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Abstract 

The possibility of magnetic dipole-induced pure rotational transitions in the interstellar 

medium is investigated for symmetric Hund's case (a) linear molecules, such as H-C=C-H+ 

~2 + ~2 + ~2 ~2 • 
(X I13/2u), CO2 (X I13/2g), H-C=C-C=C-H (X I13/2g), and N3 (X I13/2g). These specIes lack 

an electric dipole moment and therefore cannot undergo pure rotational electric dipole 

transitions. These species can undergo pure rotational transitions via the parallel component of 

the magnetic dipole operator, however. The transition moments and Einstein A coefficients for 

the allowed pure rotational transitions are derived for a general Hund's case (a) linear molecule, 

and tabulated for the examples ofH-C=C-H+ eI13/2u) and H-C=C-C=C-H+ (2I13/2g). It is found 

that the rates of emission are comparable to collision rates in interstellar clouds, suggesting that 

this decay mechanism may be important in simulating rotational population distributions in 

diffuse clouds and for detecting these molecules by radioastronomy. Expected line positions for 

the magnetic dipole-allowed Ret{J) and Rfe(J) transitions of 

assist in their observation by radioastronomy or in the laboratory. 
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I. INTRODUCTION 

The detection of polar molecules by mm-wave astronomy in dense interstellar clouds is a 

well established and important technique.(Herbst & van Dishoeck 2009) In contrast, it is 

generally considered that polyatomic molecules without a permanent dipole moment can only be 

detected in space environments by electric dipole-induced infrared or electronic spectroscopy. A 

notable exception is the detection of H2 via its electric quadrupole rotation-vibration transitions. 

Here we show that for open-shell ions or neutrals in ground 2rr3/2 electronic states that lack an 

electric dipole moment, such as HCCH+, HC4H+, CO/, and N3, detection in the mm range by 

magnetic dipole pure rotational transitions in diffuse clouds is a realistic proposition. 

The theory presented in this contribution leads to the conclusion that the rates of 

magnetic dipole transitions between adjacent rotational levels in 2rr3/2 electronic ground states 

can be faster than the collision rates with H atoms in the diffuse clouds. Hence, it may be 

possible to detect symmetrical linear molecules in 2rr3/2g or 2rr3/2u states, which rigorously lack an 

electric dipole moment, in the diffuse interstellar medium by radioastronomy. 

It has long been known that electric-dipole forbidden decay processes that are too slow to 

§ observe readily on earth can occur in more rarefied environments where the rate of these 

H 

?:J processes competes with collisional processes. Thus, for example, magnetic dipole-induced 
:> c 
& electronic transitions, such as the Lyman-Birge-Hopfield bands ofN2 (a1rrg ~ XILg+) (Herzberg 
o 
H 

~ b 1946) and the atmospheric O2 bands (bIL; ~ X3Lg and a l ~g ~ X3Lg) (Babcock & Herzberg 
c 
(fJ 

R 1948; Herzberg & Herzberg 1947) were observed over sixty years ago in the atmosphere, and 
~. 
rt 

have been more recently investigated in the laboratory using cavity ringdown 

spectroscopy. (Newman et al. 1999; Robichaud et al. 2009) Likewise, the electric quadrupole-
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induced vibration-rotation spectrum of H2, observed with great difficulty in the 

laboratory ,(Herzberg 1949) has now been identified in a number of astronomical environments, 

including planetary atmospheres,(Kiess et al. 1960) circumstellar space,(Spinrad 1964) 

interstellar space,(Gautier et al. 1976) and from objects outside our galaxy.(Thompson et al. 

1978) 

Magnetic dipole transitions within a given vibronic state have been observed in the 

homonuclear molecules O2 (X
3Lg) and S2 (X3Lg ), and have been recently reviewed in 

detail.(Brown & Carrington 2003) To our knowledge, analogous transitions in a Hund's case (a) 

molecule have not been considered previously. In this article, we demonstrate that magnetic 

dipole transitions between adjacent rotational levels in 2I13/2g or 2I13/2u states are allowed and the 

rates are evaluated using the derived matrix elements. Acetylene and diacety lene cations are used 

as specific examples and it is shown that they may well be detectable by their pure rotational 

emissions in diffuse interstellar clouds. This possibility would open up a new field in mm-wave 

astronomy, and would be applicable to the open shell species of unsaturated linear molecules, 

cations, and anions, provided that the value of (A + ge L) is nonzero. Many such species, 

