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ABSTRACT

Gregory Bateson construes mental process as the flow and transforms of differences in a 
system. Stuart Kauffman uses NK Boolean systems to model the emergence of order in 
biological evolution. Because the Boolean base (0, 1) maps to Bateson’s idea of 
difference, we simulate Bateson’s epistemology with a Boolean system. Following 
Bateson’s idea that knowledge emerges from the relations among multiple (at least two) 
descriptions, where a description is here defined as a systemic process that encodes 
differences, we propose a perceptual model in which visual form emerges from the phase 
relations between two such descriptions. The first description is retinal activity, which 
here is modeled as a discrete dynamic system that falls into different attractor cycles with 
different fundamental frequencies. Based on the operating characteristics of our 
simulation model we also propose a second, representational, description. Dynamic 
form perception emerges from the phase relations between the frequencies of the two 
descriptions. Moreover, two classes of forms, fundamental and derived, emerge from 
these phase relations.
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Gregory Bateson describes a general epistemology in which mental process is 
defined as the detection of difference and the transformation of difference as it flows 
through a network (e.g., Bateson, 2000, pp. 459-461; Bateson, 2002, pp. 85, 86). Stuart 
Kaufmann (1993, 1995) developed NK Boolean network models to study biological 
processes in evolution within a dynamic systems perspective. Malloy, Jensen and Song 
(2005) have specified and extended Bateson’s epistemology within a dynamic systems 
perspective by modeling it within Kauffman’s framework using a simulation program, 
E42, which generates NK Boolean systems. In this paper we will examine how 
fundamental characteristics of dynamic systems, such as attractor cycles, when mapped 
Bateson’s difference-based epistemology generate a simple model of the perception of 
dynamic form. Attractors are those aspects of dynamic systems which, like standing 
waves in a mountain stream, remain dynamically stable in a flow of change. Attractor 
cycles are strictly defined as derivable characteristics of formal mathematical models but 
they have been mapped onto scientific phenomena in many ways including the rhythmic 
motion (gaits) of living beings (Turvey, 1990) and dynamic patterns in general (Kelso, 
1995).

The E42 methodology generates complex visual patterns that are both dynamic 
and systemic. These visual patterns are abstract and unfamiliar, and share the virtues of 
nonsense syllables and random shapes for being less entwined with past experience than 
are representations of familiar objects. But the E42-generated visual forms are not 
primarily an attempt to reduce the effects of familiarity; they derive from a long 
epistemological tradition (Malloy, Bostic St Clair and Grinder, 2005). Early computation 
theories (McCulloch & Pitts, 1943; McCulloch, 1965) informed the work of Bateson 
through his collaborations with McCulloch (e.g., M.C. Bateson, 1991). E42 returns the 
Batesonian epistemology to the computational realm by integrating it with a dynamic 
systems approach to the origins of order (Kauffman 1993) in living systems. E42 makes 
no pretense that it is a replica of the nervous system (neural net models, of which 
McCulloch and Pitts, 1943, offer an early example, are more applicable for such 
purposes); rather the purpose of E42’s simulation of Bateson’s approach is to idealize 
knowing to its essential process: the flow and transformation of difference in a complex 
network. For Bateson, a “map” (knowledge system) codes differences which occur in the 
“territory,” whether these be “a difference in altitude, a difference in vegetation, a 
difference in population structure, difference in surface, or whatever,” (e.g., Bateson, 
2000, p. 457). “The transforms of a difference traveling in a [system] is an elementary 
idea” (Bateson, 2000, p. 460).

