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Abstract-Variance-based Radio Tomographic Imaging 
(VRTI) is an emerging technology that locates moving objects 
in areas surrounded by simple and inexpensive wireless sensor 
nodes. VRTI uses human motion induced variation in RSS and 
spatial correlation between link variations to locate and track 
people. An artificially induced power variations in the deployed 
network by an adversary can introduce unprecedented errors 
in localization process of VRTI and, given the critical appli
cations of VRTI, can potentially lead to serious consequences 
including loss of human lives. In this paper, we tackle the 
problem of detecting malicious receivers that report false RSS 
values to induce artificial power variations in a VRTI system. 
We use the term "Receiver Attack" to refer to such malicious 
power changes. We use a combination of statistical hypothesis 
testing and heuristics to develop real-time methods to detect 
receiver attack in a VRTI system. Our results show that we 
can detect receiver attacks of reasonable intensity and identify 
the source(s) of malicious activity with very high accuracy. 

I. INTRODUCTION 

Variance-based Radio Tomographic Imaging (VRTI) [1] 
is an emerging technology that locates moving objects in 
areas surrounded by simple and inexpensive wireless sensor 
nodes. Figure 1 shows such a VRTI network setup. Human 
motion in vicinity of wireless links cause variation in the 
link Received Signal Strength (RSS). VRTI uses this motion 
induced variation in RSS and spatial correlation between link 
variations to locate and track people. The advantage of VRTI 
is that it is "device free", i.e., it does not require the moving 
object(s) to carry any electronic device and it can locate 
people even behind walls. Hence, VRTI can be used in many 
critical applications including emergency response, rescue 
operations, and security breaches. However, the VRTI-based 
device free localization (DFL) scheme assumes that the 
changes in the RSS measurements is caused by the move
ment of objects being localized and/or the environment noise 
only. An adversary can craftily introduce artificial variations 
in RSS measurements by maliciously programming some 
sensor nodes to vary their transmit power or report wrong 
RSS values as measured for some links. Such attacks can in
troduce significant errors in a VRTI-based DFL system and, 
given the critical applications of the system, can potentially 
lead to serious consequences including loss of human lives 
(e.g. in a hostage situation). Timely and accurate detection 
of adversarial nodes is of extreme importance for a VRTI 
system. 
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Figure I. Sensor network layout in a VRTI system. The sensor nodes are 
depicted by (0). The area being monitored is bounded by the dashed line. 

An adversary can make a make a person appear in the 
empty room by reporting false received RSS values for an 
otherwise static link. It can also suppress variation in a link, 
caused by human motion, by reporting constant RSS for 
that link. The importance of securing VRTI system, against 
adversaries, motivates us to explore the effect of power 
attacks in this system and develop efficient techniques to 
detect such attacks. 

Notably, certain non-adversarial circumstances can also 
lead to unexpected changes in transmit power and/or re
ported RSS. These circumstances include faults in sensor 
nodes due to physical damage or software bugs. In our 
previous work [2], we presented methodologies to detect 
malicious transmitters who vary their transmit power to 
introduce errors in RSS-based localization system. In this pa
per, we tackle the problem of detecting unexpected changes 
in reported RSS, malicious or otherwise, in a VRTI system. 
We use the term receiver attack to denote unexpected 
changes in the reported RSS. We use a combination of 
statistical hypothesis testing and heuristics to develop real
time methods to detect the presence of receiver attack 
and identify the adversarial sensor node(s). In contrast to 
some existing methods (e.g., [3]), our method does not 
rely on any training data. This makes our method more 
usable in dynamic environments where training data may get 
obsolete frequently. In order to evaluate the effectiveness of 
our receiver attack detection method, we perform extensive 
experiments in indoor settings using a network of 802.15.4 
compliant wireless sensor nodes (Zigbee). We find that using 
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our methods, we can achieve close to zero probability of 
missed detections and the probability of false alarms in 
a VRTI setting. We achieve close to 100% detection rate 
for receiver attacks, intense enough to falsify the image in 
VRTI, by using only 3.5 seconds of measurement data. We 
are able to identify the source of malicious activity with 
more than 95% accuracy. To the best of our knowledge, we 
are the first one to study the effect of adversarial receiver 
nodes in VRTI-based DFL and provide methods to detect 
these. Our proposed methods are quite general and can be 
applied to RSS-based localization schemes other than VRTI. 