C 
C including HCCH+, are involved in models of chemical synthesis in the diffuse medium.(Tielens 
H 

?:J 
:> 2005) 
c 
r-t-
~ o 
H 

~ 
~ 
~ c 
(fJ 

n 
H 
~. 

r-t-
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II. CALCULATION OF MAGNETIC DIPOLE EMISSION RATES 

We begin by noting that the rovibronic wavefunction for a state of a linear molecule in 

Hund's case (a) may be defined by the quantum numbers S, A, ~; v; J, M, n, and r, where as 

usual S represents the total electron spin, A is the total electronic orbital angular moment about 

the axis and is taken to be positive, ~ is the projection of electron spin on the axis, v represents 

all of the vibrational quantum numbers, J is the total angular momentum exclusive of nuclear 

spin, M is the projection of J on the space-fixed z-axis, n is the sum of A + ~, and r denotes the 

parity of the state, with r = + 1 for e parity levels, -1 for f parity levels. With these definitions, 

the wavefunction can be represented by a parity-adapted product of a rotational wave function 

and a vibronic wavefunction, <p~lec: 

Here the phase factor, R, is given by R=(-1)-s+s+(1!2).(Lefebvre-Brion & Field 2004) In this phase 

factor, S is the total electron spin; s is 1 for ~- states, 0 otherwise; and the term (112) is given in 

parentheses to indicate that it is included only if the system contains an odd number of electrons. 

In this article we consider pure rotational transitions within the ground vibrational level, so the 

vibrational dependence of the wavefunction may be suppressed. If magnetic dipole pure rotation 

transitions within an excited vibrational state are of interest, it becomes necessary to replace n 

with the value of P, representing the total angular momentum about the axis, including electronic 

orbital angular momentum, A, electron spin angular momentum, ~, and vibrational angular 

momentum, t. It is also understood that in the vibronic wavefunction found in the second term 

of formula (2.1), <p:!~c, the values of A, ~, and n have all been negated. 

The magnetic transition moment integral may then be expressed as 
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Il = [(21'+1)(21"+1)]1/2.!. (DJ'* (m e x)<t>elec + r'R D1'* (m e x)<t>eleci ji(M) I 
J'J" 8n2 . 8n2 2 M',il '1"'" il M',-il '1"'" -il 

In order to properly consider the rotational portion of this integral, the magnetic dipole operator, 

ji(M) , must be expressed in a space-fixed coordinate system. However, the integral over 

electronic degrees of freedom is more conveniently evaluated in the body-fixed system. 

Therefore, the transformation between the body-fixed and space-fixed expressions of the 

irreducible spherical components, 

",(M) _ ~ 01* ( 8 ) A(M) 
i1SF,q - LJp qp qJ, ,X i1BF,p' (2.3) 

becomes necessary for the evaluation of IlJ'J". The problem is simplified by noting that because 

(2.4) 

it is only the p=O, or {t1~)z component that can connect the upper and lower states of the 

transition. The p = ± 1 components correspond to raising or lowering operators that lead to 

6 

vanishing integrals when evaluated in this example. It should be noted that because a factor of h 

is embedded in the (Ii and Si) portion of this operator, the overall units of the magnetic dipole 

operator are eh/2mec, which is the Bohr magneton in cgs units. These units are used throughout 

this derivation. 

With these facts in mind, it is straightforward to evaluate the q-component of the space-

fixed transition dipole integral as: 

_[(21'+1)(21"+1)]1/2 (en )[1 J'* 11*1 J") ,,, 21 J' * 11*1 J" )] 
flJ'J",q - 8rr2 .8rr2 • - 4meC (1\ + geL) \ DM',n Dqo DM",n - r r R \ DM',-n Dqo DM",-n . (2.5) 

The integrals over the Wigner rotation matrices are readily evaluated,(Zare 1988) and it is found 

that the two terms cancel unless the (elf) parities of the upper and lower states differ. Thus, 
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emissions on the Ret(J") and Rfe(J") lines are allowed, in contrast to the selection rule for electric 

dipole transitions that only Re(J") or Rt(l") transitions are permitted.(Lefebvre-Brion & Field 

2004) The result for these Ret(l") and Rfe(J") transitions is that 

1 

f1 ,,, = [(2J" +1)]2 (-~) (A + g L) (1 0 1" nil' n)(1 q J"M"IJ'M') 
J J ,q (2J' +1) 2mec e , 

(2.6) 

where (1 0 J"nll'n) and (1 q J"M"IJ'M') are Clebsch-Gordan coefficients. 

