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ABSTRACT
Co-location of applications is a proven technique to im-
prove hardware utilization. Recent advances in virtualiza-
tion have made co-location of independent applications on
shared hardware a common scenario in datacenters. Co-
location, while maintaining Quality-of-Service (QoS) for each
application is a complex problem that is fast gaining rele-
vance for these datacenters. The problem is exacerbated
by the need for effective resource utilization at datacenter
scales. In this work, we show that the memory system is
a primary bottleneck in many workloads and is a more ef-
fective focal point when enforcing QoS. We examine four
different memory system levers to enforce QoS: two that
have been previously proposed, and two novel levers. We
compare the effectiveness of each lever in minimizing power
and resource needs, while enforcing QoS guarantees. We
also evaluate the effectiveness of combining various levers
and show that this combined approach can yield power re-
ductions of up to 28%.

Categories and Subject Descriptors
C.0 [GENERAL]: System architectures, Hardware/software
interfaces; C.4 [PERFORMANCE OF SYSTEMS]: De-
sign studies; B.8.2 [HARDWARE]: Performance Analysis
and Design Aids
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Quality-of-Service, datacenter power consumption, memory
system architectures, Service Level Agreements (SLAs), dat-
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1. INTRODUCTION
Large datacenter facilities hosting customer applications

provide performance guarantees as dictated by service level
agreements (SLAs). With recent advances in cloud comput-
ing services, Quality-of-Service (QoS) guarantees are now
an integral component of these SLA agreements. Customers
are guaranteed the level of performance as defined by the
resources they pay for. For example, customers “rent” CPU
hours, RAM capacity, storage capacity, network bandwidth,
etc. Each customer server is then an instantiation of a vir-
tual machine (VM) with these allocated resources. Each VM
in turn is hosted on a server and often co-located with other
VMs. While co-locating different VMs on the same hard-
ware, the service providers make sure that QoS guarantees
are not violated by the co-location schedule. This typically
leads to conservative schedules that do not necessarily make
the most efficient use of the hardware resources.

Co-location of applications is not a new technology [11].
However, co-location in datacenters has been significantly
boosted by recent advances in VM performance [3], and the
ability migrate VMs across servers [5, 31]. Owing to the
scale of these datacenters, efficient hardware utilization is
a critical design point. Co-location of VMs/applications to
increase server utilization is fast becoming the preferred ap-
proach to maximize utilization at these datacenters. For
datacenters hosting customer applications instead of VMs,
application co-location across servers is the equivalent of VM
co-location. Application and VM migration has been exten-
sively researched in the past [18, 27] and well known mecha-
nisms for migration exist [9, 32]. To simplify the discussion
(and subsequent evaluation) from here on, we will discuss
our proposals in terms of co-located applications only.

A major concern while co-locating applications is whether
any of the simultaneously executing applications on a server
will violate their QoS guarantees. It is not acceptable to
have a breach of QoS guarantee even if the server utilization
improves. As a result, applications are typically scheduled
conservatively leading to resource under-utilization [8]. This
is an important problem for large datacenters where efficient
use of hardware is a primary goal for profitable operation. In
this work, we provide a framework that maximizes resource
utilization, while maintaining QoS guarantees.

A typical server consolidation framework [1, 30] is expected
to incorporate several complex features, most notably, to be-
gin tasks on an appropriate server, to monitor the execution
of programs, and to take corrective action if an application
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threatens to not meet QoS constraints. In this evaluation,
we will not model the dynamic adaptation aspects of the
above framework, especially since simulators limit our abil-
ity to observe behavior for longer than a few seconds. We
will instead focus on the process of starting a series of new
tasks and identifying the maximum level of server consolida-
tion that can be achieved. In other words, we will attempt
to co-schedule N applications on to S servers, and devise
techniques that allow us to minimize S, while ensuring that
QoS guarantees are preserved. This allows us to power down
as many servers as possible to reduce overall power1.