The remainder of this paper is organized as follows. In 
Section II, we list our assumptions and describe our adver
sary model. In Section III, we formulate our method to detect 
receiver attacks and present the criteria used to evaluate 
our method. In Section IV, we present our experiments. In 
Section V, we present evaluation results of our detection 
method. In Section VI, we discuss previous research in 
detection of attacks in RSS based localization methods and 
conclude the paper and indicate directions for future work 
in Section VII. 

II. A SSUMPTIONS AND ADVERS ARY MODEL 

We assume that faulty or malicious nodes are never 
present in majority in the network and all nodes have equal 
probability of developing fault or being targeted by an 
adversary. We allow multiple adversaries to be active at the 
same time but they do not collude with each other to carry 
out a coordinated receiver attack. Since faulty nodes are just 
a weaker form of the adversary being considered, all further 
discussions apply to both malicious and faulty nodes. We 
define Receiver Attack as follows: 

• When an adversary maliciously programs one or more 
nodes to report false RSS values as measured for other 
nodes. 

In the following subsection, we parameterize the action 
of malicious power change of the attackers. 

A. Receiver Attack Parameters 

In case of a receiver attack the adversary has control over 
the links she chooses to attack. We first define minimum 
periodicity of attack, w;:;"in' as the smallest set of contiguous 
transmissions from a malicious receiver that contain at least 
one false RSS readings for the links being attacked. 

Next, we define minimum receiver attack amplitude, a;:;"in' 
as the minimum value by which a receiver should change 
the RSS measured for a link to perform an attack with 
significant effect on the VRTI accuracy. Changes with an 
amplitude less than a;:;"in are not considered to be harmful 
to the application in any significant manner, and thus are 
not important to detect. Last, we define minimum number 
of links attacked, Lmin, as the number of transmitter nodes 
for which a malicious receiver reports wrong RSS values. 
An attacker can inflict more damage if it concentrates on 
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Figure 2. Relative RMSE in VRTI Image (under receiver attack) 

changing the RSS values of a few transmitter nodes that are 
placed close to it, i.e., for links of shorter lengths. 

Figure 2 shows the impact of a receiver attack on VRTI 
accuracy. The root mean square error, RMSE, plotted on the 
y-axis, corresponds to the relative error in VRTI localization 
introduced by a receiver attack. Here, Lmin = 2. We see 
from Figure 2 that RMSE increases with decreasing value of 
w;:;"in and increasing value of a;:;"in. For a;:;"in = 10dB, the 
RMSE is negligible (::::; O.lm). However, RMSE increases 
to more than 1m for a;:;"in = 13 at low w;:;"in. For moderate 
values of w;:;"in (e.g., 5), we observe significantly high 
RMSE when the attack amplitude 2: 15dB. In the rest of 
this paper, we will focus on detecting receiver attacks that 
introduce high RMSE in VRTI. 

III. ATTACK DETECTION METHODOLOGY 

We consider a VRTI system built on a WSN with N 
transceiver nodes. Recall that human motion in vicinity of 
wireless links causes variation in the link Received Signal 
Strength (RSS). VRTI uses this motion induced variation in 
RSS and spatial correlation between link RSS variations to 
locate and track people. We define, for a transmitter k, a 
neighbor set given by 1{k = {no,nl, ... nM-d consisting 
of M receivers capable of communicating with k. We make 
RSS measurements on each link between node pair (k, nd 
where nl E 1{k. A fully connected network is not required 
for our detection method, however, the neighbor set for each 
transmitter is assumed to be known at all nodes and remain 
constant. Detection in networks where 1{k can change with 
time will be considered in future work. Let Tk,j (i) be the 
RSS measured for link lk,j at receiver j for transmission 
from node k at time i where k E {I, ... , N} and j E 1{k. 
We define RSS vector as: 

and mean of RSS vector over a window of time T as: 

T 

i'k(i) = �L rk(i - t) = [rk,no(i) , . . .  , rk,nM�l (i) ]T (2) 
t=l 
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Figure 3. Probability density function of f:>.rdls 

We define the absolute mean deviation from mean RSS for 
a transmission of node k at time i as 

T 

�L Irk(i - t) - i'k(i) 1 
t=l 

(3) 

[�rk,no (i) , ... , �rk,nM_l (i) ]T (4) 

We detect receiver using reciprocal difference in �rk(i) 
values in both directions of a wireless link and use statistical 
hypotheses testing to decide between an attacked and a 
normal environment as explained below: 

A. Detecting Receiver Attack 

Using Equation (3) we calculate, 

�rdls(lk,j (i) ) = �rk,j (i) - �rj,k(i) (5) 

where �rdls (lk,j (i) ) is the reciprocal difference of absolute 
mean deviation in RSS for the wireless link between node 
k and node j at time i. In the rest of this paper, we use 
the term "RDLS" (Reciprocal Difference in Link Statistic) 
to refer to �rdls (lk,j (i) ) . 