In Figure 1 the magnetic dipole allowed transitions in acetylene cation (H-C=C-H+) are 

illustrated, with the rotational levels in the X 2I13/2u ground state labeled according to the parity 

A A 

under E * (+/ -), the rotationless parity (elf), and the parity under P 12, which exchanges the spatial 

positions of all pairs of identical nuclei (s/a). The magnetic dipole allowed transitions connect 

A 

levels of the same parity under E * (+ ~ +, - ~ - ), but of opposite rotationless parity (e ~ f). 

In the process, states of the same nuclear spin parity are connected (s ~ s, a ~ a). Thus, these 

transitions are allowed when nuclear spin statistics are considered. A diagram pertaining to the 

related diacetylene cation, H-C=C-C=C-H+, (X 2
I13/2g), would be identical except for the change 

of the nuclear exchange symmetry labels from s to a and vice versa. 

Expression (2.6) may now be inserted into the expression for the rate of spontaneous 

emission(Merzbacher 1970), 

_ 4w~ ..... f 2 
Ahf - 311c 3 IIlJ'J",q I , (2.7) 

to obtain the rate of spontaneous emission from level (1', M') to (J", M") induced by the space-

fixed component of P-SF,q- To obtain the total rate of emission from l' to 1", we must sum over q 
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and Mil, giving 

AJ~J-1 = ~ ( ow 2)2 W (2J-1) (A + ge L)2 (1 0 J - 1 .o.IJ .0.)2 I (2.8) 
3 mec 2J+1 

where a is the fine structure constant. As a and (hco/mec2) are unitless, this expression has units 

given by co, which is S-I. Explicit evaluation of the last Clebsch-Gordan coefficient and 

approximation of the energy levels of the rotating linear molecule according to 

E(J) = BJ(J+ 1) provides the rate of spontaneous emission as 

_ 8 ( B )2 B 3 ( )2 (f-.o.2) 
AJ~J-1 - 3 a mec2 h J A + geL J(2J+1) I 

(2.9) 

where the rotational constant, B, is given in ergs and h is in erg-so Replacing the symbols with 

their accepted values, and providing B in wavenumber units (cm- I
), the rate of J ~ J-l emission 

(in S-I units) is given by: 

(2.10) 

It should be noted that these magnetic dipole pure rotational emissions can only occur if 

the molecule possesses a permanent magnetic moment, i.e., if(A + ge~) is non-zero. Thus, these 

emissions are possible in 2I13/2 states, but not in 2I11 /2 states, for example. 

From Einstein's treatment of the rates of absorption and emission processes and Planck's 

blackbody law, this expression may be combined with standard expressions for the rates of 

absorption and stimulated emission to obtain the total rate per molecule of magnetic dipole 

transitions in the presence of blackbody radiation at temperature T as: 

and 
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r _ (S-1) = 2.15787 x 10-10 - B3 (cm-1 )(A + L)2 • f . (f-.o.2) [ exp(2.877BJjT) ]. 
J~J 1 ge 2J+1 exp(2.877BJjT)-1 

(2.12) 

§ Table 1 provides values of AJ~J-b rJt-J-I> and rJ~J-1 for selected rotational transitions of acetylene 

H 

~ and diacetylene cations exposed to blackbody radiation at a temperature of2.76 K. 
:> 
C 
rt 
:::J 
g III. IMPLICATIONS FOR LABORATORY AND ASTRONOMICAL SEARCHES 

~ 
b While magnetic dipole pure rotational transitions are weak, they are in principle 
C 
(fJ 

n 
~. observable. For comparison, we note that the body-fixed electronic matrix element of the 
rt 

magnetic dipole operator, defined in (2.4), has a magnitude of (A + geL) Bohr magnetons (IlB). 