In our evaluation, we attempt to incrementally pack each
program on to an existing powered-up server. If this as-
signment disrupts the QoS guarantees for some of the ap-
plications (sufferers) on that server, we attempt to change
various micro-architectural priorities to allow the sufferers to
boost their throughput and meet their QoS constraint. We
consider a number of such micro-architectural priority mech-
anisms and apply them incrementally until QoS is achieved
or we exhaust all available mechanisms. In case of the lat-
ter, the suffering applications are then moved to a newly
powered-up server. The ultimate metric of interest is the
number of servers S activated after all the N programs have
been successfully assigned, as to a first order, this has the
biggest impact on overall power consumption.

We consider four different micro-architectural priority mech-
anisms in this work. In essence, each of these mechanisms
allows restricting the resources allocated to non-suffering ap-
plications. By restricting resources of non-sufferers, more
resources are available exclusively to sufferers to meet their
QoS guarantees. With such a scheme, the suffering appli-
cation(s) can meet its QoS constraint while hopefully not
causing other applications to miss their constraints. Two
of these mechanisms (b, c) have been proposed in prior
work: (b) bandwidth priority [14] allocates memory band-
width among competing programs by setting priorities in
the memory controller scheduler, and (c) CacheScouts [33]
can be used to allocate shared cache capacity among com-
peting applications. The other two mechanisms (o, p) are
being considered here for the first time: (o) open vs. closed
page DRAM row buffer policy, where closed-page policy is
employed for the non-suffering application, while open-page
policy is employed for others, (p) prefetch, where aggressive
memory prefetch is performed for the suffering application,
while taking some bandwidth away from other applications.

We select these memory system levers because the mem-
ory system is known to be a major performance bottleneck
in datacenters [4, 15, 16] and the memory system provides a
rich set of options when varying application priority. Our
study focuses on understanding the relative merits of these
four mechanisms. We also attempt to understand how com-
binations of these mechanisms behave.

2. SHARED-RESOURCE PERFORMANCE
In this section we first present the impact of resource con-

flicts among concurrently executing applications on a chip
multi-processor. Figure 1 shows the impact of co-locating
applications on the same server. For this experiment, each

1It is almost always more power-efficient to overload a few
servers than to distribute load across many servers because
of leakage and other constant power delivery overheads [16,
25].

Figure 1: Impact on application performance due to
co-location.

application was first run on a 4-core server alone, and then
with one other application, two other applications, and fi-
nally all four applications were run together. The system
configuration is listed in Table 1. These results show that
for enterprise class applications, performance degradation
due to resource contention can vary from 17% (sap) to 33%
(tpc) when all the cores of the CMP are utilized.

This degradation in performance is due to resource con-
tention at various levels of the CMP. Fig. 2 shows the con-
tention for L2 cache and impact on prefetcher’s usefulness
due to more than one application executing simultaneously
on the 4-core server. Fig. 2(a) shows the change in L2 hit-
rate. The L2 hit-rates reduce significantly for all application
mixes due to higher conflict misses in the shared cache. Sim-
ilarly, the usefulness of cache lines prefetched into the L2 also
decreases as shown by Fig. 2(b). Most of this reduction in
usefulness is due to the eviction of prefetched lines from the
cache before they are accessed by the CPU.

Similarly, Figure 3 shows the impact of application inter-
ference on total DRAM access cycles and DRAM row-buffer
hit-rates. DRAM access cycles are counted only when the
out-of-order core is stalling on a DRAM request. Fig. 3(a)
shows that the number of DRAM cycles increases when more
applications are executing because of an increase in queuing
delays and DRAM service time. The decrease in row-buffer
hit-rates shown in Fig. 3(b) contributes to this increase in
DRAM access cycles. The row-buffer hit-rates in Fig. 3(b)
are reduced when more than one application is executing be-
cause the CPU is now generating conflicting DRAM access
requests from different applications.

3. HIGH-LEVEL QOS FRAMEWORK
To set the right context for our proposed mechanisms, we

first describe the high-level overview of a QoS framework
in future servers. Much of this framework is derived from
existing designs [1, 10, 13, 23, 28, 30]. We will refer to this
framework as the High-Level Manager or HLM. The SLAs
serve as inputs to the HLM, specifying the expected perfor-
mance metric (say, throughput, or IPC) for each applica-
tion. The HLM executes in privileged mode and follows a
“measure-check-reorganize” cycle to enforce QoS:

• “measure”refers to hardware performance counters that
track the current performance level for each applica-
tion.



(a) Change in L2 cache hit-rate due to application
interference.