Under normal circumstances, the mUlti-path properties 
and hence the RSS variations of a radio channel at any point 
in time are expected to be identical in both directions of a 
link. Some of the existing secret key extraction and antenna 
design techniques utilize this reciprocity property of wireless 
links (e.g., [4]-[7]). However, for the reciprocity property 
to hold good, the time gap between measurements of the 
link by its two ends points should be very smalll. In our 
system, in the absence of any power attack, all the nodes 
have almost identical variations in RSS in both directions 
of a link as these are measured within a very short time 
interval. Therefore, when no attack nodes are present, the 
mean absolute deviations are likely to be similar in both 
direction of a link. This implies that RDLS values will be 
very small for most of the links. Figure 3 shows that, in 
a no-attack VRTI scenario, the distribution of the RDLS 

'Other factors that also impact the reciprocity property [4], do not apply 
here. 

values is mostly concentrated around the mean, the mean 
value being zero. The probability of RDLS values, as we 
move further away from the mean, decreases exponentially. 
A few moderately high RDLS values can be attributed to 
the movement in the environment and random noise. 

However, in the case where a malicious node j reports 
wrong RSS for node k, the absolute mean deviation in 
measured RSS will be asymmetrical for links Lk,j and 
Lj,k. Hence, the corresponding RDLS values will be higher. 
Figure 3 shows that under receiver attack, percentage of high 
RDLS values increases significantly in comparison to the 
normal case. 

These observations suggest that one can detect receiver 
attacks by examining the extreme values in the RDLS 
distribution for all pairs of links, as long as the intensity 
of the attack is large enough to make the extreme values 
of the distribution in the attack case appear different from 
those in the non-attack case. Recall from Section II that, to 
have any significant impact on the VRTI accuracy, a receiver 
attack should have a::;"in and w::;"in values above 15dB and 
5, respectively. We now present our methodology to detect 
attacks as follows. 

1) Attack Detection: For detecting receiver attacks, we 
use a generic outlier detection technique [8] as follows: Let, 
at time i, J(i) denote the median of �rdls(lk,j (i) ) values 
for all possible (k, j) pairs and MAD denote the median 
absolute deviation. Then, 

MAD(i) = median(l�rdls(lk,j (i) ) - J(i) l) (6) 

We define z-score [8] for each �rdls (lk,j (i) ) as follows: 

. ( .) _ C(�rdls(lk,j (i) ) - J(i) ) 
(7) Zk,J t -

MAD(i) 
where C is constant with value 0.6745 [8]. We consider 
an observation �rdls (lk,j (i) ) to be an outlier if the cor
responding Zk,j (i) score is greater than some pre-defined 
threshold. The rationale behind choosing this method is that 
the parameters (median absolute deviation) used to detect 
the outliers are minimally affected by the actual outlier 
values. Let Omax(i) = maXk,j (�rdls(lk,j (i) ) )  denote the 
maximum RDLS value among all links at time i. We 
calculate 

( .) _ C(Omax(i) - J(i) ) 
Zmax t -

MAD(i) 
(8) 

using (7). As in the case of transmitter attack detection, we 
consider deciding between two hypotheses: 

• Hr;: There is no receiver attack present in the environ
ment 

• HI: There is at least one receiver attack present 
We choose between Hr; and HI based on the value of 
Zmax (i) as follows: 

Hr 

zmax(i) � CY 

Ho 

(9) 



where a is an experimentally determined threshold that 
separates the boundary between attacked and normal en
vironment. A lower value of a decreases the probability 
of missed detections but at the same time increases the 
probability of false alarms (detecting an attack when there is 
none). Similarly, a high value of a decreases the probability 
of false-alarms (PF A) but at the same time increases the 
probability of missed-detection (PM D). We find that a = 10 
delivers a good trade-off in terms of PM D and PF A in our 
experiments. 

