
PHYSICAL REVIEW D 74, 024013 (2006)

Periodic standing-w ave approxim ation: E igenspectral com putations for linear gravity and
nonlinear toy m odels

Christopher Beetle
Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431, USA

Benjamin Bromley 
Department of Physics, University of  Utah, Salt Lake City, Utah 84112, USA

Richard H. Price
Department of Physics & Astronomy and Center for Gravitational Wave Astronomy, University of Texas at Brownsville,

Brownsville, Texas 78520, USA 
(Rcccivcd 8 February 2006; published 13 July 2006)

The periodic standing-wave approach to binary inspiral assumes rigid rotation of gravitational fields 
and hence helically symmetric solutions. To exploit the symmetry, numerical computations must solve for 
"helical scalars,” fields that arc functions only of corotating coordinates, the labels on the helical Killing 
trajectories. Here we present the formalism for describing linearized general relativity in terms of helical 
scalars and we present solutions to the mixed partial differential equations of the linearized gravity 
problem (and to a toy nonlinear problem) using the adapted coordinates and numerical techniques 
previously developed for scalar periodic standing-wave computations. We argue that the formalism 
developed may suffice for periodic standing-wave computations for post-Minkowskian computations and 
for full general relativity.
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I. INTRODUCTION

The computational study of the inspiral of binary black 
holes is important for the understanding o f gravitational 
wave signals, and is o f inherent interest as a question in 
general relativity that can be answered only with com pu
tation. It has therefore become the focus of supercomputer 
codes that evolve E instein 's field equations forward in time 
from  initial conditions chosen to represent a starting con
figuration o f the inspiralling objects. The evolution codes, 
however, typically become unstable on a time scale (set by 
the size o f  the hole) short compared to a full orbit. A review 
o f numerical relativity has been given by Lehner [ 11 in 
2002. Since then progress has made feasible reliable cal
culations o f the final few orbits and m erger [2—61. The 
early inspiral is well approximated with post-Newtonian 
computations [71. W hat cannot be handled well is the 
intermediate phase of the inspiral, the late epoch during 
which nonlinear effects arc too strong for a post- 
N ewtonian approximation, but for which too many orbits 
remain for stable numerical evolution.

It has long been recognized that the basis o f an approxi
mation scheme should be the slow rate o f inspiral, the 
small ratio o f the orbital time to the radiation damping 
time [8,91. Through an adiabatic treatment of the slow 
inspiral, such an approximation could give answers about 
the radiation and rate o f inspiral in the intermediate epoch. 
In addition, when the rate o f inspiral becomes too rapid, the 
intermediate approximation could hand the problem off to 
numerical evolution codes to do the final orbit or two and 
the plunge. Along with the problem being handed off

would be the ideal initial data for the subsequent evolution. 
The need for and the concept o f an intermediate approxi
mation have been clear, but such an approximation has not 
been easy to implement. Along with several others [10
13], we have based an approximation for slow inspiral on a 
numerical computation of no inspiral. That is, we seek a 
numerical solution o f E instein 's equations for binary ob
jects that arc in circular periodic motion, and whose “ hel
ically sym m etric" fields rotate rigidly with the source 
objects. (For a definition o f helical symmetry, see Sec. II 
of Ref. [141.)

The universality o f gravitation suggests that the un
changing motion o f such a system is not compatible with 
outgoing radiation, and this intuitive suggestion is con
firmed by the mathematics o f the theory. We therefore 
seek a helically symmetric solution for the sources coupled 
to standing waves, not to outgoing waves. In a linear 
theory, standing waves, in the sense that we use the term, 
arc a superposition o f half-ingoing and half-outgoing so
lutions. From  the fact that the solution, in linear theory, is 
half the superposition o f the ingoing and outgoing solu
tions, one could extract the outgoing solution. The crux of 
our periodic standing-wave (PSW ) method is that even for 
highly nonlinear binary inspiral fields there is an “ effective 
linearity” [101. The standing-wave solution, to good accu
racy, is half the sum o f the outgoing plus ingoing solutions 
despite the non!inearitics. In general relativity, therefore, 
our goal is to solve the standing-wave numerical problem 
and from that solution to extract an approximation to the 
outgoing solution.
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It is im portant to understand why effective linearity can 
be correct for inspiral. In the strong-field regions very close 
to the sources, the solution is very insensitive to the choice 
of distant radiative boundary conditions (ingoing, out
going, standing wave). In this near-source region a super
position of half the ingoing and half the outgoing solution 
gives a good approximation solution, because it amounts to 
averaging two samples of the same thing. In the wave zone 
where the outgoing and the ingoing solutions are very 
different, the fields are weak enough that nonlinear effects 
are negligible, and once again we can superpose. The 
strong-field region and the boundary-influenced region 
should be widely separated unless the sources are rotating 
very close to c, in which case the wave zone will start just 
outside the sources. It is, however, not expected that ultra- 
relativistic source motion can occur during the slow inspi
ral epoch of motion.

We have recently [15] been able to confirm effective 
linearity. This confirmation has been achieved with a 
model problem, since the validity of effective linearity 
can only be carried out in a model problem. In general 
relativity, there can be no "true outgoing” solution avail
able for confirmation until numerical evolution codes are 
fully developed. In addition, the numerical features of the 
helically symmetric standing-wave calculation pose new 
challenges very different from those of evolution codes, 
and are best resolved in the simplest context possible.

The model problem in Ref. [15] used a nonlinear scalar 
field theory with a pair of diametrically opposite pointlike 
scalar charges. The imposition of helical symmetry on the 
problem leads to a boundary value problem for a system of 
mixed (hyperbolic and elliptical) partial differential equa
tions. To solve that boundary value problem efficiently, a 
set of numerical techniques was developed that we called 
the "eigenspectral” method. In the present paper we report 
two im portant steps toward using the PSW  method for full 
general relativity: First, we develop the infrastructure for 
describing gravitational fields. In previous work with sca
lar toy models, helical symmetry was imposed by simply 
requiring that the scalar field be a function only of three 
corotating coordinates (labels on the Killing trajectories). 
We find it useful to use the expression "helical scalars” for 
such functions that depend only on corotating coordinates. 
Our computation is done on a grid of corotating coordi
nates, so straightforward computations can only be carried 
out for helical scalars. But complications arise with tensor 
fields. The components of a helically symmetric tensor 
field are generally not helical scalars. A resolution of this 
difficulty is to compute only with projections of the tensor 
on a helically symmetric basis, that is, on a basis that is Lie 
dragged by the helical symmetry. These projections would 
be helical scalars. A helically symmetric basis, however, 
has its own kinematics and this complicates the time 
dependence of the projected fields. In the infrastructure 
developed here we show that the use of a corotating "pure-

spin” basis leads to a remarkably simple description of 
helically symmetric tensorial fields. That infrastructure is 
presented in the explicit context o f linearized general 
relativity.