Since E42 was built to specify and to explore the consequences of the assumption 
that the flow of difference in a network is the basis of knowing, these forms are produced 
by a dynamic system whose essential characteristics only exist in the flow of time and 
some these characteristics cannot be represented statically. Motion and consequently 
apparent motion is central to this exploration. As Kolers (1972) pointed out “apparent 
motion speaks to the broad issue of the means by which man represents to himself the 
characteristics of the world outside his own skin.” Imagine a scene. Moving down from 
above on a steep mountainside carpeted by autumn tinted shrubbery, a herd of tawny deer 
is obscured by a thick cover of brown autumn leaves, appearing no more than a collection 
of flickering spots disconnected in space moving together at the same downward angle. 
How is it that we can extract a coherent pattern that marks the herd of deer as distinct 
from all the other motion, distinct from the shimmering motion of the leaves in the wind,
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distinct from the swaying of tree branches, distinct from the motion of a flock of small 
brown birds flitting among trees along a trajectory that intersects that of the deer, distinct 
from the motion of the tree trunks which appear to move with respect to the observer who 
also is moving? There are many motives for extracting dynamic pattern in such a 
context, curiosity being perhaps the most basic. W hether a being is simply a curious 
human or bird using information from deer movements to locate berries, whether a being 
is a predator or a prey, constructing dynamic forms from all the movement that impinges 
on the retina has fundamental significance. How are coherent patterns formed from this 
dynamic puzzle? Moreover, a being needs to shift among many distinct dynamic forms. 
Perhaps a twig snaps provoking a different dynamic form to pop out. The autumn scene 
is a patchwork of disconnected fragments of motion; first those disconnected fragments 
that are the deer herd may pop out, then suddenly a flock of birds may pop out, then the 
leaves of a bush swaying in the wind. W hat are the processes by which a being shifts 
from one dynamic pattern, say the deer herd, to another, say swaying seed pods? In this 
paper we will be particularly interested in the dynamic patterns created by the constantly 
moving boundaries between the these different areas of motion.

Dynamic systems theory is replete with models that couple two (or more) 
nonlinear equations, the output of one process acting as the input of others and visa versa. 
Indeed Turing (1952) addressed the genesis of form through coupled nonlinear equations 
and Kauffman (1993) uses networks of coupled Boolean nodes to model the emergence 
of biological order. This is relevant to Bateson's idea of “double description” as the 
basis of knowledge. He uses “description” in a very general sense; consistent with his 
usage we will define a description as any systemic process that codes differences. 
Epistemologically, knowledge emerges through the relationship between two (or more) 
coupled processes each of which codes difference (2002, p. 6 Iff, p. 121 ff). The 
generality of the meaning of the term description is indicated by the fact that, for Bateson, 
depth perception is the result of the relationship between the two descriptions offered by 
the right and left eye (2002, pp 64-66). Combining these frameworks we will cast form 
perception as emerging from the phase relationships between two coupled dynamic 
processes. More specifically, because dynamic systems exist in time and because their 
attractors are cycles, the kind of framework that comes out of our simulations will suggest 
that perceived form is a phase relationship between the time flow of retinal dynamics and 
the time flow of representational processing.

Method

Malloy, Jensen and Song (2005) have built an NK Boolean simulation program 
written in Java and named E42 to study how humans know the characteristics of dynamic 
systems. To use this software, users must enable Java in their web browsers. Moreover, 
web browsers on P C 's must have the Java plugin. M ac's with OS X and using the Safari 
web browser have Java is built-in; no plugin is necessary.

NK Boolean networks (described in detail by Kauffman 1995, p. 188ff; 
Kaufmann, 1998, p. 75ff; and Malloy, Jensen, and Song (2005) and extensively at 
www.psvch.utah.edu/dvnainic systems) consist of an arbitrary number N of abstract 
entities called nodes. Since the model is Boolean, the nodes have two states: ON (state = 
1) and OFF (state = 0). Each node takes input (0 or 1) from K nodes. Time flows in 
discrete iterations. On iteration T, each node, takes the input (0 or 1) it receives from its
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K input nodes and uses a logical truth table to determine what its own value will be 
(either 0 or 1) on the next iteration, T + l. That is, the nodes are coupled; the output of one 
is input to others and visa versa. As a very simple example, suppose a node, call it Node 
A, receives input from K=2 other nodes. If Node A is using an AND operator then its 
state will equal 1 on iteration T + l only if its two inputs are both equal to 1 on iteration T. 
Similarly if Node A is using an INCLUSIVE OR operator then its state will equal 1 on 
iteration T + l if either its first input or its second input or both are equal to 1 on iteration 
T. So the relationship between a node’s inputs at time T determines its state on the next 
iteration. This simple model can produce complex dynamic patterns whose changes flow 
across iterations. NK Boolean systems exhibit the usual characteristics of dynamic 
systems including attractor cycles (basins) which will be described below and which will 
play an important role in the perception of the dynamics of such systems.

