legends and axes, 2D projected view, and linked 3D torus view.
Note that in this figure, the 3D view shows only the links that are seen in the 2D view to better illustrate the projections from 3D to 2D.

data at very fine granularities, allowing the characterization of packet-
level network performance. Each node has the ability to track the num-
ber of packets sent on its six links/directions available on the torus.

To track the communication bandwidth, we directly instrument
phases in application codes, and we combine this instrumentation with
the PNMPI [30] tool infrastructure to intercept calls to functions in the
MPI library. This infrastructure, once linked with the code, allows
the dynamic loading of modules that can read hardware counters on
BG/P. Our instrumentation allows us to aggregate the data from spe-
cific phases within the code, and we output sums of the network traf-
fic that occurred over fixed spans of execution. Per-phase data gives
us some temporal information without incurring unacceptable over-
heads. Since data collection for such a massive system is highly non-
trivial, such summaries are necessary. Moreover, they are reasonable
for many simulations, including pF3D, as similar communication pat-
terns repeat at each phase. If we were to instead record full packet
traces, the runtime overhead and storage requirements of our measure-
ment system would be unacceptable, potentially producing more data
than the simulations themselves. On the other hand, if we were to sum
per-link communication over the entire application run, we would fail
to see enough detail to identify communication patterns.

3.4 pF3D

pF3D is a multiphysics code designed to simulate laser and plasma
interactions [5, 35]. It provides an interesting case study as (a) it is ac-
tively used in connection with inertial confinement fusion experiments
at the National Ignition Facility (NIF) [22] and (b) since it is known to
scale well to some of the largest supercomputers available today. In its
typical setup, pF3D uses a regular 3D process grid in (x,y,z) coordi-
nates with the z-direction aligned with the laser. This grid is typically
sized with respect to the laser wavelength, resulting in grids of billions
of zones. The domain is then decomposed into a set of xy slabs per-
pendicular to the direction of the laser and the computation is split into
solving the light equations within each slab independently followed by
hydrodynamic calculations along the z-direction. The dominant cost
(especially with respect to communication) is the computation within
each slab, which requires solving a (separable) FFT on each plane.
Thus, each slab is subdivided further into a two dimensional array
aligned with the x-/y-directions of the primary grid. The FFT is solved
in two phases first along the x- and then the y-direction. Both of these
require alternating all-to-all operations among groups of processes in

a slab with the same x and y coordinate respectively. It is well known
that the cost of these all-to-alls dominate the overall communication
performance, so we focus our case study on providing insights into
how different process-to-core mappings affect the network traffic.

4 VISUALIZING NETWORK TRAFFIC

Designing a visualization of network traffic for performance analysis
presents a number of challenges. Given the large number of hardware
links on modern networks, we need tools that can illuminate trends
at multiple scales. For example, depending on the application, net-
work contention may manifest itself in a single or very small set of
overloaded links requiring detailed illustrations. Simultaneously, there
often exist patterns on the level of entire planes or large blocks of pro-
cessors that may only be apparent in a global overview. Our system is
designed to provide sufficient context for insight into the global per-
formance picture while allowing a detailed, interactive exploration of
the data at multiple scales.

Our tool is built around two different views of the hardware domain.
First, we use a set of modified central projections to show all nodes
and two-thirds of the links of a system in various combinations in an
intuitive, planar layout. Second, we use a more traditional 3D layout
of the hardware torus that mirrors the physical network topology, yet
suffers from occlusion and visual clutter problems. Furthermore, we
present summary views that provide context and identify global trends,
enabling quick navigation and the ability to drill down in the often
large graphs. Finally, we allow a user to sub-select data based on code
phases or individual communicators. Both views are linked providing
highlighting of important substructures, such as planar slices in the 3D
torus, and enabling joined selection and analysis. Fig. 3 provides an
overview of our visual tool, highlighting the strengths of the projected
view and the different interaction mechanisms we include, as well as
the linked 2D and 3D views described below.