The second step taken in this paper is to present num eri
cal results showing that no new computational problems 
are encountered in dealing with the helical scalars of the 
linearized gravity problem. Since no new problems were 
anticipated this numerical work simply constitutes a con
firmation that the "eigenspectral method,” the set o f tech
niques developed for scalar models, appears to work 
equally well for linearized gravity. Those techniques in
clude the use of (i) "adapted coordinates,” a corotating 
coordinate system that conforms well to the source regions 
and to the radiation field, (ii) "m ultipole filtering ” the 
elimination of numerical noise associated with angular 
differencing, by keeping only a few multipoles of the 
adapted coordinates, and (iii) the modification of the m ulti
poles so that they are computationally orthogonal at the 
level of machine precision. In this paper we provide nu
m erical solutions using this set o f techniques. Since these 
solutions differ very little from the numerical problems 
studied in detail in Ref. [15], the presentation of linearized 
results is brief. The solutions to nonlinear problems are 
much more difficult than those for linearized problems. 
Newton-Raphson iteration m ust be used, and convergence 
of the iterative process has been the major challenge in 
numerical work. Again, there is no apparent reason the 
problem should be more difficult for the tensor-based 
helical scalars than for the nonlinear scalar models of 
Ref. [15]. Nevertheless, it is an issue worth checking, and 
initial results are briefly reported showing that the scalar 
techniques work well for a model tensorial problem with a 
simple toy nonlinearity.

The rest of this paper is organized as follows. Section II 
gives a brief review of the scalar PSW  problem in order to 
introduce adapted coordinates and the application o f m ulti
pole filtering and the eigenspectral method in those coor
dinates. Section III presents the description of the helically 
symmetric fields of linearized gravity that is suitable for 
computation. The field equations are given for general 
corotating coordinates and series solutions are given, in 
corotating spherical coordinates, for the problem of two 
equal masses in circular orbits around each other. The field 
equations for linearized gravity using adapted coordinates 
are given in Sec. IV. In that section, also, are given the 
forms in adapted coordinates of other elements of the 
computational problem, the inner boundary conditions 
specifying the sources, and the outer boundary conditions 
specifying the nature of radiation. Section V presents 
numerical results, comparing the series solutions of 
Sec. Ill with the solutions of the field equations using the 
eigenspectral method. In addition, in this section a descrip
tion is given of a toy nonlinear modification to linearized 
gravity, and results are given demonstrating that the result
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ing “ theory" can be solved with the techniques that 
worked for the scalar case. The implications for the next 
steps in the PSW  program are discussed in Sec. VI. In 
particular, it is argued that almost all the infrastructure for 
solving the PSW  problems in the post-M inkowski approxi
m ation and in full general relativity problem is probably 
established in the work with the linearized problem. The 
Appendix gives some detailed expressions needed for 
computations in adapted coordinates.

Throughout the paper we use units in which c =  G =  1 
and we follow the conventions of Misner, Thorne, and 
W heeler [161.

II. SCALAR MODELS, COORDINATES, AND 
NUMERICS

A. Nonlinear scalar models
Here we review the model problem and numerical tech

niques of Ref. [151. Our model problem was a nonlinear 
scalar field coupled to pointlike sources in M inkowski 
space, and satisfying the field equation

fsS' +  p  =  +  F  =  Source. (1)
<r

In principle, the source was taken to be two points of unit 
scalar charge in orbit around each other at angular fre
quency i l ,  and at radius a. In practice, the computational 
problem used inner boundary conditions on small, approxi
mately spherical surfaces to represent the effect o f a point 
source; 110 source term was included in the field equation 
that was computationally solved. The velocity parameter 
for the system v  =  a i l  was taken to be of order unity, 
representing the strong-field tight biliary for which post- 
Newtonian approximations are inadequate.

The term F  contains the nonliiiearity in our scalar model 
theory, and we found the following form, with parameters 
A and 'Pq* to be useful:

F
\]/s

a2 ^  +  'P 4 '
(2)

A crucial feature of F  is that, like the lionliiiearides of 
general relativity, it is very large near the sources, and 
becomes negligible far from the sources. The A multiplier 
allowed us to vary the strength of the nonlinear term, and 
the 'Pq parameter allowed us to vary the profile o f the 
nonliiiearity in the strong-field region.

Our scalar problem was defined by Eqs. (1) and (2), and 
by the source motion at angular frequency i l  in the equa
torial plane. W ith standard spherical coordinates, helical 
symmetry can be imposed on the solution ^f(t, r, 0, 4>) by 
restricting to solutions of the form ^ ( r ,  0, ip), where cp is 
the comoving azimuthal coordinate 4> -  i l t .  By restricting 
the solution in this way, we have eliminated the possibility 
of “ evolution." For such helically symmetric solutions a

change in time by A t  is the same as a change in the 
azimuthal angle A 4> =  —ilA.t.

W hen the restriction to helical symmetry is made, the 
field equation becomes

r“ dr
+ 1

. • , , sin#
dr J r- sin# 30 \  80

d (  . „ d V

+
1

rsirr
- n 2

dip"

Source -  F ( 'P ) =  cr('P), (3)

and the mixed nature of the partial differential equation 
becomes obvious. The principal part o f this quasilinear 
equation is elliptic inside a cylinder at rs in #  =  1/ 0 , and 
hyperbolic outside that cylinder. The problem is to be 
solved with radiative conditions (ingoing, outgoing, or 
standing wave as described below) on a spherical surface 
at large distances from the sources. W ell-posed problems 
in physics typically supply Cauchy data on open surfaces 
to hyperbolic equations, and Dirichlet or Neum ann data on 
closed surfaces to elliptic equations. Our model is unusual 
in that it leads to a boundary value problem with “ radia
tion" conditions on a closed surface surrounding a mixed 
problem. Though unusual, our problem is intuitively well 
posed, and passes a computational test: we have found 110 
fundamental difficulty in solving models of this type nu
merically. Furthermore, a careful analysis [171 proves that 
solutions exist and are stable for a closely related problem.

“ Standing-w ave" solutions— half ingoing and half out
going— are at the heart of our method, but there is not an 
unambiguous definition of standing-wave solutions in a 
nonlinear theory. Our procedure is to find the outgoing 
£~u{ and ingoing Green functions for Eq. (3). In 
principle, we can then iterate to find a solution of 
Eq. (3). The iteration

(4)

if it converges, gives 'P uut, our nonlinear outgoing solution
(and similarly for 'P in), while the convergent result of

std (5)

is what we mean by our nonlinear standing-wave solution 
'P std. The standing-wave solution 'P std is fundamentally 
different from ( 'F uut +  'P in) / 2, but if effective linearity is 
correct, the two are very nearly equal. (Note: In practice, 
for strong lionliiiearities, the direct iteration described 
above m ust be replaced by Newton-Raphson iteration.)

A central idea of the PSW  approximation is that the 
“ exact" (i.e., numerical) solution to the standing-wave 
problem is an excellent approximation to half the sum of 
the outgoing and ingoing solutions. If this is so, it means 
that from the standing-wave solution we should be able to 
extract an excellent approximation to the outgoing and the 
ingoing solutions. (It should be noted that this statement is 
meaningful for nonlinear model field theories in which
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there is meaning to ail outgoing helically symmetric or 
ingoing helically symmetric solution to the field theory. 
For general relativity, a helically symmetric spacetime with 
outgoing radiation is impossible. As explained in Ref. [ 151, 
the relevance and justification of the PSW  approximation 
for full general relativity lie in the fact that the method 
gives ail approximation only for a lim ited region of 
spacetime.)