State Vectors and Basins. State vectors, S(T), are a convenient way to 
characterize important characteristics of system dynamics. For purposes of exposition, 
suppose a system has but four nodes (N = 4). Suppose on iteration T=1 the ON-OFF 
pattern for the four nodes from first to last is ON, OFF, OFF, OFF. This can be written as 
a state vector: S(l) ={1000}. The sequence of state vectors S(l) = {1000} *  S(2) = 
{0001} *  S(3) = {1100} *  S(4) = {0011} *  S(5) = {1000} *  S(6) = {0001} *  S(7) 
= {1100} *  etc... therefore describes the flow of states (or, alternatively, the behavior) 
of the system across time. Notice that these state vectors are one dimensional; there is no 
double index that would generate a 2D matrix. Thus, later, we will discuss these visually 
as boundaries, more like ID lines, edges, etc. than like 2D forms or shapes.

Because the system is deterministic a given state vector, S(T), will always be 
followed by the same state vector S(T+1). Therefore the fact that in the above example 
S(5) is identical to S (l) means that S(6) must be identical S(2) and S(7) must be identical 
to S(3), and so on. This indicates that the system is in an attractor cycle (in this case of 
length four) because there are four distinct state vectors, S (l) through S(4), repeating 
endlessly. The length of an attractor cycle, measured in the number of state vectors 
before it repeats, is the fundamental frequency of the cycle. The system cannot escape 
this attractor cycle unless the system is perturbed. (Perturbation amounts to changing the 
state of one or more nodes.) A fuller discussion of this example is found in Malloy, 
Jensen, and Song (2005), where it is named 4-Node Standard, or at 
http://www.psvch.utah.edu/stat/dynainic systems/. The important points here are that the 
nodes of NK Boolean dynamic systems flow from state to state by a deterministic 
relational logic, that at any moment the entire system can be characterized by a state 
vector, and that the flow from state vector to state vector across time can fall into cyclic 
attractor basins.

Static Representations of Dynamics
In order to understand how dynamic temporal forms emerge from the behavior of 

Boolean systems it is convenient to explain first how system dynamics can be represented 
statically. This is akin to taking a photo of the action in a team sport. Certain useful 
relations can be inferred from the frozen spatial relations among the players but the full 
dynamic pattern of a team playing together is lacking.

Historical Trace. Consider the series of state vectors in the preceding discussion. 
Rotate the state vectors to be column vectors; then put these column vectors on a grid 
with 0 ’s represented as white cells and l ’s represented as black cells. The ordinate will
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then represent individual nodes from 1 to N and the abscissa will represent iterations 
from 1 to T. Figure 1 a shows the state vectors of the attractor cycle detailed above. The 
system has 4 nodes (ordinate) whose states vary across sixteen iterations (abscissa). 
Black cells represent a 1 in a columnar state vector while white cells represent a 0. 
Notice the visual form generated as the behavior of the system unfolds over time. 
Different attractor cycles generate different visual patterns; figure lb shows the form 
generated by a second attractor cycle in 4-Node Standard. A fuller discussion can be 
found in Malloy, Jensen, and Song (2005).

Figure 1. Sixteen iterations (abscissa) of an 
N=4 node (ordinate) NK Boolean system 
showing four cycles through two attractor 
cycles, a, b, of length = 4 iterations.________

Temporal forms. Figure 2 shows

Examine Figure 2 which shows four attractor cycles from another small Boolean 
system. Notice that in Figure 2a that repeated passes through the attractor cycle produces 
a stripped visual form. In an important early dynamic systems paper Turing in 1952 used 
coupled dynamics systems to produce patterns akin to animal camouflage patterns as well 
as other forms in nature. He was speculating about how a genetic code could express 
itself as form in the actual body of an animal (see Keller, 200x). He called this process 
morphogenesis, the coming into being of form. In a similar way Figure 2 a through d 
show the striated attractor patterns of four basins from a small Boolean system that have a 
certain resemblance to zebra stripes. Based on Kauffman's Boolean idealization of 
genetic networks and Turing's idea of morphogenesis we can think of the striadons in 
Figure 2 as the developmental growth of hair patterns in an animal's fur. M ost important 
for our discussion is that these patterns are temporal patterns; the hairs grow over time 
alternatively black then white. Many patterns in nature are essentially of this type. We 
will think of a boundary of differences (here between black and white) moving across 
time to produce a temporal form. The boundary itself is ID, but the resulting temporal 
pattern is 2D.