4.1 Projected Views of the Network
We use a modified central projection, similar to the ones studied in
optics and map design, to map the 3D torus of the BG/P system onto
various different view directions. Conceptually, the projection is cre-
ated by treating a torus viewed, for example along the x-axis, as a set of
concentric, squared cylinders. For a cube shaped torus the innermost
cylinder will contain a ring of four node sets extruded in the view di-
rection, the next cylinder an extruded ring of twelve node sets, and so

2470 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

(a) (b)

Fig. 4. A 4× 4× 4 3D torus, (a) observed looking down the x-axis and
(b) displayed in the projected view. Nodes are colored by their MPI rank
(a unique identifier given to each process), indicating where each 3D
node has been placed in the 2D view. A subset of links connecting the
nodes are shown in the 2D view. Note that since the network is 3D torus,
the 3D view shows open links where communication wraps around the
network to connect to opposing faces.

on. Each cylinder is then projected into a set of concentric rings which
show half the links in the direction orthogonal to the view as horizon-
tal or vertical lines of roughly equal length and all the links along the
view direction as short diagonal segments. As shown in Figs. 3 and 4,
for a 2n ×2n ×2n torus this results in n concentric sets of 2n rings.

While this projection creates significant geometric distortions, it
also enables us to show all the nodes without occlusion and preserves
much of the required context. For example, all horizontal (similarly,
vertical or diagonal) links in the projection represent parallel links in
the 3D torus and the different directions will be pairwise orthogonal.
In this default version of the projection only half the vertical and hor-
izontal links are shown. However, in our experiments this has usually
proven sufficient to detect global patterns. Furthermore, we can easily
show all existing horizontal/vertical links if we remove the links of the
alternate direction completely (e.g., Figs. 1 and 6).

Another advantage of this projection is that the layout of the nodes
retains a strong resemblance to their 3D arrangement. For example, as
shown in Fig. ??, nodes in a horizontal or vertical band of the projec-
tion are highlighted to represent planes of the 3D torus providing an
intuitive link to the original network topology. When designing this
projection, there are six natural directions, each of which create six
distinct node layouts. Furthermore, given that a torus has no bound-
ary, the choice of center for the projection is arbitrary which provides
a large amount of additional flexibility. In practice, however, we find
that most problems tend to be symmetric and thus most of these differ-
ent views provide roughly the same information. Therefore, we have
currently limited the available choices to the three primary directions
to avoid overwhelming users with mostly extraneous alternatives. Fi-
nally, given the node layout we can color, highlight, or hide links and
nodes according to, for example, the number of packets that were sent
between two hardware nodes, MPI rank (unique identifiers given to
label each communicating node), or other recorded performance mea-
surements.

4.2 Visual Navigation

For each of the three projected views that we display to the user, we
provide a minimap on the top left corner of the window in which each
bundle of links is replaced by a single edge that represents the mean
behavior of the bundle (see Fig. 3). The user can interactively switch
between these views to explore the different layouts. Additionally, we
provide a set of axes on the lower left corner that indicate which direc-
tion of links in the projections are currently displayed with respect to
the network topology. The user can select and deselect axes to show
and hide the corresponding links as in Fig. 5(a). If both horizontal and
vertical links are shown, we use the concentric ring layout to show
half of each set. Instead, if only one direction is selected, all of the
corresponding links will be shown.

Finally, we provide an interactive legend to interact with the se-

(a) (b)

Fig. 5. We use both an interactive set of axes and interactive legend to
allow the user to explore the network traffic. (a) The axes allow different
links to be turned on or off, each displaying the concentric ring layout
(left) , or entirely vertical (middle) or horizontal (right) layouts. (b) The
range on the color scale can be changed by using sliders for both the
minimum and maximum values.

lected color space for showing the communication data, shown in
Fig. 5(b). We explored different metaphors, such as thickness for com-
munication, but found color to be the most intuitive for users. The user
can drag and slide both the minimum and maximum values along the
color bar, and we adjust the range of colors accordingly. Links be-
low the minimum are not drawn (following a visual metaphor of them
being insignificant amounts of communication), while links above the
maximum are drawn with the same color as the maximum (indicating
they are utilized at or above the maximum amount). When the leg-
end is updated, we update all three minimaps as well as the full scale
projected view. This feature synchronizes the two views without caus-
ing discrepancies. Following this rule becomes particularly important
when multiple datasets are loaded simultaneously. In this case, inter-
action with the slider can update all views to provide an equal context
for comparing performance of different runs.