The extraction of the approximate nonlinear outgoing 
solution from the com puted standing-wave solution is a 
direct application of the concepts underlying the argument 
for effective linearity. In the weak wave zone, far from the 
sources, the field theory is very nearly linear and the 
solution m ust be very nearly a standing-wave solution to 
that linear theory. It is, therefore, straightforward to decon
struct it into outgoing and ingoing solutions. The extracted 
outgoing solution can be continued inward through the 
induction zone into the near-field zone. If the theory 
were completely linear, this continuation would be valid 
up to the source points. Because of the lioiilinearity, how 
ever, this procedure is 110 longer valid at distances so close 
to the source points that the lioiilinearity of the theory is 
important.

In the near-field region close to the source points, at a 
distance small com pared to a wavelength, the solution is 
highly insensitive to the nature of the boundary conditions 
(i.e., whether they are outgoing or ingoing). Here, we can 
use the standing-wave solution itself as the outgoing solu
tion. This near-field solution should extend out to the 
weak-field region and overlap with the extracted outgoing 
solution described above. These two solutions, the weak- 
field outgoing solution outside the strong-field region, and 
the standing-wave solution in the strong-field region, are 
then patched together, with some blending in the region of 
overlap, and the result is the PSW  extracted approximation 
to the nonlinear outgoing solution (see Sec. IV C of 
Ref. [151).

B. Adapted coordinates
It is useful to identify a number of coordinate systems to 

describe the physical problem, including three Cartesian 
systems. The system {x, y, z} is that o f inertial Cartesian 
system in which the z axis is the rotation axis for the source 
objects, with rotation in the positive sense about the z axis. 
In general, we use tildes to distinguish the corotating 
version of a quantity when that quantity occurs in forms 
both related to inertial and to corotating systems. The set 
{x, v, 2}, as shown in Fig. 1, in this sense, is the corotating 
set of Cartesian coordinates for which S =  s and for which 
the source points rem ain fixed on the x  axis. The system 
{r, 0, (/)} is that o f inertial spherical coordinates defined in 
the usual way relative to {x, y, z}. The system {r, 0, ip) is a 
set of corotating spherical polar coordinates, defined by the 
usual transformation relative to {x, y, 5}. The two systems 
of spherical coordinates are related by ip =  </> — f ir . The
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FIG. 1. Two systems of corotating Cartesian coordinates.

Cartesian system {X, Y, Z} is a convenient renaming of 
{x, v, z.}, with Y the rotational axis, and Z, the axis through 
the source points.

Our adapted-coordinate system {x,  0 ,  <!)} is a corotating 
two-center bipolar coordinate system defined, relative to 
the {X, Y, Z] system, by

X =  {[(Z -  a)2 + X 2 + Y2][(Z +  a)2 + X 2 + F ]}1/4

„  1 2Z  y /x2 +  Y2
0 = - t a n  1 ^ ^

2 \ Z2 -  a2 -  X 2 -  Y2

cl) =  tan-1 ( ? /£ ) ,

(6)

(7)

(8)

where a is the distance from the center to each of the 
source points.

For x  ^  a, the adapted coordinates become a corotating 
system of spherical coordinates defined relative to 
{X, Y, Z}. (That is, the Z  axis is the azimuthal axis for the 
(T> coordinate.) The adapted coordinates, pictured in Fig. 2, 
are discussed in greater detail in Ref. [151.

We originally [131 solved the model problem of Eq. (3) 
in the {r, 0, cp} system with more-or-less straightforward 
finite differencing and direct m atrix inversion. (The mixed 
nature of the partial differential equations prevents the use 
of such efficient techniques as overrelaxation.) This ap
proach was successful (iterations converged) for models 
with a lim ited range o f source velocities and lionliiiearities. 
Subsequently, we developed an innovative numerical 
m ethod that gave remarkably good results for the scalar 
problem, with very little computational cost. The new 
m ethod is based on three elements.

First, we used the adapted coordinates discussed above. 
The solutions to the finite difference form of Eq. (1) in 
these coordinates turned out to be plagued by what ap
peared to be angular noise. This noise was eliminated with 
multipole filtering, a form of smoothing of the angular 
variation. In this m ethod the scalar field was expanded in 
spherical harmonics of the angular functions 0  and The 
fact that the adapted coordinates are well suited both to the 
source structure and to the radiation field suggests that 
good accuracy can be achieved when only a few multipoles
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FIG. 2. Two-center bipolar adapted coordinates. On the left is shown curves of coordinates \  an<J 0  in the =  0 orbital plane. On 
the right are surfaces of constant x,  and (1>. Here a is the distance from either of the two centers (locations of the point sources) to 
the midpoint between the centers. The x, y, z coordinate system is a corotating Cartesian system for which the z axis is the rotation 
axis; for the X, f ,  Z  a corotating Cartesian system the Z axis is the line through the centers.

are kept. In fact, good accuracy was found when only the 
monopole and quadrupole were kept in the case of sources 
speeds around 0 .3c-0 .4c or less. At higher speeds the 
radiation field develops sharper gradients and more m ulti
poles must be kept to achieve reasonable accuracy.

C. Inner and outer boundary conditions
For identical point sources of unit scalar charge moving 

in the equatorial plane at angular velocity Cl, in circular 
orbits of radius a, the source used in Eq. (1) was

S = —y  1 —-— —̂ - 8(6 — 7r/2)[8((p) +  S(ip — ir)], (9)

with y  =  1/V T 1/ V T — a2Cl2. For this source, it
was shown in Ref. [15] that the s m a l l l i m i t  of O is

1 2 a

4 77 X" -JT+ y 2u 2sin22 ©cos2fI>
(10)

We take this as an inner boundary condition at a small 
value of x  that determines one limit of our computational 
grid.

The outer boundary condition used is simply the ingoing 
or outgoing Sommerfeld condition expressed in terms of 
the adapted coordinates. In Ref. [15] it was shown that in 
adapted coordinates this condition becomes

1 3 . _ /  cos© . ^
------- (y 1?) =  ± f l  c o s$  —  — — -  s m $  —  , ( 11)
X dx  V 3© sin© d®)

in which the upper and lower signs correspond, respec
tively, to the outgoing and ingoing conditions.

D. Multipole filtering and the eigenspectral technique
In practice, multipole filtering was carried out as fol

lows. If  there are N grid locations © ;, <3>y, o f the angular 
coordinates ©, O , then at each value o f the radial coor
dinate x  there are N values of the scalar field ©,-, Oy).

In multipole filtering, a set o f M  <  /V spherical harmonics 
Yjj is used, at each value o f x ,  as weighting factors for 
these scalar field values, and M  weighted sums (i.e., m ulti
pole projections) are taken o f the scalar field values. In the 
same manner, the N field equations at x  are projected into 
M  sums. Those M  projected equations are then solved for 
the M  projections of the field.

It was found that this procedure did not work if the 
multipole weights were simply taken to be

<3>y), the continuum spherical harmonics evaluated 
at the discrete angular grid locations. These projection 
weights are only orthogonal in the continuum limit, and 
their failure to be numerically orthogonal to high precision 
was the probable source o f angular noise that plagued 
computations. Slightly modified weights, in place o f the 
grid-evaluated spherical harmonics, gave us weights that 
were orthogonal to the level of machine precision. The use 
of these modified weights in multipole filtering eliminated 
the problem of angular noise, while at the same time 
significantly reducing the number of equations to be 
solved, and hence reducing the computational burden. 
See Ref. [15] for details.