2) Identifying malicious receiver nodes: Once we detect 
the presence of a receiver attack, our next important task is 
to identify the source(s) of the malicious activity. We do this 
by identifying links that contribute to extreme reciprocal dif
ferences. We compute the z-scores of reciprocal differences 
for all links lk,j using (7). If the z-score value is close to the 
value zmax(i) , we identify node j as a potential malicious 
node and put it in a "evidence list" EL. EL is a table which 
is indexed by the node-id. The table entry corresponding to a 
node j is incremented by the RDLS value corresponding to 
the link lk,j . After examining all the links, we scan through 
EL and identity nodes with values above a certain threshold 
as malicious nodes. 

The algorithm to update the evidence list EL and de
tecting malicious nodes is given in Algorithm 1. In the 

Algorithm 1 Detecting Malicious Nodes 
Let L be the set of all links 
Initialize evidence list EL as an empty hash table 
for each lk,j E L do 

v+-- t!..rdls(lk,j (i) ) (using (5» 
calculate Zk,j (i) (using (7» 
if Ilzk,j (i) I - lzmax(i) 1 1  ::; {3 then 

if j not in EL then 
EL[j] +-- v 

else 
EL[j] +-- EL[j] + v 

end if 
end if 

end for 
for each key j in E L do 

if EL[j] � p then 
flag node j as an malicious node 

end if 
end for 

algorithm 1, {3 and p are parameters that must be deter
mined experimentally. We use {3 = 3 and p = 3 for our 
experiments. 

If there is only one attack link, lk,j , our algorithm will 
flag both i and j as malicious nodes. Thus, for a single 
link attack case, we are able to identify the malicious 
link but it is not possible to identify the malicious node 
itself. As the number of links affected by an attacker node 

increases, the cumulative value of RDLS corresponding to 
that node also increases. This is because the evidence list 
gets updated for all instances where the malicious node 
impacts a link measurement. We can identify the malicious 
node by observing the increased cumulative RDLS value in 
the evidence list. 

IV. EXPERIMENTS 

In this section, we describe the testbed that we use and 
the experiments we perform for evaluating our methodology 
to detect receiver attacks on a VRTI system. 

A. Experimental Setup 

We deploy 20 TelosB wireless sensors nodes uniformly 
in a 6m x 6m square area to form a WSN in a classroom 
(without any students) in our engineering building. These 
sensor nodes operate in the 2.4 GHz frequency band using 
the IEEE 801. 2.15.41ZigBee protocol. We use a round-robin 
token-passing protocol, called spin to schedule transmission 
of nodes in a manner that prevents packet collisions while 
still maintaining high data collection rate. When one node 
transmits, all other nodes receive the packet and measure 
RSS. These RSS measurements are transmitted to a base 
station 4.08 times/second by each node along with its 
unique ID (from 1-20). The base station collects all RSS 
measurements and forwards the data to a laptop for storage 
and processing. Each spin cycle [1] consists of RSS dataset 
with exactly one transmission from every transmitter node. 

B. Experimental Details 

We consider the following experimental scenarios: 
1) No-Attack: During this experiment, no power attack is 

present in the network. A subject, timed by a metronome, 
walks in a known path at a constant speed of O.6m/ s in the 
deployed area for a 4 minute period. 

2) Receiver-Attack: We use the data collected from the 
No-Attack experiment to simulate receiver-attack scenarios. 
We choose one node at random from the set of deployed 
nodes and change some of the values in its transmitted data 
that contains the measured RSS values of other nodes. The 
number of values changed in the transmitted vector and the 
amount of change in the RSS values correspond to the Lmin 
and a�in parameters, respectively, as described in Section 
II-A. We change the values in such a way that each set 
of w�in transmissions from the malicious node contains at 
least one malicious transmission. We carry out the experi
ments for different combination of values of w�in' Lmin 
and a�in that can cause significant errors in localization 
in VRTI. Specifically, we experiment with w�in = 3, 5, 
and 7; Lmin = 1, 2, and 4 and a�in = lOdB, 15dB, 
and 20dB. We repeat the same experimental procedure by 
selecting more number of nodes (up to ten nodes) to act as 
adversaries to test the scalability of our method. 
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V. RESULTS 