4.3 Linking the Projection with a 3D View
While somewhat unintuitive for the uninitiated, we have found that
most application developers are well accustomed to think in terms of
the torus structure of the physical network topology. In response, we
have included a 3D view representing the torus as a regular grid of
nodes with a set of “open” links at the torus boundaries. As expected,
the resulting view can suffer from occlusion and visual clutter which
can make it difficult to comprehend. However, integrating the two
views into a linked view system has proven remarkably effective. The
2D projection provides an intuitive way to study all communication
data at a glance and, more importantly, to select interesting (sets of)
nodes. The selection is then highlighted in the 3D environment deem-
phasizing all unrelated nodes and links (see Fig. 6)

This tool provides developers with the desired context of the true
network topology in which, for example, it is easy to judge distances
and reason about potential hardware effects. Simultaneously, it largely
solves the occlusion problem by concentrating on a small subset of
nodes and links. The user can rotate, pan and zoom to find the most
salient view of the data. Additionally, as discussed in more detail in
Section 5, the 3D view has proven useful to understand the effects of
different mappings of processes to nodes. By selecting and highlight-
ing nodes and/or processes within MPI communicators, their physical
location on the hardware can provide important insights. Our system
enables cross-linked selection of (groups of) nodes either by selecting
nodes one by one, through selection boxes, or according to predefined
groups such as MPI communicators. Fig. 6 highlights some of the
typical use cases for selected between the two windows.

4.4 Implementation
Given the large variety of different platforms and environments our
users operate on portability and robustness are major concerns. Addi-
tionally, performance analysis is notorious for requiring some amount
of customization to adjust tools to the immense variety of specific
tasks. Therefore, we have chosen to implement our system with
Python [37] to ensure maximal portability and flexibility. The interac-
tive rendering uses a OpenGL design written using PyOpenGL wrap-
pers. While this sacrifices some amount of rendering performance, a
Python based rendering better integrates with the other components
and data structures. The data format is based on YAML [10] which

2471LANDGE ET AL: VISUALIZING NETWORK TRAFFIC TO UNDERSTAND THE PERFORMANCE OF MASSIVELY PARALLEL…

provides an easy to use cross-platform and cross-programming lan-
guage data serialization that has been simple to integrate into the ex-
isting data collection framework. Finally, the internal data represen-
tation and querying uses NumPy [25] arrays of records as data tables;
however our intention is to build upon a more sophisticated data store
as the complexity and size of data grows. While the current imple-
mentation is a prototype, the system is scheduled to be released under
an open source licence as part of ongoing tool deployments.

5 CASE STUDY

Our team consists of a mix of experts in visualization, performance
analysis, and computational science all of which contributed to the
design of the tool. We are actively using the tool to study the per-
formance of several massively parallel simulation codes and here we
report results for pF3D running on a BG/P. We repeatedly ran the sim-
ulation using three different node configurations containing 512 nodes
(2,048 cores arranged on an 8×8×8 torus), 1,024 nodes (4,096 cores,
8×8×16) and 16,384 nodes (65,536 cores, 16×16×32).

The tool helped both the application developers and scientists on
our team to investigate the scaling behavior of pF3D as well as the per-
formance experts to explore idiosyncrasies in network behavior given
different node mappings. Due to the structured 3D nature of pF3D, a
fundamental problem for developers is managing how best to map the
individual 2D slabs of this problem to the 3D torus network of BG/P,
while also taking into account the cross slab communication.

5.1 Understanding the Default Behavior of pF3D

There exist a large number of different ways to map the xy-slabs used
by pF3D onto the hardware domain. Therefore, one of the primary
challenges for scientists and developers is to identify “good” map-
pings that translate into high performance. Also, scalability as we
run on greater number of nodes is important and in particular scalabil-
ity that is well understood and predictable. This explains why pF3D
by default uses the trivial “row-major” mapping usually called TXYZ
as MPI ranks are assigned in order to: first the cores on a node (T);
then, the nodes along the x-axis of the torus (X) within an xy plane,
then along the y-axis in the same plane (Y) and finally other xy planes
perpendicular to the z-direction (Z).