As any aside, but related to Bateson's proposal that evolution and knowledge are 
parallel processes, we can note that Kauffman proposed that evolution proceeds by not 
just natural selection alone but by the mutual action of natural selection and self­
organization. Taking Figure 2 as an oversimplified example of that idea, the genome self 
organizes into the four basins whose attractors are shown in Figure 2 and an animal can 
manifest any of the attractor patterns. But natural selection will determine which animals 
(manifesting which patterns) have survival advantage, perhaps 2a for would have 
selection advantages in an arid rocky area, 2b for a nocturnal version of the animal and 
2c for grasslands. This is a rather simplified description of the main points of one 
evolutionary approach. Taking Bateson's parallel between evolution and learning, 
temporal visual forms self-organized in the visual system would be susceptible to 
selection by utility, reward, social communication and the like.
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W e now turn, as an example, to a small Boolean system (N = 36 nodes) that has 
126 known attractor cycles; the fundamental frequencies of these attractor cycles include
2, 4, 5, 6, 7, 8, 10. Figure 2 shows three screen-captures for three different attractor 
cycles (panels a, b, and c) generated by this system. As noted above, the abscissa 
contains the node positions from the first (top) to the thirty-sixth (bottom). W hite cells 
correspond to a Boolean 0 and black cells to a 1. For each attractor (a, b, c) the ordinate 
shows discrete units of time (iterations) from T=1 to T=31. That is, Figure 2a shows a 
snapshot taken through a window into the dynamics of the system when the system is in 
one of its attractor cycles. The window is 31 iterations long. Similarly, panels b and c 
show two other windows, each 31 iterations long, into two other attractors cycles. The 
length of the window, W, is a crucial variable.

iterations (T) Iterations (T) Iterations (T)

a b c

In Figure 2a look at the first (left-most) column. The top cell is white, followed 
(downward) by another white cell then a black then another white then two blacks and so 
on to the bottom of the column which ends with a run of five white cells. You can think 
of the first column as the vertical state vector for the 36 nodes on the first iteration, S (l) = 
{0010110...}. Correspondingly, the second column represents a vertical state vector for 
the second iteration, S(2) = {0010111...}. Thus Figure la  shows the flow of state 
changes of all 36 nodes across 31 iterations. Notice the repetitive nature of the resulting 
pattern. Within the 31 iterations shown in Figure la , the vertical state vectors represented 
as white and black cells repeat themselves exactly every four iterations; this indicates that 
the system is in an attractor with a fundamental frequency, L, equal to 4 which is 
perceivable as a repetitive pattern. The fundamental frequency of the system as it repeats 
across time is a defining aspect of its form. W hile we can perceive these characteristics 
of the system statically, the perception of such patterns in dynamic, rather than static 
representations, is the central focus of this paper.

Figure 2b shows a different attractor cycle which also has L = 4. Finally, Figure 
2c shows the system in a basin with L =7. Translating the flow of state vectors and 
keeping a visual record of that flow for some number of iterations (in this case 31) is 
what we call a historical trace; that is, a trace of the system’s behavior can be seen 
through a finite sized window. Figure 2 makes apparent that a historical trace perceptual 
strategy allows different basins to be easily distinguished from each by a human observer; 
it is obvious that the system is in different attractors in the three panels of Figure 2. 
Moreover, if a person is willing to count carefully, the historical trace allows basin length 
to be determined. As a point of contrast, such perceptual transparency is not
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characteristic of the Kauffman’s perceptual strategy of twinkling nodes (Kauffman, 1993; 
Malloy, Jensen & Song, 2005).