We focused, in Ref. [15], on the most important question 
that can be answered with these models and numerical 
methods: Does effective linearity work? Can we extract a 
good approximation to the outgoing nonlinear problem 
from the sort of standing-wave computation we will be 
lim ited to when dealing with E instein’s theory? Figure 3 
gives strong evidence that we can. In that figure, the 
computed outgoing nonlinear solution is shown as a solid 
curve. The data-type points represent the outgoing solution 
extracted in the manner described above in Sec. II A. For 
the parameters A =  —15 and =  0.15 in Fig. 3, non
linearities are significant, strong enough to reduce field 
strength by around two-thirds. The outgoing and 
standing-wave solutions were each computed by the 
Newton-Raphson version of the iteration in Eqs. (4) and
(5). We have run models with much stronger nonlinearity 
and have found equally good agreement of the true out
going solution and the extracted approximation. The va-
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FIG. 3 (color online). Tlie computed nonlinear outgoing solution compared with an approximate outgoing solution extracted from 
the computed nonlinear standing-wave solutions. The solid curves show the computed outgoing solution for a scalar model with 
nonlinearity parameters A =  — 15 and M'u =  —0.15 and with source velocity al l = 0.4c. The datalike markers show the approximate 
outgoing solution extracted from the standing-wave solution; the shape of the markers indicates whether the extracted solution 
corresponds to the deconstruction of the linearized solution, the standing-wave solution, or a region of blending of the linearized 
outgoing and standing-wave solutions. The computations of both the standing-wave solution and the outgoing solution were carried 
out using quadrant symmetry with a 40 X 80 angular grid, and with 16001 divisions in x  ranging from \  = 0.02a to 80a. Tlie 
multipole filtering kept only the multipoles corresponding to f  =  0, 2, and 4.

lidity of cffcctivc linearity should, in fact, become ques
tionable not for stronger nonlinearity, but only for physi
cally implausible high source velocity.

In addition to confirming effective linearity, com puta
tion with the model has also allowed some early insights 
about sensitivity to source details. By varying the m ulti
pole content of the inner boundary data, we explored the 
impact o f source structure on the radiation field. The result 
(detailed in Ref. [15]) is in perfect accord with physical 
intuition; the radiation is insensitive to source structure 
unless the source size becomes comparable to the separa
tion of the sources (i.e., unless the moments ascribable to 
the structure of the individual sources are comparable to 
the quadrupole moment due to the separation of the mass 
points). The equivalent question for E instein 's theory is 
more difficult, but we should eventually be able to give 
clear quantitative answers.

III. THE DESCRIPTION OF HELICALLY
SYMMETRIC LINEARIZED GRAVITATIONAL 

FIELDS

A. The physical problem
We use the standard description and notation for the 

linearization of E instein 's field equations (see Chap. 8 of 
Ref. [16]). The perturbations from flat spacetime A ,, are 
defined by

S/xr V nv kyiV’ (12)

and the trace-reversed perturbations h jJV are defined by

h jjV h jjV 2Vfivh’ (13)

where h = rj/JVh For linearized computations, hjJV is

treated as a tensorial field in Minkowski spacetime, and 
indices are raised and lowered with the Minkowskian 
metric T)jjv. In the gravitational Lorentz gauge

h!jl' =  o,

the linearized field equations of general relativity are

(14)

h f x v , a - 1677Tf X V (15)

Our physical problem is that of two points, each of mass 
mQ, in circular orbits, with radius a, angular velocity f l ,  
and hence speed v = aO, through the background 
Minkowski spacetime. The general form of the stress- 
energy source for linearized theory [18] is

/ oo A?V
<5!4)(-ta — za (r)) —j----- j— d r

-0 0  w T  CIT

U'x Uv 8{r -  R{t))mo l l0
-  n m  (16)

in which

11°  =  y  =  l / i / l  —  v 2 Ux "-v-ysiaflt

Uy =  ± u y c o s f l / .
(17)

The signs of Ux and Uy are different for the two source 
particles. One, call it particle 1, is at $  =  f It; the other, 
particle 2, is at 4> = + it. In Eq. (17) the upper sign 
corresponds to particle 1, the lower to particle 2. The 
explicit nonvanishing components, in the inertial t, r, 0, 
4> system, are then

T« = m ^ y —— ^-—-<5(0 -  7t / 2 ) [ 5 ( ^ )  +  8{<p — 7 7 ) ]

(18)
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T tx =  + i/s in O /T "  T ,v =  ± i/c o sO /T "  (19)

Txr =  !/2sin20 /T "  T-v'v =  v2 cos2 Q t T ” 

Txy =  -  u2 s in O /co sO /T ".
(20)

It is worth emphasizing that the stress energy in 
Eqs. ( 18)—(20) is not divergenceless, and hence the solu
tions to Eq. (15) cannot solve the gauge condition in 
Eq. (14). This is to be understood as a feature of the 
approximation method inherent in our use of linearized 
gravity. Our linearized gravity theory is to be considered 
the lowest order level o f an expansion of the solution in the 
param eter u, where the orbital velocity u is of order 
^ G m 0/ a . From this viewpoint, h" is of order i/°, while 
h ' \  h'-'\ and h'~ are o f order i/1, and hxx\  h v'\ and hxy are of 
order v2. The divergence of the stress energy is equivalent 
to a force density (omitted in our model) needed to provide 
centripetal acceleration to the particles. This force density 
is of order v2 and hence the failure of our solutions to 
satisfy the gauge condition is of order v2, as expected in 
this lowest order theory.

We use helically symmetric stress energy in Eqs. (1 8 )-  
(20) as an explicit source when we derive the series solu
tions to Eq. (15). For the solution of Eq. (15) via the 
eigenpectral method of Ref. [151, however, we find ha/3 
in the limit of small distance from the particles, and impose 
this solution as inner boundary conditions on the hom oge
neous form of Eq. (15). To get the near-particle solution we 
use the Lienard-W iechert solution of Eq. (15):

h aP(x) =  — 4hjq
Ua{r)UP{r)

U ■ {x — r(r))
(21)

The retardation condition "re t’ 
evaluated at time such that

means that t is to be

\x -  r(r )| =  0. (22)

For the particle at i/? =  0, we now evaluate this approxi
mately by assuming that the particle moves with constant 
velocity x  =  a , v =  a i l l paft =  f / parl, ~ =  0 , through an 
inertial coordinate frame. At field point /, .r, v, we 
have the following retardation condition for the particle 
at x  =  a:

0 =  - ( /  -  tpm)2 + {x -  a)2 + (v -  vtp.M)2 + z2, (23) 

with the solution

?part =  J 2\j — y v  — -\j{t — vy)2 +  (r2 — 12) / y 2] (24) 

in which

r2 =  {x -  a)2 + z2 + v2. (25)

To express this in corotating coordinates, we next introduce 
the notations and approximations

(26)
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V =  V +  Vt X =  x  z — z 

f 2 =  (x  — a)2 + v2 + ?2.