Fig. 6. Visualizations of the aggregate communication for the x- and
y-phases of pF3D using the default layout. Highlighting xy-slabs of 32
nodes in both the 2D and 3D view clearly indicates that all communica-
tion (in these phases) is confined to the individual slabs. The minimaps
confirm this conclusion by indicating that many links are entirely unused.

Fig. 6 shows this default mapping with xy-slabs highlighted for a
1,024 node (8× 8× 16) run of pF3D. In this case the application do-
main is decomposed into 32 xy-slabs each containing an array of 16×8
patches. Each xy-slab uses 128 cores on 32 nodes and thus in the
TXYZ mapping two pF3D xy-slabs make up one plane of the hard-
ware torus. The 2D view clearly displays the xy-slabs. Colors are used
to distinguish slabs. Nodes lying in the same xy-slab are given the
same color. Two selected xy-slabs of pF3D are then shown in the 3D
view to provide a context of the virtual application topology familiar
to the scientists. In this case, the 32 slabs of pF3D clearly dominate
the network traffic as communication is confined within each plane.

Given the visualization shown in Fig. 6, it is immediately apparent
that a large number of available hardware links are not utilized which
suggests there may be room for improvement. Nevertheless, this map-
ping is fully symmetric and given the uniform nodes of a BG/P system
ultimately scalable to the largest available partitions. At the largest
configurations the scaling of a code will dominate all other effects,
and experimenting with potentially sub-optimal mappings can be ex-
pensive with respect to both time and resources. This explains the
predilection for the default mapping whose behavior, while potentially
not optimal, is well understood and exhibits little variation at different
scales.

5.2 Comparing Node Mappings
As discussed above, the behavior of the default mapping is fairly pre-
dictable and our tool was mainly used to validate prior expectations.
However, when experimenting with different mappings the network
traffic becomes far less predictable. Through extensive experiments in
which the aggregated bandwidth was recorded for different mappings
(see Table 1) the performance experts knew a priori that certain map-
pings can achieve significantly better performance than the default.
However, the causes of these differences were unclear. In particular,
these may have been effects particular to a specific number of nodes
or configuration which would raise doubts about the scalability of the
mappings. Furthermore, understanding the difference in network traf-
fic between various mappings in detail can provide insights into the
design of even better mappings.

Table 1. Bandwidth (higher is better performance) of the 512 node runs
using the five different mapping types we considered in this case study

Mapping Bandwidth (MB/s) Time per iteration (s)

TXYZ (Default) 41.81 1,886.76
XYZT 90.66 1,731.99
tile 106.94 1,703.67
tiltZ 109.61 1,702.48
tiltZY 102.84 1,708.48

We experiment with five different mapping types each with differ-
ent characteristics. In addition to the default mapping we use an XYZT
mapping, a tiled layout, and two different tilted layouts, one tilted just
along the z-axis and one tilted along both z and y. Fig. 7 shows the
node mappings using the 3D view for an 8 × 8 × 8 hardware torus
using 16 slabs of 16× 8 patches. The XYZT layout spreads out the
x-communicators by distributing them on individual nodes rather than
four to a node as the default. As a result a single slab is spread between
two planes of the torus rather than the half plane of the default. The
tile mapping is similar to the XYZT mapping, but changes the orienta-
tion of the layout by mapping slabs into tiles perpendicular to slabs in
the default mapping. The tiltZ mapping starts from the tiled layout but
then “tilts” each yz-plane of the torus in the z direction. This drasti-
cally increases the size of their bounding box. TiltZY further modifies
tiltZ by introducing a second tilt in the y direction. This increases the
bounding box of the nodes even further.