Sub-cycles. Returning to Figure 2a, note that most of the nodes are repeating a 
pattern of states more frequently than every four iterations (the attractor fundamental 
frequency). For example, Nodes 1, 2, and 3, at the top of Figure 1 a have a sub-cycle 
frequency of 1, (subL=l); that is, they repeat the same state each iteration. Nodes 15, 17,
18 (among others) repeat the same state every other iteration and so have subL=2. Other 
nodes in Figure 2a, e.g., 11, 14, 20, repeat every fourth iteration, and account for the 
system’s fundamental frequency of four as a whole system. In other words, the system of 
nodes as a whole has a fundamental frequency of 4, but individual nodes in isolations 
may have shorter fundamental frequencies. Similar results can be seen in Figure 2b. In 
contrast, Figure 2c which shows a basin of L = 7: since 7 is a prime number, the only 
subL to be found is equal to one (e.g., Nodes 4 and 5). All other nodes repeat their 
pattern every seven iterations, which is L. The perception of cycles and sub-cycles of 
dynamic systems is one focus of this paper.

Figure 3 shows a second small dynamic system (N = 20), Exemplar 2. Note that 
the attractor cycle pattern is more complex; L = 50. Figure 3 shows a window size, W, of 
100 iterations (twice through the cycle length). There are no sub-basins, although we will 
have to wait before we see convincing perceptual evidence of that assertion. As complex 
as this historical trace is, we will find both more complexity and more simplicity later 
when we represent this system dynamically rather than statically.

Dynamic Representations of a System’s Dynamics
Output Windows. In Figures 1, 2 and 3 we have presented static images (a snap 

shot taken through a window) showing a historical trace of the states of the N nodes 
(abscissa) for some number, W, of iterations (ordinate). To generate dynamic 
representations of a Boolean dynamic system we will present a series of snapshots 
sequentially in real time. W e will then have what amounts to a real time movie (or more 
accurately a video) showing the system’s dynamics. To create such dynamic 
representations the E42 program paints a series of static images (windows) to the screen; 
each image is painted over the previous image, in rapid succession, much like the frames 
of a movie. E42 tracks the flow of state vectors for W  iterations, translates those state 
vectors into a N x W  black and white image similar to the figures above paints it to the 
screen, and then tracks the next W  iterations and paints another N x W  array to the 
screen, and so on. More formally we can say that the screen painting process cycles with 
frequency W  iterations.

Phase relations. We have defined two streams of process both of which code 
streams of differences. To keep with Bateson’s abstract terminology, “double 
description,” we call these first description and second description. The first description 
is flow state vectors, continually calculated in a com puter’s CPU; it describes the status 
of system dynamics from moment to moment. In all cases considered here, this flow of
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state vectors falls into cycles (attractors). The second description is a cyclic process of 
painting the first flow (of state vectors) to the screen as columns of white and black 
squares. The second description cycles with frequency W, The phase relations between 
these two descriptions are critical variables in the following way. When the system is 
running dynamically, the frequency of the second description, W, has interesting effects 
that can conveniently be described in terms of apparent motion phenomena. As in the 
wagon wheel illusion, when W  = L, that is, when W  equals the fundamental frequency of 
an attractor, the dynamics appear static (apparent stability) on the screen even though the 
dynamic system is running. This is because when the window is exactly one attractor 
cycle length long, each successive image will be identical. Similarly, when W  is longer 
than L, the dynamic patterns appear to move backwards and when W  is shorter than L, 
the dynamic patterns appear to move forward. More abstractly, we can describe the 
effects of changing the W  variable as changing the phase relations between first 
description (the flow of state vectors) and the second description (painting state vectors to 
the screen).

While having two descriptions of system dynamics is justified as an operational 
consequence of Bateson’s epistemology, it is also required in the logic of the simulation. 
In a computer simulation, to represent the flow of a Boolean system’s dynamics onscreen 
we must choose some window size, even if it is W =1, That is, we can paint each iteration 
as it occurs (W = l), or we can wait two iterations and paint them together (W=2) or wait 
three iterations and paint those together (W=3) and so on.

Results
We will now turn to perceptual phenomena that result from manipulating the 

phase relations between the fundamental frequencies in the Boolean system (L and sub-L) 
and the frequency W, which is inherent in the process representing the system. Later we 
will speculate about the possibility that human perception of dynamic form might be 
modeled in terms of similar phase relations in its perceptual system.