(b) Change in usefulness of prefetched entries due to
interference.

Figure 2: Impact of application interference on L2 hit-rate and prefetcher usefulness.

(a) Increase in total cycles spent accessing DRAM
due to interference.

(b) Change in DRAM row-buffer hit-rate due to
interference.

Figure 3: Impact of application interference on DRAM access cycles and row-buffer hit-rate.

• “check” refers to the HLM reading these performance
counters at periodic intervals (referred to as epochs)
and ensuring that QoS guarantees are being met, or if
there is room to improve server utilization.

• “reorganize” refers to the HLM generating a new co-
location schedule and performing application migra-
tion to meet QoS guarantees or improve server utiliza-
tion.

When a new task arrives, the HLM attempts to schedule
it on one of the already-active servers. Obviously, it is in-
tractable for the HLM to evaluate every possible schedule
to determine a power-optimal co-location. The HLM there-
fore relies on heuristics. In our evaluation, we consider two
heuristics: (i) Low Load First (LLF): The new task is sched-
uled on the least loaded server. If QoS constraints are not
met, the new task is migrated to a newly powered-up server.
(ii) Heavy Load First (HLF): The new task is first scheduled
on the most highly loaded server. If QoS is not achieved, the
new task is migrated to the next highly loaded server, and so
on. If no existing server can host the new task, it is moved
to a newly powered-up server. The HLF policy may incur

higher migration overheads, but it increases the likelihood
that some lightly loaded server will exist to accommodate
a resource-intensive task that may show up. More sophisti-
cated task assignment policies may prune the search space
by using pre-computed profiles of the application to help rule
out some servers that may not have a light enough load.

Now consider the process of a new task assignment in more
detail. After the new task is assigned to the least loaded
server (in an LLF policy), we allow a few epochs to go by and
then measure performance over the next few epochs. If QoS
is not being met for some subset of applications on the server
(referred to as the sufferers), we attempt to boost their
performance by employing our micro-architectural priority
levers to non-suffering applications. One lever is applied at
a time and performance is measured for a few epochs. If QoS
failure continues, more levers are applied. Some levers can
have parameters associated with them that determine the
extent of resource constriction for a non-sufferer. We limit
ourselves to parameters that afford three different priority
levels for any lever – low, medium, high. When activating
a new lever, we first use the low priority level before mov-



Figure 4: Memory Hierarchy Levers.

ing to medium and high. If we apply a lever change (say,
we move from lever-a-low to lever-a-medium) and a hitherto
non-suffering application joins the list of sufferers, we imme-
diately cancel that lever change and move to the next item
in the list of levers (lever-b-low). Once all the levers are
exhausted for all non-suffering applications and QoS guar-
antees are still not achieved for suffering applications, we
simply cancel all levers and move the new task to another
server (either a new server (LLF) or the next highly loaded
server (HLF)).

In summary, there are aspects of the HLM that are beyond
the scope of this paper and are not modeled in our simulation
framework (including re-assignment on phase changes, han-
dling disruptions with conservative guarantees, LVT curves,
etc.). The following aspects are modeled in the simulator:

• An input SLA specifiesN tasks and corresponding QoS
specifications. The QoS specification for each task is
expressed as a number between 0 and 1, where 1 de-
notes the throughput of the task (represented by in-
structions per cycle or IPC) when it executes by itself
on an unloaded server.

• Every few epochs, a new task from this list is selected
for co-location. It is assigned to an existing server
using either LLF or HLF.

• After some warm-up, measurements are taken over
subsequent epochs to see if QoS guarantees are being
met. If yes, then appropriate co-scheduling is achieved
for the new task. Now wait till a new task is admitted.

• If QoS guarantees are not being met for some suffering
applications, progressively move through the available
set of levers. A lever can potentially have different
strength levels. Levers (and their levels) are applied
only if they do not introduce new applications into the
list of sufferers.

• If all the levers fail to provide QoS, we move the new
task to the next server (a newly powered-up server for
LLF and the next highly loaded server for HLF).

• Once all tasks have been scheduled, the number of
powered-up servers S represents the “goodness metric”
for the server consolidation process.