Given this context, we compare network traffic for the five different
node mappings at different scales. These are concisely described by
the minimaps of the 2D projection, as shown in Figs. 8(a) (512 nodes)

2472 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

(a)

(b)

Fig. 7. (a) We explore the behavior of five different communicator layouts, from left to right we show an individual x-phase communicator in the
TXYZ (default), XYZT, Tile, TiltZ, and TiltZY mapping strategies. (b) Nodes of a single xy-slab highlighted for the different mappings.

and 8(b) (1,024 nodes). By using an interactive slider that controls all
five views simultaneously we can provide potential explanations for
the performance measurements in Table 1. In particular, the TXYZ
mapping entirely excludes communication in the z-direction, strongly
clustering communication in the other two as only half planes com-
municate. Instead, the XYZT mapping spreads out the nodes more
and utilizes some z-links within a slab. The minimaps clearly show a
more even distribution of communication load even though the same
patterns as the TXYZ mappings are apparent. This provides a sig-
nificant boost in performance by more than doubling the total band-
width. The tile mapping acts roughly like a rotated XYZT mapping
and shows very similar behavior and performance. The TiltZ map-
ping however further balances the communication. In particular, note
how both the top and bottom minimap indicate (relative) increases in
x communication. Since the total amount of communication is in-
dependent of the mapping, this increase actually indicates a further
balancing of the communication. The better distribution of traffic is
correlated with higher performance. Finally, the TiltZY follows the
same trend: The minimaps, especially the topmost, indicate much
more evenly distributed network traffic and the bandwidth indicates
better performance.

These experiments strongly suggest that evenly distributing the traf-
fic leads to better bandwidth usage. Part of the current hypothesis
is that increasing the effective bounding box sizes of the slabs and
evening out their aspect ratios drastically increases the number of po-
tential routes a packet can choose. Coupled with the dynamic routing
of the BG/P system, this may be the cause for the increase in aggregate
bandwidth. Note that the fact that providing more routes increases the
potential bandwidth is expected. However, under the current think-
ing pF3D is not bandwidth limited thus the fact that increasing the
available bandwidth caused increased traffic rates was a novel finding.
Additionally, the best mappings clearly increase the distance packets
must travel which, however, does not seem to have a negative effect.
This is especially surprising for the default mapping as much of its
x communication is restricted to intra-node communication which is
expected to be significantly faster than any inter-node messaging. By
providing an intuitive way to explore and illustrate the network traf-
fic our tool has been instrumental in better understanding this unex-
pected network behavior, overturning assumptions, and forming new
hypotheses.

(a)

(b)

Fig. 8. Comparison of five different node mappings for a simulation run
of (a) 512 and (b) 1,024 node. The x and y phases of simulation are
shown in the top and bottom, respectively.

2473LANDGE ET AL: VISUALIZING NETWORK TRAFFIC TO UNDERSTAND THE PERFORMANCE OF MASSIVELY PARALLEL…

(a) TXYZ mapping, x (top) and y (bottom) phases (b) XYZT mapping, x (top) and y (bottom) phases

(c)

Fig. 9. Minimap summary of pF3D at different size runs for the (a) TXYZ and (b) XYZT node mappings at both the x and y phase of communication
(top and bottom, respectively). (c) The 2D projection of communication for the 16,384 node run (with a plane selected in the 3D view) of pF3D in
the y phase of communication with the XYZT mapping. In the 3D view, nodes lying in the same y communicator are given the same color. We
can see that there is no communication in the z direction (in the middle and bottom minimap and 3D view) as communication does not take place
across communicators.We observe similar patterns at all scales of pF3D.

5.3 Visualizing the Behavior of pF3D at Scale
Our final experiment in the case study is to observe the communica-
tion behavior of pF3D as the size of the problem scaled to larger runs
on BG/P. Fig. 9 shows a summary of the different aspects of this visu-
alization. By loading each run simultaneously, we were again able to
visualize the data from each run using a shared color scale. One ob-
servation we can draw from the combined minimap views in Figs. 9(a)
and 9(b) is that, despite the problem size, the amount of communica-
tion that happens on each link stays roughly the same across scales.

Moreover, even when the network topology changes from a cube to
a rectangular-prism, generic communication trends in each direction
stay relatively fixed. These two observations help explain why pF3D
scales well to larger sizes and corroborate well with the scientists’ ex-
periences running pF3D on larger scales.