Adjust frames per second. If necessary, get the Java plugin. Different 
computers run at different speeds; what matters perceptually is how many windows 
(frames) are painted to your screen every second. In all the following applets it is 
important first to press the “Use Delay” radio button and then to adjust the Delay slider 
until your particular computer is painting windows to the screen at about 25 to 35 frames 
per second (fps). The fps readout is to the right of the Stop/Play control bar. The number 
of fps is a potent variable and you may set it to any value you want by adjusting the delay 
between each painting of a window to the screen. We suggest the speed be between 25 
fps and 35 fps as a useful range for apparent motion phenomena. Also, keep the fps 
below 65 since most monitors cannot paint accurately beyond about 65 fps. To adjust the 
delay between each screen-paint you may either drag the Delay Slider or, for finer 
adjustments, single-click on the Delay Slider Bar either above or below the Slider,

Perceiving fundamental dynamics. The Exemplar 1 applet allows the user to 
adjust W  variable in relation to attractor cycle length, L, and sub-cycle length, subL, 
Consistent with apparent motion effects, when the frequency of W  equals fundamental 
frequencies (L or subL) the dynamic pattern (or part of it) freezes. The default basin of 
Exemplar 1 has L=4, while the applet defaults to W=69 which is not divisible by 4, so 
you will see apparent motion upon pressing Play, Only nodes that have sub-cycle length

9



= 3 (or 1) will appear apparently stable. You may drag the W indow Size Slider to change 
W to change phase relations between the Boolean dynamics (first descriptions) and the 
screen paint process (second description). To get small increments or decrements in W 
you may click on the Slider Bar above or below the Slider, When you change W to 72 
the whole display stops; the system is still running and what you see is apparent stability. 
When you change W to 71 the whole basin moves as a coherent whole. When you set W 
to 70 only those nodes with subL=2 will exhibit apparent stability. As noted above, 
setting W to any multiple of 3 results in apparent stability for those nodes with subL=3.

To change attractor cycles, you can perturb the system by clicking the perturb 
button near the bottom of the control panel; this changes the values (from 0 to 1 or visa 
versa) of some fifty percent of the nodes. Typically, but not always, this will provoke the 
system into a different attractor basin. If the system does not change attractors, click 
Perturb again. W hile all the particulars change for the new dynamic pattern resulting 
from a new attractor cycle, the generalizations noted above remain verifiable.

This applet demonstrates perceptually that shifting the phase relations between the 
fundamental system frequencies (L, subL) of the first description and the frequency of the 
second description produces changes in dynamic forms that highlight various 
fundamental characteristics of the system either by making them static or by changing 
their movement pattern. In other words a simple shift in the phase relations between 
intrinsic systemic dynamic characteristics and what might be called the perceptual 
process of screen painting can highlight fundamental characteristics of dynamic behavior 
by either freezing them in apparent stability or making them apparently move differently 
than the rest of the system.

Perceiving derivative dynamics. W e now examine how the phase relations 
between the two descriptions generate forms that are not fundamental to the system but 
are solely derivative of the interaction between the two descriptions. Let us look at a 
second example and then discuss this further. The Exemplar 2 applet demonstrates that 
system characteristics that are not fundamental frequencies of attractor cycles can pop out 
perceptually through manipulating the phase relations between the first description of 
system process (flow of state vectors) and the second description of system process 
(screen paint), using W as a control variable.

Figure 3 shows a static version of the default basin for the Exemplar 2 applet; this 
system has two other known basins. Press Play and adjust the Delay so that fps is 
between 25 and 35. The applet loads with W = 75; at that setting islands of stability (that 
are not present in the static image of Figure 3) appear in the midst of a grey background 
(black and white cells alternating quickly). These islands are neither basins nor sub­
basins, They are visual forms that have apparent stability and that emerge from the phase 
relations between the first and second descriptions. If these phase relations are changed, 
if W is set to 74 or 76 (click below or above the Slider on the slider bar), these islands 
will remain as coherent units but begin moving. Further changes in the relationship 
between first and second descriptions produce more complex perceptual results: At W = 
77 other apparent forms emerge. These emergent forms are not found in static images of 
the system (e.g., Figure 3 nor are they found when the Stop button is pressed on the 
applet). The fundamental conceptual point is that the emergence of these dynamic 
patterns is a co-construction of two descriptions of the system 's dynamic behavior.