With these, Eq. (24) simplifies to

'part =  1 -  v y 2y -  y-sjf2 +  y V f .  (27)

and, finally, we can evaluate

U ■ {x -  r ( r ) ) |ret =  ~U°{t  -  tp.M) +  U-'Xy -  utpm)

=  ~ y [ t  -  'part -  y(.V -  ^part)]

=  - y ^ ( t  -  tpatt) + v y y

=  - s j r 2 +  y 2 v2f .  (28)

With Eqs. (17) and (28), the expression in Eq. (21) gives 
us the inner boundary conditions to be used for solving 
Eq. (15):

T
\ J f2 + y~ v~y~

(29)

h ,x =  I?' =  4m ()
T

aJ r 2 +
n 'I-,')

y~v~y~
[+ i/s in O /]  (30)

h ,v =  /?■" =  4 /7?o i , 7  , , -  [ ±  v cos0  /] (31)
\ J f2 + y  u‘.v‘

h xx =  4»2q

h vv =  4»20

y
' J r2 +

:[i/2sin20 / ]  (32)
v y

y
\ J f2 + y~ v~y~

[i/2cos20 / ]  (33)

h xv =  h vx =  4/7?
n y i-

' J r2 +
: [ -  v2 cosO / sinO/].

y  Vy~
(34)

The outer boundary conditions, roughly speaking, are 
the conditions that nonradiative parts o f the field fall off as 
1/ r " ,  and the radiative parts of the field satisfy simple 
ingoing or outgoing Sommerfeld conditions. The details 
are given below following the presentation of the formal
ism for describing helically symmetric tensorial fields.

B. Description of helically symmetric tensorial fields
Imposing helical symmetry on the tensorial field means 

that the Lie derivative of h^,, vanishes along the helical 
Killing field, or

£  f (ft/tr) =  0-

Here the helical Killing vector is

(35)
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(36)

The first expression gives £ in terms of the inertial spheri
cal background coordinates t, r, 6, (b and the second in 
terms of the corotating spherical background coordinates 
t' =  t, r,6,  <p =  <f> — (1?. As explained in Sec. I, our com 
putational unknowns are fields on a grid of corotating 
coordinates. We m ust therefore cast the field equations in 
terms of a set of functions that are “helical scalars," 
functions only of the spatial corotating M inkowski coor
dinates such as {r, 0, <p) {.r, v ,.?}, {X, Y, Z}, or the adapted 
coordinates {%, ©, O}. In the t', r, 8, <p spacetime coordi
nates, for example, helical scalars m ust be independent of 
t '.

The key to this is to project on a corotating basis. A 
corotating vector V is one for which £ g ( \ )  =  0. If V and 
W are both corotating vectors, and h^,. is helically sym 
metric, then h ^ . V ^ W 1' is a helically symmetric scalar, a 
function only of three corotating coordinates. Our ap
proach, then, is to use a corotating basis and to project 
all components of h^,. on this basis.

If not done with some care, projection on a corotating 
basis can destroy the simplicity of the linearized field 
equations (15). Since the inertial basis is covariantly con
stant, the equations separate for the components of h^,:, 
each com ponent satisfies its own equation, and the system 
of equations separates into a set o f scalarlike equations. 
This is not true in general for the scalars formed by 
projections with the corotating bases. Choices can be 
made, however, that result in a high degree of separation, 
and a very simple set of equations.

To achieve this simplicity we start by defining the co
variantly constant orthonormal inertial basis system for the
M inkowski background:

t  zo =  ^ y |te .re r +  e ve v -  2 e - e J  (42)

t 2,+i =  + 5[eAe . + e . e r] -  M e ve . + e .e v] (43)

t 2,+2 =  i[e.re r -  e ve v ±  /(e ve r +  e re v)]. (44)

We next define the corotating equivalents to the basis 
vectors

n  =  n  e r =  e r cos(1? + e v sind? 

e r =  — eA sinfl? + e vcosl i t  e . =  e.,
(45)

and we use these to define the corotating equivalents of the 
basis tensors:

(46)

1
7 ! L

t  „o =  - j= [“ e : +  e :fi] =  t„o (47)

+ 1,
t„,+i =  - y  [i»A ± A )  + A  ± A )» ] =

II =  d, e r =  d ■ e v =  dY ez =  d:. (37)

(48)

to o  =  ^ = l [ e A  +  ® A  +  e ; e j  =  t 0,0 (49) 

- l r
1 2,0 =  [e.re r +  e ve v -  2 e - e J  =  t 20 (50)

t z+1 =  + l [ e re . + e . e j  -  | / [ e ve . + e .e v] =  e +,ll' t 2i+]

(51)

Here we closely follow the analysis given by Thorne [191. 
That analysis uses the method of M athews [201, and in
troduces a set of second-rank symmetric spatial basis 
tensors 12,j of spin 2 , i.e., tensors that transform among 
themselves as an irreducible representation of the rotation 
group of order 2. To these we add an additional spin 0 
spatial tensor t 0,0 and the spin 0 and spin 1 s-rank sym 
metric tensors needed to include the timelike direction

t , im

t „0 =  + e-Il]

t„,+i =  -y-We.v ± A )  + A  ± A )» ]

1 r
to o  =  ^ |e . i-e .v +  evev +  e . e j

(38)

(39)

(40)

(41)

[e A  -  evev ± /(ever + erev)] =  <'' 2,n't
(52)

Note that the tensor bases are mutually orthogonal (with 
respect to a complex inner product) and have the norm al
izations

t * • t =  t* • t =  — l no *no *>*±1 Ln ±  1

t«n • t„„ =  t*2k ' t 2k =  1,
(53)

and that the same orthogonality and normalizations apply 
to the corotating tensor basis as to the inertial basis. The 
tensor h can be written as

h =  + 'P("0)t„o + 'P(n1)t„1 +

^ (00>t 00 +  'P (20)t 20 +  'P (21)t 21 +  'P (2'_ 1)t z _ 1 

'P (22)t 22 +  'P (Z_2)t 2 _2, (54)

or as
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h  =  +  ^ !n0)t n0 +  * ,n n t n , 0 +

+ ^ ,00)t00 + ^ !20)t20 + V m ) i 2\ + 1If!2-_1)t2,_1 

+  ^ !22)t 22 +  ^ !2-_2)t 2. - 2. (55)

From Eq. (53) wc get

=  h»  (56)

^(„°) =  ^ f - n  (57)

'P !nl) =  h,x -  ih1y (58)

^f(00) =  _L_ [/jrr + hyy + f c q  (59)
y/3

^ ( 20) =  Z l[£ v .r  +  yy _  2£ ~ ] (60)
V6

'P !21) =  - h K +  ihyz (61)

^(22) =  |[;-xr _ £yy] _ ^yx (62)

Here and below, wc have dropped functions that arc re
dundant due to the relations

\|f(n.-U =  _(\|f(nl))* =  _(\|f(21)ys

^(2.-2) =  ( x|/(22) j •_ (63)

These relations arc also true if  tildes arc placcd over all 
variables. From the rotation behaviors of the t  basis, given 
above, the rotation laws for the 'P  fields arc

Ijfln n ) _ \Jf(nn) (64)

f»0) _ \Jr(n0) (65)

\] /  (n l ) _= e i i lf \ |f (n l) =  U(nU + i VM) (66)

\Jf < 00) _ \Jr(00) (67)

y  (20) = \|f<20) (68)

\Jf (21) -=  eiilt \|f(2 1 ) =  u i2X) + iVm) (69)