However, in cgs units the Bohr magnet on is ~, which has units of charge times distance, the 
2mec 

same as that of an electric dipole moment (Debye). Thus, it is straightforward to compare the 

9 

intensities of the expected magnetic dipole transitions to electric dipole transitions by expressing 

c c 

the transition moments in units of Debyes. When this is done, all rate expressions for electric 

dipole transitions can be applied to the magnetic dipole transition case. The converted 

expression for the body-fixed electronic matrix element of the magnetic dipole operator has a 

magnitude of (A + geL) x 0.009274 Debye, which for 2I13/2 molecules corresponds to 0.01856 

Debye. This compares to an electric dipole moment for HCP of 0.39 Debye, for 

example.(Mueller et al. 2005) Since the intensity of a signal is proportional to 11l1 2
, the intrinsic 

strength of signals of HCCH+ or CO2+ might be expected to be approximately 0.2% of that of 

HCP, a molecule that has been detected in circumstellar envelopes. (Agundez et al. 2007; Milam 

et al. 2008) In diffuse interstellar clouds, this reduction in intensity could be compensated by a 

possible greater abundance ofHCCW and CO/ relative to HCP. 

To facilitate observational searches for 2I13/2g or 2I13/2u species, in Table 2 we present a 
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list of the most intense transitions expected for HCCH+, HC4H+, CO/, and N3, assuming a 

rotational temperature of 20 K. It is hoped that these values will assist in the search for these 

molecules by radioastronomy. 

Laboratory measurements of the magnetic dipole pure rotational transitions listed in 

Table 2 for HCCH+, HC4H+, CO2+, and N3 would provide more accurate line positions that 

would be useful in astronomical searches for these species. We therefore encourage 

investigators to search for these transitions in the laboratory. Powerful microwave sources may 

permit microwave-optical double resonance studies to be undertaken using the known laser-

induced fluorescence transitions ofN3,(Brazier et al. 1988) CO/,(Gharaibeh & Clouthier 2010) 

and H-C=C-C=C-H+ (Kuhn et al. 1986) as a starting point. Another approach to demonstrate 

that these magnetic dipole transitions can be observed would be to undertake an investigation on 

a molecule that has a 2I13/2 ground state but is polar. Experimental conditions could then be 

optimized for the observation of the electric dipole-allowed Re(J) and Rt<J) transitions, and then a 

search could be conducted for the electric dipole-forbidden, but magnetic dipole-allowed Ret<J) 

and Rfe(J) transitions. A good candidate for this approach would be NCO, which has been very 

c 
C well-characterized and has the requisite X2I13/2 ground state.(Gillett et al. 2006; Kawaguchi et al. 
H 

?:J 
:> 1985) 
c 
r-t-
~ o 
H 

~ IV. CONCLUSION 
c 
(fJ 

R In this contribution we have demonstrated that centro symmetric Hund's case (a) 
~. 

r-t-

molecules having states in which (A + ge L) is nonzero can undergo pure rotational transitions 

via the magnetic dipole operator. The electronic matrix element for the magnetic dipole operator 
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in these cases is given by (A + ge L) x 0.009274 Debye. Thus, these transitions will be weak but 

potentially observable. 
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Table 1. Magnetic dipole pure rotational transition rates for HC2H+ and HC4H+.a 

C _ + (~2 ) H-C=C-C=C-H+ (X2I13/2g) 
C 

H-C=C-H X I13/2u 

H 

~ J AJ~J-1 rJ~J-1 rJ ..... J -1 AJ~J-1 rJ~J-1 rJ ..... J -1 
:> c 
rt 

2.5 4.85E-09 5.14E-09 4.33E-10 1.14E-11 3.59E-11 3.67E-11 :::J 
0 
H 

~ 5.5 8.22E-08 8.24E-08 1.75E-10 1.93E-10 3.40E-10 1.76E-10 
~ 
~ c 
(fJ 10.5 6.30E-07 6.30E-07 3.88E-12 1.48E-09 1.85E-09 4.08E-10 n 
H ...... 
~ 
rt 

15 .5 2.08E-06 2.08E-06 3.92E-14 4.90E-09 5.40E-09 5.36E-10 

20.5 4.87E-06 4.87E-06 2.85E-16 1.15E-08 1.20E-08 5.44E-10 

25 .5 9.44E-06 9.44E-06 1.73E-18 2.22E-08 2.27E-08 4.74E-10 

30.5 1.62E-05 1.62E-05 9.31E-21 3.81E-08 3.85E-08 3.72E-10 

40.5 3.82E-05 3.82E-05 2.17E-25 8.98E-08 8.99E-08 1.87E-10 

50.5 7.42E-05 7.42E-05 4.17E-30 1.74E-07 1.75E-07 7.79E-11 

60.5 1.28E-04 1.28E-04 7.14E-35 3.01E-07 3.01E-07 2.89E-11 

70.5 2.03E-04 2.03E-04 1.12E-39 4.76E-07 4.76E-07 9.88E-12 

C 
80.5 3.02E-04 3.02E-04 1.67E-44 7.10E-07 7.10E-07 3.18E-12 

C 
H 90.5 4.29E-04 4.29E-04 2.36E-49 1.01E-06 1.07E-06 9.76E-13 
~ 
:> c 
rt 
:::J 
0 

a Rates are given in units ofs-l
, based on B-values of 1.10463 and 0.1469 cm-l for HC2H+ and H 