4. MEMORY HIERARCHY LEVERS
Having described the overall QoS framework, we now turn

our attention to the micro-architectural levers that allow us

to prioritize a set of applications over other co-scheduled
applications. These levers are employed when a set of appli-
cations (sufferers) are unable to meet their QoS constraints.
The one common theme in all of these levers is that they in-
troduce a trade-off between co-scheduled applications, i.e.,
applying a lever for an application constricts the resources
available to it, thereby boosting the performance of a suffer-
ing application by allocating more resources for its exclusive
use. The levers considered in this study are shown in Fig-
ure 4. We first describe the two memory hierarchy levers (b
and c) that have been employed in prior work.

• (b) Bandwidth management: We employ the pri-
ority mechanisms introduced by Iyer et al. [14] to pro-
vide higher memory bandwidth for suffering applica-
tions. With this lever, memory requests are sched-
uled by the memory controller based on priority ra-
tios set by the HLM. If the HLM has set a priority
ratio of 4:3, 4 high priority transactions for suffering
applications are handled before 3 low priority transac-
tions for non-sufferers. This is referred to as a band-
width differential scheme. These priorities are imple-
mented within the memory controller and the baseline
memory controller uses the First-Ready-First-Come-
First-Served (FR-FCFS [26]) scheduling policy that
takes advantage of open rows in DRAM. When the
bandwidth lever is applied, the scheduling policy be-
comes Priority-First-FR-FCFS, where we first apply
the above bandwidth differential constraint before us-
ing FR-FCFS to select among remaining candidates.
The strength of this lever is easily set by picking dif-
ferent bandwidth differential ratios.

• (c) Cache allocation within the shared LLC: To
control the amount of shared cache capacity an appli-
cation can use exclusively, we use the CacheScouts [33]
mechanism. When this lever is employed, it acts to
limit the cache capacity allocated to a given core. It
does so by restricting the core to only occupy a max-
imum of N ways in any given cache set. When this
core suffers a cache miss, if the number of lines oc-
cupied by the core in the incoming cache line’s set is
less than N , then the LRU line from the entire set is
evicted. If however the core already occupies N lines
in the set, then the LRU line among these N lines is
evicted. The value of N depends on the applied level
of this lever. If a core’s cache capacity allocation is not
being constrained by this lever, it evicts the LRU line
from the incoming cache line’s set, irrespective of the
owner CPU.

Next, we discuss the two new memory-system levers:

• (o) Open vs. closed page DRAM row buffer
management policy: Dynamically varying the row-
buffer management policy can aid in QoS enforcement
by allowing a new degree of control over access latency
for DRAM requests. If an application is to be priori-
tized, we can prioritize it over the other by letting it
use an open-row policy. This improves performance
for the preferred application, while other applications
are forced into using closed-row. Closing the row early
for non-preferred applications also speeds up the next
access from the preferred application. This lever can



CMP Parameters
ISA x86-64 ISA CMP size 4-core

L1 I-cache 128KB/2-way, private, 1-cycle L1 D-cache 128KB/2-way, private, 1-cycle
L2 Cache 2 MB, 16-way, shared, 20-cycle L1 and L2 Cache line size 64 Bytes

DRAM Parameters
DRAM Device Parameters Micron MT47H64M8 DDR2-800 Timing parameters [17],

tCL=tRCD=tRP=20ns(4-4-4 @ 200 MHz)
4 banks/device, 16384 rows/bank, 512 columns/row, 32 bits/column, 8-bit output/device

DIMM Configuration 8 Non-ECC un-buffered DIMMs, 1 rank/DIMM, 64 bit channel, 8 devices/DIMM
DIMM-level Row-Buffer Size 32 bits/column × 512 columns/row × 8 devices/DIMM = 8 KB/DIMM
Active row-buffers per DIMM 4 (each bank in a device maintains a row-buffer)

Total DRAM Capacity 512 MBit/device × 8 devices/DIMM × 8 DIMMs = 4 GB

Table 1: Simulator parameters.

Application LLC MPKI DRAM access/Kilo-Inst
sap 1.91 3.71
tpc 8.23 13.25
sjas 4.77 9.49
sjbb 3.33 4.79

Table 2: Benchmark Properties. DRAM accesses
include LLC misses and writebacks

be implemented with minor modifications to the mem-
ory controller architecture. The modification involves
a small table at the memory controller which contains
the process-ID and current row-buffer policy for each
application executing on the CPU. This table is popu-
lated by the OS with inputs from the HLM. A page can
also be closed after a timer expires and different lev-
els of this lever can be implemented by using different
timer values.