At any time instant i, we differentiate between an attack 
scenario and a normal scenario using the maximum RDLS 
values for T measurement cycles as described in Section 
III. We choose T = 15. Figure 4 shows the effect of 
the three different parameters a::;"in' w::;"in' and Lmin on 
detector performance. We observe that the detection perfor
mance improves as the amplitude of receiver attack (a::;"in) 
increases. This is because as the value of a::;"in increases, 
it contributes to more asymmetrical RSS measurements in 
both directions of an attacked link. Similarly, as the value 
of WT . decreases more number of malicious transmissions m'l.n ' 
fall under the measurement window thereby improving the 
detection performance. Probability of detecting an attack 
also increases with increasing values of Lmin as more 
number of links contribute to the higher RDLS values. These 
results show that we can achieve more than 80% probability 
of detection with less than 1 % probability of false alarms 
when aT . = 15dB and w::;"in = 5. For a::;"in = 20dB m= . . 
and w::;"in = 5, close to 100% probability of detectIOn IS 
achieved with negligible false alarm rate. We also see that 
the probability of detection is low for a::;"in = lOdB and 
WT . = 7 However at these values there is no significant m'tn " . 
degradation in VRTI performance and hence we can Ignore 
these. 

Once a receiver attack is detected using the hypotheses 
testing (as described in Section III-A), we apply the al-

gorithm (I) to identify the source(s) of malicious activity 
in a certain measurement window. For each node in the 
evidence list EL, we plot (Figure 5) its corresponding value 
from the table. This value is the cumulative RDLS (CRDLS) 
contribution of the node in the chosen measurement window. 
We also plot the experimentally determined threshold p. If 
a node's CRDLS value lies above the threshold, we identify 
it as part of some malicious link. In figure 5(a), node 0 is a 
malicious receiver that reports false RSS for node 1. We see 
from this figure that the values for node 0 and node 1 lie 
above the chosen threshold, and hence we identify link lO,l 
as an attack link. Note that in this case, node 6 is also in 
the evidence list, possibly due to noise and/or movement in 
the environment, but its CRDLS contribution is less than the 
chosen threshold. Therefore, node 6 it is not identified as a 
malicious node. Figure 5(b) shows the case where node 0 is 
malicious and reports false RSS for four of its neighboring 
nodes (node 1, node 2, node 18 and node 19). This figure 
shows that our chosen threshold identifies all the attack links. 
Moreover, the high Lmin value for node 0 implies that its 
cumulative contribution in the evidence list is much more 
compare to the other nodes and thus, node 0 can be singled 
out as a malicious node. Figure 5( c) shows the scenario when 
there are 5 malicious nodes - node 0 (reports false RSS for 
node 1 and node 2), node 2 (reports false RSS for node 3 
and node 4), node 6 (reports false RSS for node 7 and node 
8), node 8 (reports false RSS for node 9 and node 10) and 



node 14 (reports false RSS for node 15 and node 16). As 
before, we are able to identify all the attack links using our 
detection algorithm. 

Our algorithm enables us to identify the attack links even 
when an attacker reports false RSS for a few number of 
nodes (small Lmin). As the value of Lmin increases, we 
can single out the attacker node by increasing the value of 
the threshold p. We set our thresholds to detect the lowest 
intensity receiver attacks that can cause significant error in 
the VRTI system II-A. Our method ensures that any higher 
intensity attack will be caught with a high success rate. We 
use only 15 spin cycles, which corresponds to approximately 
3.75 seconds of measurement data to detect an attack. 

VI. RELATED WORK 

Significant work has involved securing WSNs using tradi
tional key based authentication and encryption protocols [9] 
[10]. These methods provide some level of security as long 
as the adversary is assumed not to gain physical control over 
the sensor nodes. Other works on secure localization include 
SPINE [11], ROPE [12], SeRLoc [13] and HirLoc [14]. 
However, these methods are vulnerable to capture of critical 
nodes by the adversary. Perhaps the work that comes closest 
to ours is by Chen et al. [15] which proposes a generic 
method for two broad range of active localization methods: 
multilateration based and RSS based. Their method, how
ever, can not be applied to VRTI-based DFL. In contrast to 
their work, our method does not use any training data which 
makes it more suitable for dynamic environments. In our 
previous work [2], we developed a preliminary framework 
to detect transmitter-attacks and applied it to a VRTI setting. 
In this paper, we complement this previous work to study 
the effect of receiver attacks in VRTI based localization 
systems and include methodologies to detect receiver-attacks 
and identify source of malicious activity. 

VII. CONCLUSION 

In this paper, we present statistical hypotheses based 
detection models and heuristics to detect the presence of 
receiver attacks and for identifying the attacked links in a 
VRTI-based DFL system. Our experimental results show that 
using our methods, we can achieve close to zero percent 
probability of false alarms and missed detections for attacks 
intense enough to cause significant impact on the results on 
VRTI based DFL systems. In the future, we will examine the 
effect of combined transmitter and receiver attack problem 
in the presence of colluding adversaries. 
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