Ambiguous motion. At W = 77, ambiguous motion also appears. Ambiguous 
motion can be observed for Node 5 (fifth node from the top, lined up with a red hash
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mark). Move a pointer (the mouse arrow or a pen tip) horizontally along Node 5 from 
left to right and then right to left; the black squares will move with the direction of your 
pointer, (The user may have to change the horizontal speed of movement of the pointer 
to obtain this perceptual effect.) With a little practice users can provoke this change of 
direction of movement with their eyes alone. W ith W  = 83, complex emergent forms 
with ambiguous motion can be perceived moving either right to left or left to right; once 
again, you may require a horizontally moving pointer to observe this phenomenon.

Since the fundamental frequency of the default attractor cycle is L = 50, integer 
multiples of 50 with produce a static pattern that looks like Figure 3, even thought system 
is running.

As with other apparent motion phenomena, the speed of representation in frames 
(windows) per second also affects perception and can be explored by manipulating the 
Delay Slider. Results at 50 fps can be strikingly different than at 25 fps.

Finally, explorations with Exemplar 3 will reveal similar phenomena to those 
found in Exemplar 2 but will have a resemblance to wave patterns like those in the flat 
area between a beach and the surf. At the default W  = 91 and with the speed set to about 
35 frames per second an ephemeral wave pattern moves from right to left while a choppy 
and more robust wave pattern moves more or less from left to right. Other window sizes 
produce strikingly different dynamic patterns. Once again, these patterns don’t exist in 
the fundamental frequencies of the system itself but emerge in the phase relationships 
between the two descriptions of the system’s dynamics.

Discussion
Summary. In the Exemplar 1 results we see that manipulating phase relations 

between a first and second description of system dynamics produced visual forms that 
reflected fundamental characteristics of the system (L and subL), Notice also that in these 
cases, consistent with Bateson’s general epistemological principle of double description, 
such dynamic forms do not exist in either description alone but emerge in the relations 
between the two descriptions.

In Exemplars 2 and 3 we see the emergence of dynamic forms that are not 
fundamentals of the system’s attractor cycles but are solely derivative of the phase 
relations between descriptions of the systems’ attractor cycles. As we will discus below 
this is intriguingly parallel to the idea that sentient beings, particularly mammals, 
primates, and humans don’t simply extract “that which exists” in the environment but 
rather that their perceptual process interacts with “that which exists” in ways that actively 
co-construct or “enact” their experience in ways that go beyond the information given.

As we noted above, in a simulation we need two processes (descriptions) to 
represent the Boolean system on the screen; we need a computational process in the CPU 
and a second process to represent the computations on the screen. Granted that is so, 
some choice must be made about their phase relations; this choice implies a phase 
relation between the system’s dynamics and how those dynamics get represented. If, as 
we do below, we assume that this in some way models human perception of systemic 
dynamics, then specifying phase relations between aspects of the to-be-perceived 
dynamics and aspects of representational processing is a potentially crucial variable in 
perceptual experience.

Mapping the Model to the Retina. The demonstration of the consequences of 
manipulating phase relations between the flow of E42’s computational dynamics in a
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computer’s CPU on one the hand and the screen outputs of E42 on the other hand is one 
kind of endeavor. The mapping of these consequences to human perception is another, 
more hazardous and speculative, endeavor. Many mappings are possible; one will be 
proposed here in the spirit of starting a discussion. For the moment assume that what the 
dynamic system E42 is modeling is the retinal image. Before we pursue that model, we 
will be specific about what we are not doing. We don’t propose that E42 models the any 
aspect of the universe such as the external ambient optical array. Nor are we proposing to 
build replicas of actual neural activity and pathways in the retina (neural nets and other 
models do that better). Rather, we are modeling Bateson’s proposal that what gets onto 
maps from the territory are differences and his proposal that, of its nature, knowledge is a 
flow of transformed differences in a network; thus we suggest that E42 act as an 
(extremely) idealized and abstracted model of the retina’s response to the universe in the 
Batesonian difference-based sense. We are also modeling Bateson’s proposal that 
knowledge emerges from the relations among multiple descriptions defined as multiple 
flows of difference.