5.4 Exploring Fine-Grained Network Behavior
For one of our simulation runs (1,024 nodes, using an XYZT node
mapping described in Section 5.2) the tool immediately highlighted

2474 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

Fig. 10. Due to the nonuniform network utilization some links transfer
high number of packets. By interacting with the legend (left), links with
high network packet counts can be easily isolated and examined by
zooming into the view (right).

one particular hot edge. On closer investigation we found that the
maximum number of packets sent over this link was 271 million, a
number far outside the expected range (and in fact outside the physi-
cally feasible range). During discussion with the performance experts,
it was determined that this anomaly was the result of a data collec-
tion error. Our tool helped to easily identify correctness problem in
the measurement environment indicated through the abnormal link.
The link was discovered by simply restricting the color map to show
only links above the expect values. Zooming into the neighborhood as
shown in Fig. 10, and highlighting the respective planes of node, pro-
vides the necessary context to locate and diagnose the problem. Even
though a simple scan through the data could have revealed the same in-
formation, our tool eliminated the needs for special tests, exposed this
unexpected and otherwise probably overlooked issue, and provided a
quick and intuitive means to understand and ultimately address the
problem.

6 DISCUSSION

While the performance of single CPU applications is typically well
summarized by simple profiles, understanding the behavior of mas-
sively parallel systems is a challenging and largely unsolved problem.
Here we have demonstrated a new tool to provide an intuitive visu-
alization of one of the most crucial aspects of performance: network
utilization. Our system enables the rapid visual analysis of otherwise
abstract data and has been crucial in providing new insights to both ap-
plication developers and performance analysis experts. Nevertheless,
this is only a first step in applying advanced information visualization
approaches to this type of performance analysis.

Two major design choices require further discussion. First, in this
work we link together a 2D projected view of the network with a 3D
view of the BG/P hardware torus. The 3D view, while familiar to appli-
cation developers, has a number of obvious deficiencies with regards
to occlusion and interaction. We chose to keep both views instead of
using only a 2D view, as a direct response to feedback from the per-
formance analysts working on our team. This domain is “natural” for
application developers because both the network as well as the simula-
tion domain are three dimensional, so often correlations can be drawn
between the two spaces. While there are a variety of different net-
works used in HPC systems, many of the simulations of interest will
remain in 3D for the foreseeable future.

A second important design choice was to use static views which
summarize a single phase of computation. These provide a compro-
mise from the point of view of data collection: instead of looking at
the fine-grained data for each individual communication or the sum of
all communication, we take coarse steps. Our tool allows for loading

up an entire simulation run, but then displays only a selected phase.
What is missing in our tool is the notion of a timeline, where an an-
alyst can play back individual runs and see how the communication
changed throughout. This would surely be useful, as understanding
the communication during the progression of phases has proven infor-
mative in past work [31]. However, we remark that often, and espe-
cially for pF3D, only a few phases of the computation have significant
communication and viewing them individual has significant utility for
optimization.

Many other avenues of future work remain. Our tool produces a
large number of different projections, some of which may be more
helpful than others. However, currently it is unclear how to make this
large number of choices available without overwhelming users. Fur-
thermore, the system is reaching its limit with current supercomputers
in terms of the number of nodes that are practical to display. For fu-
ture HPC machines one will likely need additional levels of resolution
to provide an adequate context. This will have to lead to new ways
to aggregate and summarize data, which is non-trivial in this abstract,
non-spatial space. Furthermore, there exist other interesting classes
of scientific applications, such as particle-based codes or simulations
using adaptively refined grids. While many of our concepts will carry
over, analyzing such applications will require new types of illustra-
tions to highlight the dynamic changes as the simulation progresses.
Finally, the next generation of HPC machines that are currently being
deployed, rely on even higher dimensional networks, e.g., in the case
of BG/Q a 5D torus. These machines will require more aggressive
projections showing fewer links simultaneously, creating more chal-
lenging problems to solve. For non-torus network topologies, we are
also considering various projections which might work along either
application space dimensions or other, user-defined, dimensions in the
network space. Our goal is to extend the same level of interactivity
and intuition to developers of future parallel applications, as we expect
many of the most interesting scientific applications will ultimately use
HPC resources.