~ HC4H+, respectively.(Jagod et al. 1992; Kuhn, et al. 1986) A blackbody radiation temperature of ~ 
~ 2.76K has also been assumed in the calculation. c 
(fJ 

n 
H ...... 
~ 
rt 
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Table 2. Pure rotational transitions expected in HCCH+, HC4H+, CO2 +, and N3 . 

H-C=C-H+a H-C=C-C=C-H+ b CO2+
c N3 d 

Line v(MHz) Line v(MHz) Line v(MHz) Line v(MHz) 
Ref(1 .5) 160111 R(1.5) 21923 RetC1 .5) 56901 RetC1 .5) 64284.61 
Rfe(1.5) 160131 R(2.5) 30693 Rfe(2.5) 79661 Rfe(1.5) 64285.31 
RetC2 .5) 224235 R(3 .5) 39462 RetC3 .5) 102420 RetC2 .5) 89997.8 
Rfe(2 .5) 224292 R(4.5) 48231 Rfe(4 .5) 125181 Rfe(2 .5) 89999.8 
RetC3.5) 288433 R(5.5) 57001 RetC5.5) 147937 RetC3.5) 115710.2 
Rfe(3.5) 288553 R(6.5) 65770 Rfe(6.5) 170700 Rfe(3.5) 115714.4 
RetC4 .5) 352717 R(7.5) 74539 RetC7.5) 193450 RetC4 .5) 141421.7 
Rfe(4 .5) 352932 R(8 .5) 83308 Rfe(8 .5) 216218 Rfe(4 .5) 141429.4 
RetC5.5) 417095 R(9.5) 92078 RetC9.5) 238958 RetC5.5) 167132.1 
Rfe(5.5) 417443 R(10.5) 100847 Rfe(10.5) 261734 Rfe(5.5) 167144.8 
RetC6 .5) 481570 R(11.5) 109616 RetC11.5) 284460 RetC6 .5) 192841.1 
Rfe(6 .5) 482092 R(12 .5) 118384 RfeC12.5) 307248 Rfe(6 .5) 192860.6 
RetC7.5) 546142 R(13.5) 127153 RetC13 .5) 329955 RetC7.5) 218548.6 
RfeC7.5) 546882 R(14.5) 135922 RfeC14.5) 352759 RfeC7.5) 218577.0 
RetC8 .5) 610807 R(15 .5) 144691 RetC15 .5) 375443 RetC8 .5) 244254.4 
Rfe(8 .5) 611812 R(16 .5) 153459 Rfe(16.5) 398267 Rfe(8 .5) 244293 .9 

a Spectroscopic constants for H-C=C-H+ from (Jagod, et al. 1992); estimated lcr errors in line 
positions, based on the reported 1 cr error in Bo, are 3 to 12 MHz for the transitions listed, 
increasing as one moves to higher frequency transitions. 
b Spectroscopic constants for H -C=C-C=C-H+ from (Kuhn, et al. 1986); estimated 1 cr errors in 
line positions are 5 to 50 MHz for the transitions listed. The splitting into elf components was 
not observed in the recorded spectra, so that designation is omitted here. 

14 

C Spectroscopic constants for CO2 + from (Frye & Sears 1987), except for the spin-orbit constant, 
A, which is from (Sears 1986); estimated 1 cr errors in line positions are 2 to 20 MHz for the 
transitions listed. 
d Spectroscopic constants for N3 from (Brazier, et al. 1988); estimated lcr errors in line positions 
are 0.2 to 1.5 MHz for the transitions listed. 
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C Figure 1: Magnetic dipole-allowed transitions in the X2I13/2u ground state ofH-C=C-H+. 
C 

C 
C 
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Rotational Levels ofH-C C-H+ X2II3/2u 
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