• (p) Prefetch request scheduling: We propose ag-
gressive prefetch from DRAM as another lever. When-
ever DRAM accesses are prefetched for an application,
it introduces a trade-off since these applications now
use more than their share of memory bandwidth to
boost their performance. This lever is different than
changing the DRAM bandwidth allocation since multi-
ple prefetch requests are issued only when this lever is
employed. This lever can be combined with the mem-
ory bandwidth lever to prevent low-priority applica-
tions from getting starved. We assume an integrated
stream buffer plus memory controller. The operation
of this integrated prefetch unit and memory controller
is quite simple: if the access stream has locality and
this lever is employed, the stream buffer issues prefetch
requests for the next few cache lines after the current
request. Low/medium/high versions of this priority
mechanism can be constructed by tuning the threshold
to detect streaming behavior and by issuing prefetches
for fewer or more subsequent cache lines.

Most of the proposed hardware modifications are to the
memory controller. Our design adds limited logic to adjust
bandwidth priorities and adds more checks when scheduling
accesses. The stream prefetcher has also been augmented.
In addition to these changes, most requests must carry a
process-ID as they propagate through the memory hierar-
chy. This allows the above levers to be employed only when
applicable. The HLM relies on already existing hardware
counters [2, 12] to track the relevant metrics in the SLA (IPC
throughput for our evaluation).

Simulated Workload Mixes
Application Workload Mix

Memory Intensive Mix (MI) replicated copies of tpc
Balanced Mix (B) replicated copies of tpc, sap, sjas, sjbb

Non-Memory Intensive Mix (NMI) replicated copies of sap

Generating SLA Guarantees
SLA level Fraction of baseline IPC
Relaxed Random number between [0.66, 0.77]
Medium Random number between (0.77, 0.88]

Aggressive Random number between (0.88, 1.0]
Mix Random number between [0.66, 1.0]

Table 3: Simulated Workload Mixes and SLA Guar-
antees.

5. RESULTS

5.1 Methodology
To evaluate our proposals we use a trace-based simula-

tor that processes traces collected from a real system. We
focus only on single-threaded multi-programmed workloads
to simplify the simulation. The simulator models an out-of-
order CPU and models the execution of multi-programmed
workloads on a Chip-Multiprocessor (CMP) platform. We
model the memory hierarchy (including the memory con-
troller and the DRAM sub-system) in detail and the param-
eters for the hierarchy are listed in Table 1.

The workloads chosen to simulate the system are the four
enterprise benchmarks — tpc, sap, sjas, sjbb. The mem-
ory utilization metrics for these applications are listed in
Table 2. A job list is used to denote the total number of
jobs simulated for one experiment, and the order of appli-
cations admitted to the simulated datacenter. This job list
is created by replicating the benchmarks traces an appro-
priate number of times. Specific workload mixes are created
that signify the memory behavior of the job list. Job lists
with three different memory access behaviors are used for
our simulations and are listed in Table 3. When replicating
for number of jobs greater than 4, the order of application
admittance to the job pool was also randomized.

Finally, the customer specified input SLA guarantees are
generated using a random number generator that specifies
the fraction of IPC as the customer demanded QoS guaran-
tee. We experimented with randomly generated SLAs be-
tween [0.66, 1] range - 0.66 signifying SLA guarantee equal to
66% of baseline IPC, and 1 signifying 100% of baseline per-
formance of the application when executing alone on a 4-core
CMP with parameters listed in Table 1. We did not con-
sider SLA guarantees below 66% of baseline IPC because it is
fairly easy for applications to meet this guarantee even when
running with 3 other applications. Note that the choice of



(a) sjas. (b) sap.

(c) tpc. (b) sjbb.

Figure 5: Impact of individual lever application on application IPC.

using IPC as a metric for performance does not have any
impact on the results. Any other performance metric, like
transactions-per-second, can be used in place of IPC.