Finally, we remark that both scientists and performance analysts
have given us positive feedback regarding the use of this tool. This tool
specifically made it easier for application developers to see the effects
that different node mappings have on network traffic. In particular, the
results of Section 5 have lead to the scientists using the tilt mappings
for their current runs of pF3D, and the performance analysts better
understanding why such mappings work well. Our next steps are to
extend these visualizations for discovering new mappings and explor-
ing which are most optimal. This work represents a first step towards
understanding network behavior and identifying contention. We plan
to next consider how best to use this tool to build models which can
predict network behavior, and potentially use (semi-)automatic tech-
niques to find optimal node mappings for large scale simulations.

ACKNOWLEDGMENTS

This work is supported in part by NSF awards IIS-1045032, OCI-
0904631, OCI-0906379 and CCF-0702817, and by a KAUST award
KUS-C1-016-04. This work was also performed under the auspices
of the U.S. Department of Energy by the University of Utah un-
der contracts DE-SC0001922, DE-AC52-07NA27344 and DE-FC02-
06ER25781, and by Lawrence Livermore National Laboratory under
contract DE-AC52-07NA27344 (LLNL-CONF-543359).

REFERENCES

[1] TOP500 Supercomputing Sites. http://www.top500.org/, Nov. 2011.
[2] D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel

graph layout by topological features. IEEE Trans. Vis. Comput. Graph.,
13(2):305–317, 2007.

[3] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data.
IEEE Trans. Vis. Comput. Graph., 1(1):16–28, 1995.

[4] R. Bell, A. D. Malony, and S. Shende. ParaProf: A portable, extensible,
and scalable tool for parallel performance profile analysis. In Euro-Par
2003. Parallel Processing, pages 17–26, 2003.

[5] R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B. Kaiser, B. B. Afeyan,
B. I. Cohen, C. H. Still, and E. A. Williams. Influence of spatial and

2475LANDGE ET AL: VISUALIZING NETWORK TRAFFIC TO UNDERSTAND THE PERFORMANCE OF MASSIVELY PARALLEL…

temporal laser beam smoothing on stimulated Brillouin scattering in fila-
mentary laser light. Phys. Rev. Lett., 75:1078–1081, Aug 1995.

[6] N. Bhatia, F. Song, F. Wolf, J. Dongarra, B. Mohr, and S. Moore. Auto-
matic experimental analysis of communication patterns in virtual topolo-
gies. In International Conf. on Parallel Processing, pages 465–472, 2005.

[7] U. Brandes and C. Pich. An experimental study on distance-based graph
drawing. In Intl. Symp. on Graph Drawing, pages 218–229, 2008.

[8] A. Chan, W. Gropp, and E. L. Lusk. An efficient format for nearly
constant-time access to arbitrary time intervals in large trace files. Sci-
entific Programming, 16(2-3):155–165, 2008.

[9] I.-H. Chung, R. Walkup, H.-F. Wen, and H. Yu. MPI tools and perfor-
mance studies - MPI performance analysis tools on Blue Gene/L. In
Proceedings of the ACM/IEEE SC2006 Conference on High Performance
Networking and Computing, page 123, 2006.

[10] C. C. Evans. The official YAML web site. http://yaml.org/, Sept. 2011.
[11] E. R. Gansner, Y. Hu, S. C. North, and C. E. Scheidegger. Multilevel

agglomerative edge bundling for visualizing large graphs. In IEEE Pacific
Visualization Symposium, pages 187–194, 2011.

[12] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE Trans. Vis. Comput. Graph., 11(4):457–
468, 2005.

[13] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr.
The Scalasca performance toolset architecture. Concurrency and Com-
putation: Practice and Experience, 22(6):702–719, 2010.

[14] M. T. Heath and J. A. Etheridge. Visualizing the performance of parallel
programs. IEEE Software, 8(5):29–39, 1991.

[15] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Trans. Vis. Com-
put. Graph., 6(1):24–43, 2000.

[16] L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object
Oriented System Based on C++. In A. Paepcke, editor, Proceedings of
OOPSLA’93, pages 91–108. ACM Press, September 1993.