While we don’t propose to model the territory, we do assume that the retina, 
construed here to be a discrete dynamic system, is coupled (entrained) to the processes of 
the ambient environment (e.g., Turvey, 1990, p. 942). Therefore we assume that the 
dynamics of the retina, particularly the basins into which if falls, have a useful 
relationship to the dynamics of the territory. Given, then, that the retinal image is 
(modeled as) a discrete dynamic system coupled to the environment, we propose a very 
simple of model of the emergence of dynamic visual form: Form emerges through phase 
relations between at least two streams of differences flowing in a richly connected 
network. Following Bateson’s framework we call these two streams of process 
descriptions. One stream of process, the retinal image, we will call the first description; 
the second stream (representation to the screen in the simulations) we call the second 
description. Description may seem to be a strange word for visual phenomena; in using it 
we are following Bateson’s general usage that includes visualizations. Thus we propose 
that form emerges from phase relations between flow of the first (retinal) and second 
(representational) descriptions. We add another assumption: The perceptual system has 
some mechanism for adjusting the phase relations between these two descriptions. This 
adjustment allows the popping out of different dynamic forms. In terms of human 
development and perceptual learning, the ability to shift and stabilize these phase 
relations would depend on the utility of the emergent forms for a particular being relative 
to specific contexts. Humans would learn, for pragmatic and cultural reasons, to perceive 
certain forms by making adjustments in the frequency to the second description 
(representational process).

Fundamental forms versus derivative forms. The model, simple as it is, makes 
a important distinction between emergent forms based on the fundamental frequencies of 
retinal dynamics (Exemplar 1) on the one hand and emergent forms derived solely from 
the phase relations between the two descriptions (Exemplars 2 and 3). The first case we 
will call fundamental forms and the second, derivative forms. In either case, fundamental 
or derived forms, the forms emerge from the phase relations between retinal and 
representational process. But the fundamental forms are arguably characteristics of 
retinal dynamics; they are visualizations of its attractor cycles and sub-cycles. The 
derived forms emerge solely from the relations among the two descriptions; this does not 
mean that they cannot be stable and useful. Given the retinal image is entrained with a
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particular environmental context whose dynamics are stable across time, these derived 
forms would then emerge reliably for each visit to that context.

Conclusion. The retina is construed to be a dynamic system that is coupled to the 
environment; the nature of retina-environmental coupling is not modeled here. But 
assuming such a coupling exists, the retina is modeled as an NK Boolean system that has 
characteristics typical of dynamic systems in general such as attractor cycles. Presumably 
these systemic characteristics are related to dynamically systemic characteristics in the 
environment. Bateson proposes that useful knowledge requires, as minimum, a double 
description. In that framework we have described two descriptions (retinal process and 
representational process) whose phase relations allow the perceiver to pop out forms that 
represent fundamental systemic frequencies (attractors and sub-attractors) of the retina. 
Such fundamental forms are proposed to be the theoretical basis for aspects of perception 
that have high consensus across observers. In contrast the phase relations between these 
two descriptions can also pop out forms that are not systemic characteristics of retinal 
dynamics; they solely derived from the phase relations between retinal dynamics and 
perceptual dynamics. Such derived forms might be the theoretical basis for aspects of 
perception that are more subjective, such as forms people perceive in clouds that may not 
be immediately apparent to other people but can be perceived after some sort of 
perceptual adjustment. In terms of the autumn mountainside scene, systemic 
characteristics (Exemplar 1) might map to the perceptual form corresponding to a whole 
deer running in the open with no visual obstruction, while emergent forms (see 
particularly Exemplar 2) might map to the group of brownish blobs moving in unison 
through the trembling leaves of bushes; these moving blobs in no way are aspects of deer 
per se but can have high utility in hunting deer. These blobs are not fundamentally the 
form of deer but are forms derived from the phase relations between retinal and 
representational processing.

This is both a simple and a dynamic model for complex, dynamic form 
perception.
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