As listed in Table 3, four different SLA ranges are gen-
erated. Each range is meant to represent the application
performance the customer expects. These guarantees are
combined with the three workload mixes also listed in Ta-
ble 3 to create one workload-SLA mix. There are thus a
total of 12 such pairs (3 workload-mixes x 4 SLA guaran-
tees). These 12 pairs represent various application mixes in
terms of their memory intensiveness and SLA guarantees.

The power model for our work uses the following relation
between the server utilization and total number of activated
servers:
Total power = num servers * (constant power draw +
server utilization * (Watts/utility))
The (Watts/utility) metric was obtained from Raghavendra
et al.’s work [25] for a 2 GHz processor frequency (see Fig. 5
for Server B on page 5 [25]). This is essentially the slope of
the line representing the 2 GHz frequency curve in the figure.
Such data is consistent with that seen in other work [16].
Meisner et al. [16] show that a lightly loaded server consumes
270 W while a fully active server consumes 450 W. This
data is the rationale behind the premise in Section 1 that
it is better to consolidate applications to create few highly
loaded servers than to create many lightly loaded servers.

5.2 Effectiveness of Levers in Controlling Ap-
plication IPC

In this section we show results for how effective each lever
is when employed to constrict resources for the non-suffering
application on a server, and the corresponding increase in a
suffering application’s IPC. Fig. 5 shows the change in IPC

of applications on a 4-core CMP server when different levers
are employed. The first application is always the preferred
application (the suffering application) and the other applica-
tions have their resources constricted by lever application.
The X-axis shows the four different levers and when ALL
levers are applied simultaneously. The Y-axis plots the per-
cent change in IPC compared to the baseline when the ap-
plication is executing alone on the CMP. As can be seen, the
first application always shows improved IPC over baseline,
while other three applications show reduction in IPC.

From these results, it can be observed that each lever (ex-
cept BW) is able to change the IPC of applications to vary-
ing degrees. CS lever has the most impact followed by PRE
lever, and then by RBP lever. This is to be expected since
cache capacity is the most critical shared resource impact-
ing performance. There is little change in IPC with BW
lever because the benchmark applications do not saturate
the provisioned system bandwidth. We expect other appli-
cations which consume more bandwidth than the current
applications to show significant change in IPC with the BW
lever. In Section 5.3 we provide sensitivity results for the
bandwidth lever by artificially reducing system bandwidth.
Another important trend to note is that when all levers are
used collectively (ALL lever), the impact on IPC is cumula-
tive of each lever’s individual impact.

This trend of cumulative impact is examined in detail in
Fig. 6(a) and (b) which show change in IPC when two, and
three levers are employed respectively. It shows that lever
application results in an additive impact on performance.
Therefore, applying the levers in succession can improve suf-
ferer application’s IPC by progressively reducing available
resources for the non-suffering applications. For these ex-
periments, different lever combinations were applied to the



(a) Applying 2 levers simultaneously. (b) Applying 3 levers simultaneously.

Figure 6: Impact of two and three simultaneous lever application on application IPC.

(a) Total servers activated. (b) Activated core utilization.

Figure 7: Number of servers required, and percent of activated cores utilized with HLF policy.

applications, and as before, the first application is preferred.
We show results only for sjas since other applications show
similar trends.

5.3 Activated Servers
In this section we study the impact of our proposed scheme

on the metric of interest — N , the number of servers re-
quired. For these experiments, we varied the jobs allocated
to the servers by creating workload mixes using the four ap-
plications. With these we try to understand the impact of
workload mix, job list length, and SLA aggressiveness on
the number of servers needed to execute all the applications
while meeting their QoS. We compare our proposed results
to a baseline, un-optimized system with no QoS levers.

Fig. 7 plots the number of activated servers and core uti-
lization for the baseline and proposed schemes for the 12
workloads (3 benchmark mixes x 4 classes of SLAs). The
job length is configured to 32, or 64 total jobs for these ex-
periments. Core utilization shows what fraction of cores are
being used among all the activated servers. This can be seen
as a metric to measure the density of a co-location schedule
with higher being better.