^ (22) = = £,2«O f^(22) =  u {22) + iV{22), (70)

where Uu,b) and Vu,b) arc real functions.
Wc define projections o f the stress energy by analogy 

with the projections o f the h perturbations,

rj' (hh) _  jnt _  f j ^ nn^

' t !n0) =  y/2Tn = ‘f >(n0)

(71)

(72)
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-y'lnl) _  j ’f.r _ ij'ty — (73)

T'fOO) =  -L [7 ™  +  7 -V.V +  T zz ] =  (74)
V3

q '  (20) =  z i [ 7 .v.v +  Tyy _  2Tzz\ = f il0) (75)
S

7 '( 21) =  _ Txz +  iTyz = g - n i t f W '  (76)

'7 '!22) =  l[T rr -  r - T] -  iTyx = e - ^ > f i22\  (77)

Since the inertial basis tensors arc covariantly constant, 
wc can write the field Eqs. (15) as

□^(«w =  ^ i e 7r ' T iah), (78)

where □  is the simple scalar d 'A lcm bcrtian. From the 
relations in Eqs. (64)-(77) wc can then write

e ik i l tn (e - i k i l t y i a h ) )  =  ^ i 67Tf (ah\  (7 9 )

with k =  0 ±  1, ± 2 .
Lastly, for a hclical scalar /  wc have that

eiktitD (e - i m t f )  = Uf  +  2 i k iV d J  +  k2( l 2f .  (80)

The time derivative dtf  here uses the time coordinate of the 
inertial t, r, 0, </> system and, for /  a (hclically symmetric) 
function of the corotating coordinates t, r, 0 , <p, is equiva
lent to —i l d p f .  The field equations for the mctric pertur
bations then take the form

n ^ >  _  2 /M !23 ^  +  k2i l 2^r =  ^ 1 6 t7 ¥ ah\  (81)

where □  is the scalar d'A lcm bcrtian. The explicit equa
tions arc

□  ̂ !0°) =  ^16tt T i m

□^»o) =  ^ 167rr !"0’ 

□^<20) =  ^ 167rr !20’

=  _ i 6  Trr'""’

(82)

(S3)

(84)

(85)

-  2 i i l 2d A M)  +  ( l 2^ !nl) =  ^ 1 6 7 7 'f !nU (86)

□ ^ !21) -  2 i n 2d(Ĉ (2u +  (12^ !21) =  ^1677' f !2U (87)

□ ^ !22) -  4 / ( l23 ^ !22) +  4(12^ !22) =  ^ 1 6 77 ' f !22).

(88)

From Eqs. (29)-(34), and the prescriptions in Eqs. (5 6 )- 
(62) and (64)-(70), wc have the inner boundary conditions.
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^ (nn) =  4m0 ...... 7 ............ (89) , d , dV(abu
# T y W  1  —  (rV ,o6)) =  ± f i j  kUiah) + ---------\

r dr \  dip J
(100)

~ y 2 v 2 in which k =  1 for (ab) =  (n l)  or (21), and k = 2 for
\p«x» = 4 m 0 — ..... \ ......... . - =  (90) {nh\ - m \

V f2 +  r V y 2 V3 Kab)-{22 ) .

2̂ , v 2. I). Series solutions
Tjr (_o) _  4mo _  j  (9 i ) develop series solutions o f Eqs. (82)—(88) we start by

7 v  '  using the expressions in Eqs. ( 18)—(20), for stress-energy
components o f the symmetric pair o f particles, in the

=  4m n_____ T _____ ( - ws„nfcns(x)]) (92.) general expressions in Eqs. (71)-(77). The nonvanishing
■sjr2 +  y 1v 1v1 & results are

q ' inn) = m0y  ^  7 °^ 8{0 -  tt/2)[S{<p ) +  8{<p -  77)]
Ui22) =  4 mQ T  (  -  ^  (93) 

J f 2 + y 2i r v 2 \  2 )  ’\ j r 2 +  y V y 2 \  2 J (101)

TjpfnO) =  fy(21) =  y(21) =  yinX) =  y(22) =  a  (94) f  M)  =  + i v f lnn) ( ]02)

C. Outer boundary conditions for helical scalars
The quantities '^ !nn), '̂ |><20), are nonradiative

multipoles that fall off as 1 / r. The radiative parts o f these 
fields satisfy a Sommerfeld condition

J L [ r<jr]= ± £ l ± [ ry l
ar a<p

(95)

in which the upper and lower signs correspond, respec
tively, to outgoing and ingoing waves. In practice, special 
attention is not necessary for the nonradiatable multipoles 
0f  r<nn\ ''If<00), ^nOl^ Sommerfeld conditions
can be applied to the total field, without regard to multipole 
content.

Some care m ust be taken with the Sommerfeld condi
tions for ''j/(nl), •'p'(21), and 1|f !22). The Sommerfeld condition 
applies to the inertial projections of h nj3, and hence to 
''F<nl), ''F!21), and ''F!22). W ith the relations, in Eqs. (6 4 )-  
(70), between these quantities and the "helical scalars” 

1l f!21), ''I'4221 used in computation, we arrive at the 
conditions

rj-' (20) _  _ ' ^ L q ' {nn) ■j'(OO) =  ' ^ L q ' {nn) (103)
V6 73

ry' (22) _  V~ g ' i»»>
2 '

(104)

As in Eq. (19), the upper sign in the expression for f inl) 
indicates the particle at ip =  0 , the lower sign indicates the 
particle at ip =  77.

W ith these expressions, Eqs. (82)-(88) take the explicit 
form

□ 1l r!"") =  — \ 6 tthiq —-— j-^-8{cos6)y[8{ip) + 8{ip — 77)]

i | r  (nO) _  Q

□ \J>(00) =  — 1 67T'«70 —----T~— 8 {c os 0 ) —jL
V3

x [5(^0 + 8{<p -  77)]

(105)

(106)

(107)

dr
: 0 — [ / V ^ " 1’] (96) 

dip

—  [ / V ^ 211] =  ± 0  —  [ / - ^ 1l f!21)] (97) 
d r d ip

—  [re2i,p̂ a2)] =  ± 0 —  [re 2,^1l f,22)], (98) 
d r d ip

□ i |r !20> =  + I 67rm 0—— 5— ^<5(cos0)—p- 
a* V 6

X [5(^0 +  8{ip -  77)]

n ^ " 1’ -  2 /o 2a , ^ !nl) + o 2̂ ”1'

(108)

i\6TTm$ — — 5-^< S (co s0)t'y[(S(^) — 8{tp — 77)]

or (109)
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'p ,21) =  0 (110) or

PHYSICAL REVIEW D 74, 024013 (2006)

□ t ,22> -  4 /0 2affî ,22» + 4 0 2t ,22»

— + \ 6wmQ—— 5— -<5(cos0) — — [<5(^p) +  S(tp — 77)], 
cr 2

(111)

where

r* d r \  dr 

1
n -

1 d ( .  d ^ '
---------------- S1110—

r ' s i n 8 d 6 \  dff

d2V
(112)

vr- s i i r0  J dtp"

For 'p ,'" ',j ^ 20», the equations all have the form 

, S(r — a)
□<P =  K- ■ S(cos0)[S(ip) +  S(tp — 77)] (113)

in which the value o f K  can be read from Eqs. ( 105)—(108). 
The outgoing solutions are constructed in the usual manner 
from the spherical Bessel and Hankel functions:

•qr _  ^ 2 i i \ K  ^  mj^{mi' lr<) h ^ ){mi'lr>)
€,m even

x  r (Hio / 2 . 0)y c,m  <p) (114)

+  4K i l £  ]T  m Y * j7 r /2 ,O )Y {„ ,(0 ,0)
£ m—2,4,6

X j ( (m i l r <) Im{h[X) (mi lr^e""*} . (115)

By expansion in spherical harmonics, then by the usual 
Green function construction, the outgoing solution for 
'P (' '11 is found to be

tyM)  =  JJ(„ 1> +  iVin 1)

= 32Trniovy'y_
~te -i<p

2 C + \

X + 11 X  (m + 1 )yo > A  0 ) Y U e -  0)

(116)

m—odd, # — 1 

+  1 /'< )/i I1 f((«J +  \ ) i l r >)em,(f

or

€ odd

f— sirup r<
\2(.  + 1) 7C+1

>7 M / 2 . W ( - x i e , 0) +  a  £  (m +  1)17, o)Ytj e , o ) M ( m  +  \ ) i i r<)
m—1,3,5,...

and

X [cosm<pj(((m +  1 )(lr> ) — sinm<pn(((m +  1 )(lr> )] — i l  ^  (m +  1)FJ‘ _m_7{Tr/2, 0)Ff 0)
m =  l,3,5,...

X j (((m  +  1)O r<)[cos((m  +  2 )ip)j( ((m +  1 ) i l r >) — sin((m +  2)<p)n^{{m +  1 )(lr> )]

coŝ c

(117)

y M )  =  32wm0v y  ^  — — - -  - ^ Y }  _ x{tt/2,  O)yf,_ ,(0 , 0) +  i l  ^  (m +  1 )Y*m(Tr/2, O)Y(m(0, 0)j (((m +  1)O r<)
( odd*- ^ +  r >  - ..= 1  ^m—1,3,5...

X [cosmipn(((m +  1 ) i l r >) +  sinm<pj(((m +  1 )(lr> )] +  i l  ^  (m +  1)Fj‘ _hi_ ,(7 t/2 , 0)Ff 0)
=1,3,5..

X j ( ((m  +  1 ) ( l r< )[cos((m +  2)ip)n(((m +  1 )( lr> ) +  sin((m +  2)<p)j(((m +  1 )(lr> )] 

Similarly, the outgoing solution for 'P 1221 is found to be

(118)

^<22, =  ^,22, + /v <22»

=  \6Trm0v 2y  ^ Y I _ 2(tt/2,O)Y(,-2(0, 0)
€=even

X j (((m  +  2) i l r <) h ^ i((m +  2 ) i l r >)e",l(f

W T i ) & - , a  I  (”' + 2)»'t*,„(V2,0)F,„(«,0)
1 > ’ >  m = e v e n . +  - 2

(119)

or
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€ even
^  - ^ t  YI_2{7t/2, 0)Yf' - 2(6, 0) + n  £  {m + 2)F*„(tt/2, 0)Y(m{6, 0)

 ̂ m —0 9 4
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X j ( ((m +  2 ) ( l r < )[cosm ^n<((m  +  2 ) f l r> ) +  sinm<pjt {{m +  2 ) ( l r > )]

+  (1 £  {m +  2 )y * _ m_4(7r/2, 0)y< _ m_4(0, 0)y'<((m +  2 )(lr< )[cos((m  +  4)<p)nt {{m +  2 )( lr> )
m =0.2.4...

sin((m +  4 )<p)jt ((m +  2 )( lr> )] (120)

and
sin2(p

y (22) =  , 67TmQU2 y  £  Y I _ 2(tt/2,  0)Yf' - 2(6, 0) +  a  £  {m +  D Y ^ t t / I ,  0)Y(m{6, 0)
<evenL\Zf + >> m=n?A-m = 0.2.4--

X  j f {{m +  2)(lr<)[sinm <pn( ((m +  2 )( lr> )  — cosm<pjt {{m +  2 )( lr> )]

-  (1 £  {m +  2)Tt _m_A{ir/2, 0)V( - m- 4{d, 0) j ({{m +  2 )(lr< )[sin((m  +  4 )<p)n({{m +  2)(!>>)
m =0.2.4-

-  cos((m +  4 )<p)jt {{m +  2 )( lr> )]

The expressions for UinX), \AnX), Ui22), and Va2} have been 
given as sums only over nonnegative values o f m through 
the use of the relationship j ( (—x ) h ^ \ —x) = j ( {x)X  
U ^ i x ) )  .

IV. LINEARIZED GRAVITY IN ADAPTED 
COORDINATES

A. Field equations in adapted coordinates
The field equations to be used for computation are the 

source-free forms of Eqs. (82)—(88). The first four o f these 
equations are

□¥•(«*> =  0 (122)

for {ab) =  (00), (nO), (20), and (nO). In real form  the last 
three o f these equations are

(123)D U iab) +  2 k t t 2dtpVu,b) +  k2a 2Uiab) =  0 

D V u,b) -  2k t t 2d ^U u,b) +  k2i l 2Vu,b) =  0 (124)

with k =  1 for {ab) =  ( n l ), or (21), and k = 2 for {ab) =  
(22).

The form  of the scalar d 'A lcm bcrtian in adapted coor
dinates is given in Eq. (8) of Ref. [15] as

'v'v 3 ; r

32̂ 32̂
2A  vd>------77 + 2j4(jrt> ———77 + B  y

* 3*3<I> u 303<I> 'v

32̂  . 32̂
2A x

3 ^
d*

B ,
3 ^
3 0

Bd
3 ^

' 3 cT>'

and the adapted-coordinate form of 3^ in Eq. (27) of 
Ref. [15],

d<p V 3 0  3 3 *
(126)

(121)

Here the A, B, and F  coefficients are known, real functions 
o f * , 0 ,  that are given explicitly in Appendix A of 
Ref. [15] and are repeated in the Appendix of the present 
paper.

B. Inner boundary conditions in adapted coordinates
To express the inner boundary conditions in terms of the 

adapted coordinates, we approximate

y v T  =  (Z — a)" +  X" -j- y~u~X~

y 4
=  [1 + y 2i/2sin22 0 c o s2(I>]— ,

4 a 2

0 { X 6/ a % (127)

and we write Eqs. (89)—(94), for the *  —> 0 limits of the 
fields as

=  4  m 2a y 2

* V l  +  7 2!;2sin22 0 c o s 2(l3 

2a y 2

(128)

i|r (00) _

* 2\ / '  + y 2f 2sin22 0 c o s 2<I> V V6.
i|r (20) _

* 2\ / '  + 7 2L'2sin22 0 cos2(I) V3 

2 a y 2

- =  (129)

(130)

(125) Vtn]) = 4 mc
2a y 2

* V l  +  y 2 !/2sin22 0 c o s 2(I)
(— v sgn[cos0]) 

(131)

U122) =  4 mr ■ 2 ° T ------- 1 - 1- ]  (132)
* V '  + 7 2L'2sin22 0 c o s2<l3 V 2
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■q><»0) =  y(21) =  y(21) =  u M )  =  y(22) =  Q (133)
PERIODIC STANDING-WAVE APPROXIMATION: . . .