[17] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Müller, and W. E. Nagel. The Vampir performance analysis tool-
set. In Parallel Tools Workshop, pages 139–155, 2008.

[18] J. Liang and M. L. Huang. Highlighting in information visualization: A
survey. In Information Visualisation IV, pages 79 –85, July 2010.

[19] F. Mansmann, F. Fischer, D. A. Keim, and S. C. North. Visual support for
analyzing network traffic and intrusion detection events using TreeMap
and graph representations. In 3rd ACM Symposium on Computer Human
Interaction for Management of Information Technology, 2009.

[20] J. McPherson, K.-L. Ma, P. Krystosk, T. Bartoletti, and M. Chris-
tensen. PortVis: a tool for port-based detection of security events. In
VizSEC/DMSEC: ACM workshop on Visualization and Data Mining for
Computer Security, pages 73–81, 2004.

[21] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J.-D. Fekete.
Topology-aware navigation in large networks. In 27th International
Conf. on Human Factors in Computing Systems, pages 2319–2328, 2009.

[22] E. I. Moses. Overview of the national ignition facility. Fusion Science
and Technology, 54(2):361–366, 2008.

[23] C. Muelder, F. Gygi, and K.-L. Ma. Visual analysis of inter-process com-
munication for large-scale parallel computing. IEEE Trans. Vis. Comput.
Graph., 15(6):1129–1136, 2009.

[24] G. Namata, B. Staats, L. Getoor, and B. Shneiderman. A dual-view ap-
proach to interactive network visualization. In Conference on Information
and Knowledge Management, pages 939–942, 2007.

[25] T. E. Oliphant. Guide to NumPy. Provo, UT, Mar. 2006.
[26] A. J. Quigley and P. Eades. Fade: Graph drawing, clustering, and visual

abstraction. In Intl. Symp. on Graph Drawing, pages 197–210, 2000.
[27] P. G. Raponi, F. Petrini, R. Walkup, and F. Checconi. Characterization

of the communication patterns of scientific applications on Blue Gene/P.
In 25th IEEE International Symposium on Parallel and Distributed Pro-
cessing, pages 1017–1024, 2011.

[28] N. H. Riche, B. Lee, and C. Plaisant. Understanding interactive legends:
a comparative evaluation with standard widgets. Comput. Graph. Forum,
29(3):1193–1202, 2010.

[29] L. M. Schnorr, G. Huard, and P. O. A. Navaux. Triva: Interactive 3D
visualization for performance analysis of parallel applications. Future
Generation Comp. Syst., 26(3):348–358, 2010.

[30] M. Schulz and B. R. de Supinski. PNMPI Tools: a Whole Lot Greater
than the Sum of their Parts. In Proceedings of SC07, 2007.

[31] M. Schulz, J. A. Levine, P.-T. Bremer, T. Gamblin, and V. Pascucci. In-
terpreting performance data across intuitive domains. In International

Conference on Parallel Processing, pages 206–215, 2011.
[32] S. Shende and A. D. Malony. The Tau parallel performance system. Int.

J. of High Perf. Comp. Appl., 20(2):287–311, 2006.
[33] B. Shneiderman. The eyes have it: a task by data type taxonomy for in-

formation visualizations. In Visual Languages, 1996. Proceedings., IEEE
Symposium on, pages 336 –343, sep 1996.

[34] B. E. Smith and B. Bode. Performance effects of node mappings on the
IBM BlueGene/L machine. In Euro-Par, pages 1005–1013, 2005.

[35] C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel, L. J. Suter, and
E. A. Williams. Filamentation and forward Brillouin scatter of entire
smoothed and aberrated laser beams. Physics of Plasmas, 7(5):2023–
2032, 2000.

[36] K. L. Summers, T. P. Caudell, K. Berkbigler, B. Bush, K. Davis, and
S. Smith. Graph visualization for the analysis of the structure and
dynamics of extreme-scale supercomputers. Information Visualization,
3(3):209–222, Sept. 2004.

[37] G. van Rossum. Python tutorial. Technical Report CS-R9526, Centrum
voor Wiskunde en Informatica (CWI), 1995.

2476 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 12, DECEMBER 2012