It can be seen that fewer servers need to be activated, and

the utilization of activated cores increases when using the
proposed scheme. Fig. 7(b) shows that the average core uti-
lization for baseline is quite low — 43.6% and 42.9% for job
length of 32 and 64 respectively. This shows that there is a
heavy under utilization of the activated servers for the base-
line system. With the proposed scheme the average core uti-
lization increases to 55.4% and 60.4% respectively. These in-
creases in utilization might seem small, but when multiplied
by millions of cores at a typical datacenter, the efficiency
gains are tremendous. Also, with the proposed scheme and
longer job lengths, the core utilization will increase further
due to reasons explained shortly.

To better understand the trends in Fig. 7, Fig. 8 re-plots
the same data in a different way. Fig. 8(a) and 8(b) plot the
percent reduction in activated servers and percent improve-
ment in core utilization compared to the baseline. As the
memory intensity of applications reduces from left to right,
the improvements in core utilization and activated servers
decreases. This is to be expected because the levers con-
strict memory resources and therefore have highest impact
on memory intensive applications. For job length of 64, the
average reduction in percent of activated servers for MI mix



(a) Percent reduction in number of servers ordered
w.r.t workload mix.

(b) Percent improvement in activated cores utilization
ordered w.r.t. workload mix.

(c) Percent reduction in server activation, ordered w.r.t.
SLA aggressiveness.

(d) Percent reduction in server activation, ordered
w.r.t. job list length.

Figure 8: Number of servers required, and percent of activated cores utilized with HLF policy.

is 30.8%, for Balance mix (B) is 28.7% and for NMI mix is
25%. With large datacenter installations, it is expected that
the aggregate workload mix would resemble something like
the Balanced mix in our simulations. Balanced mix shows
improvements within 2% of MI mix.

Fig. 8(c) and Fig. 8(d) present the same data as in Fig. 7(a)
but arranged differently to show how number of activated
servers changes with respect to SLA aggressiveness and job
list length. For Fig. 8(c), the SLA guarantees get more ag-
gressive from left to right on the X-axis, and improvements
also reduce. With more aggressive SLA, each application
demands more resources. As a result, the ability to find
applications that can be co-scheduled decreases resulting in
reduced improvements.

In Fig. 8(d), when improvements are ordered with respect
to length of the job list, a trend of improved performance
emerges for longer job lists. This occurs due to the possi-
bility of finding applications with a more diverse set of QoS
requirements in a longer job list. We also experimented with
job list lengths of 4, 8, and 16, and observed this trend of
greater performance improvements with longer job lists in
all our experiments.

Fig. 9 shows the percent reduction in power for the pro-

Figure 9: Percent reduction in total power.

posed scheme compared to the baseline. With increased
improvements in server consolidation it shows that the total
system power reduces in line with the improved consolida-
tion for longer job lists. The average reduction in power for
job list length of 32 is 20.5%, and 28.1% for list length of
64.



Figure 10: Improvement in activated servers when
applying different combination of levers.

Fig. 10 shows the improvement in the number of acti-
vated servers compared to the baseline while applying vary-
ing number, and, varying combination of levers. Only the
Balanced-Medium workload-SLA combination is shown in
the graph for clarity. It can be observed that BW and RBP
lever by themselves show no improvement. This is due to the
fact that in our configured system, bandwidth is heavily un-
der utilized. For the remaining combination of levers, we see
a cumulative improvement in core utilization as expected.
This graph can be correlated with Fig. 6 that shows that for
our simulated workloads, the CS+PRE+RBP combination
achieves all the improvements by managing the non-sufferer
application’s IPC and thus improving co-location density.

We expect the BW lever to be much more effective where
the application performance is constricted by the aggregate
system bandwidth. To perform a sensitivity analysis for the
BW lever, we artificially reduced the system bandwidth by
4X and performed the same experiment as in Fig. 10, but
only with lever combinations involving the BW lever. Fig. 11
shows that the BW lever is indeed effective at reducing the
number of activated servers.

We also experimented with the Least-Loaded-First (LLF)
job allocation policy described in Section 3. There were mi-
nor differences in the number of activated servers compared
to the HLF policy. We do not present those results here due
to space constraints.

6. RELATED WORK
Enforcing QoS guarantees has been an active area of re-

search. The focus of most of the past work has been on mak-
ing sure that no shared resource is exclusively over-consumed
by a single application in the presence of other simultane-
ously executing applications. Some proposals like [8, 13, 14,
20, 33] have advanced frameworks that aim at improving
overall throughput while enforcing these QoS guarantees.
Each proposal has a different mechanism to enforce QoS at
the architectural level, but they all are either at the shared
cache level [33], or at the main memory bandwidth level [14].
Iyer et al. [14] propose a QoS enabled memory architecture
that allocates shared cache capacity and memory bandwidth
based on input from the operating environment. Guo et
al. [8] use micro-architectural techniques that steal excess
resources from applications while still enforcing QoS guar-
antees. They primarily focus on specification of QoS targets
and the resulting job admission policy.

Figure 11: Sensitivity analysis for BW lever.

Another body of work [19, 21, 22] aims at improving re-
source utilization while providing QoS guarantees. These
schemes enforce constraints at the DRAM request schedul-
ing stage at the memory controller by modifying the order
in which DRAM access commands are serviced. Nesbit et
al. [21] propose “Private Virtual Time Memory System” for
each thread to ensure each thread gets its allocated share of
bandwidth irrespective of the system load. Rafique et al. [24]
propose a simpler mechanism for fair allocation of band-
width while avoiding bandwidth waste. Both these mech-
anisms only partition available memory bandwidth and do
not mention how other resources interplay with such mech-
anisms. Mutlu and Moscibroda [19] make a critical obser-
vation that for chip multi-processor systems, inter-thread
interference can introduce significant performance degrada-
tion. Their scheduler ensures that priority for open rows
doesn’t starve requests for closed rows.

The same authors improve upon their scheme by intro-
ducing “parallelism-aware batch scheduling” [22]. The idea
is to process all possible DRAM requests in parallel for a
thread (i.e., servicing requests which exhibit bank level par-
allelism), and in batches to provide QoS. These contribu-
tions are complementary to our proposal and would fall un-
der the umbrella of memory controller levers (lever-(b) in our
study). Ebrahimi et al. [6] show that to improve fairness in
a CMP system, one needs to throttle the cores by limiting
the requests they inject into the memory system. This dif-
fers from our proposal because we are not aiming at fairness
of all executing applications on the CMP, instead we lever-
age the asymmetry among the application SLA guarantees
to extract maximum resource usage from the server. The
same authors also show in [7] that the prefetch requests can
degrade system performance unless they are co-ordinated
with other resource management policies. This aligns with
our work as we show in Section 5 that the PRE lever is more
effective when combined with other levers.

Recent work by Tang et al. [29] shows that for datacenter
workloads, there is significant resource contention at all lev-
els of the memory hierarchy. They do not consider interfer-
ence at the DRAM level, but make the same conclusions as
in Section 2 about interference at the last-level cache. Their
work demonstrates the impact of application interference
within caches on datacenter application performance. Their
work differs from our proposal because we argue for imple-
menting architectural levers that will help extract the max-
imum machine resource utilization while maintaining QoS



for individual applications. We also show that there needs
to be a co-ordinated approach while exercising these levers
to achieve high co-location density.

7. CONCLUSIONS
Server consolidation at datacenters is essential for reduc-

ing power needs. In terms of power, it is beneficial to ex-
ecute as many applications as possible on a single server.
However, this runs the risk that some applications may not
meet their QoS guarantees. To address this problem we
study micro-architectural levers to improve co-location den-
sity. This work introduces two new levers: a row buffer
management policy, and a prefetch lever, and two levers
that have been previously proposed: cache and bandwidth
allocation. We show that the effects of applying these levers
is cumulative. The application of these levers can reduce
the number of activated servers by up to 39%, resulting in
a power reduction of up to 28%. Much future work remains
in developing robust HLM features that can take advantage
of these and additional micro-architectural levers.

8. REFERENCES
[1] Amazon Web Services. Amazon CloudWatch,

Retrieved Oct. 2009.

[2] AMD Inc. BIOS and Kernel Developer’s Guide for
AMD Athlon 64 and AMD Opteron Processors,
Retrieved Oct. 2009.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proceedings of SOSP, 2003.

[4] L. Barroso and U. Holzle. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan & Claypool, 2009.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration
of Virtual Machines. In Proceedings of NSDI, 2005.

[6] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt.
Fairness via Source Throttling: A Con̈ıň ↪Agurable and
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