C. Outer boundary conditions in adapted coordinates
The outer boundary conditions in adapted coordinates 

follow from Eqs. (95)-(98) with r replaced by x  aild 
replaced by the expressions in Eq. (126). For the fields 
? (""), 1fr(00), ^ {"°K and ^ (20), the conditions are just those 
used for the scalar field in Ref. [ 151. For the complex fields, 
the conditions are a modification o f Eqs. (99) and (100), 
and are the tensorial equivalent o f the adapted-coordinate 
outer boundary condition (11) used for scalar fields; aside 
from corrections o f order ( a / x ) 2 these results are

I ± i x U ^ _  ± n ( - * v «  + +
X d x  \  3 0

dUUlb)\
+  r * ---------  (134)

d x  J

X d x  \  9 0

+ r j r * V ^ \  
d x  )

(135)

where

(136)
k =  1 for (ab) =  (n l), (n0), (21) 

k = 2 for (ab) =  (22).

V. NUMERICAL RESULTS

The field equations in adapted coordinates for 
^ (00), 'P (',0), and ^ (20) are defined by the homogeneous 
wave equation (122) and by the form of the d ’Alembertian 
in Eq. (125) with the coefficients in Appendix A. These

equations are subject to the inner boundary conditions in 
Eqs. (128)—(133) applied at some smallest value Xmm ° f  X- 
The equations m ust satisfy the outgoing or ingoing outer 
boundary conditions Eq. (11) applied at a largest com puta
tional value ;^max o f x-  In the linear theory each o f the 
scalarlike fields 1fr('m), 1fr(00), ^ (00), 1fr(20) is completely 
decoupled from every other field, both in the field equa
tions and in the boundary conditions. Furthermore, the field 
equations and boundary conditions have precisely the same 
forms as those for the scalar field problem. The com puta
tional problem, therefore, is precisely that o f  Ref. [151 
where it was shown that the computed solution agrees 
accurately with the numerically evaluated series solution 
in Eq. (115).

In the computation o f the complex fields ^ ("1) and ,vp'(22), 
features arise that are different from those in Ref. [151. 
Here the field equations (123) and (124), and the outer 
boundary conditions (11), couple the real and imaginary 
parts. [This would apply also to the complex field ,vp'(21), but 
due to the inner boundary condition ,vp'(21) =  0 in Eq. (133), 
the field ,'P'(21) m ust be identically zero in linearized 
theory. 1

The series solutions for U{nX) and V7*"1' are given in 
Eqs. (117) and (118) and those for l / (22) and V {22) in 
Eqs. (120) and (121). Figures 4 and 5 give a comparison, 
for two different source velocities, between these series 
solutions and the solutions o f the eigenspectral method: 
adapted coordinates and multipole filtering based on the 
modified multipoles appropriate to the discrete angular 
operator.

A feature that stands out in the figures is the disagree
m ent at small x  between the series and eigenspectral 
solutions for V(,il) and for U{22K The failing here is in the 
convergence o f the series solutions in Eqs. (118) and (120). 
The V(h1) and U{22) fields diverge at * 0, hence these 
series converge very slowly at small x-  Numerical experi-

PHYSICAL REVIEW D 74, 024013 (2006)

yja "t/a

FIG. 4 (color online). A comparison, for ail  =  0.3, of outgoing linearized gravitational fields computed by series summation (solid 
curve), and by the solution of the coupled partial differential equations of the eigenspectral method of the PSW approach (dashed 
curve). The fields are shown along a line (the 0  =  0 line) outward through the source. For these computations, the grid in x, ct* was 
1500, 16, 32, respectively. The entire angular space, O s 0 < j t , O s ( 1 i <  2tt, was used. The inner boundary was at ^ min =  0.1« and 
the outgoing boundary condition was imposed at ^ niax =  30«. The multipole filtering included all modes up through the octupole, 
approximately C = 3. (The actual discrete eigenvalues differ slightly from integer values.) See the text for a discussion of the 
numerical limitations of the series summation.
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’t/a 't/a

FIG. 5 (color online). A comparison, for al l = 0.4, of outgoing linearized gravitational fields computed by series summation (solid 
curvc), and by the solution of the couplcd partial differential equations of the cigcnspcctral method of the PSW approach (dashed 
curvc). The details of the computations arc the same as those for Fig. 4.

mcnts summing very large numbers o f terms and evaluat
ing them with arbitrary precision arithmetic confirm that 
the series solutions for V{nl) and U{22) in Figs. 4 and 5 have 
large errors. The series for U(nl) and Vl22i, on the other 
hand, are convergent at x  =  0 and show good agreement 
with the small-;^ form o f the eigenspectral solutions.

The series solutions are highly accurate for x >  1, so the 
differences between the series solutions and the eigenspec
tral solutions for large x  are an indication o f the limitations 
o f the eigenspectral method. Those differences are larger 
for Cl >  0.4 than for Cl >  0.3. Computations (not pre
sented here) for Cl >  0.5 show significantly larger error. 
The origin o f  these errors is the relatively coarse com puta
tional grid used, and the limited number o f multipoles used 
in the multipole filtering. (This is equivalent in the com 
putation to the coarseness o f the angular grid.) The error is 
simply that due to truncation error, and is expected. As Cl is 
increased the gradients o f the fields increase and truncation 
error becomes more important. These limitations are im 
posed by the fact that the computation was done on a 2 GB 
RAM  workstation. Greater accuracy, and hence higher 
velocity, would be possible on larger machines.

To test whether our numerical techniques might be 
sufficient for the next steps in our program, we introduced 
a simple nonlinearity into the equations of Sec. IV

H 2 + a S
(137)

in which H  is a constant and S is defined by

C — „Atrl Hf! I »/?
^ — V " . A  "•<* V ( i j3 (138)

with h”" =  (n • h ) 'r.
W ith the notation o f Eqs. (54) this can be written as

(139)

Since and ty{n0) are “ helical scalars," i.e., functions 
only o f corotating coordinates, for (ab) =  (nn) or («0), we 
have
^ A v y S f U l b i y S f U l b i  __
• A ’a  f  A ,cr

=  - n 2^ (f  >+ (v *  • !1

+ (v@ • '¥ ‘(lbi.0 .0 
+  (V0) •

in which

V0) • V0)

V y -V y  =  -^
X"

v ©  • v ©  =  4
;r4

Q +  a2 +  x 2 co s(20 ) 
,y4sm2(2 0 )

(140)

(141)

(142)

(143)

Q = yja4 +  2a1 x 1 co s(2 0 ) +  x 4- ( 144) 

For ty*"1' we have which results in

<p

+ ( V *  • v ^ ) ^ u ( ^ u )* +  (v© • v © ) ^ (;;u ( t (;;u )* +  (vo> • v a > ) ^ u ( ^ , u )*

- n 2[(t/("1»)2 + (k ("u)2] + 2 c i \ v M ) v % l) -  u M ) v % l)} - a \ ( u % l))2 + ( v u’l))2] 

+ (v* • v ^ ) [(^ u)2 + ( ^ u)2]+ (v© • v©)[(t/(;;u)2 + (< *)2] + m  • vqw%1))2 + ( O 2].
(145)

■f
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X/a
FIG. 6. The field 4f,"")(^) for the toy nonlinear model de
scribed in the text. Curves arc marked with the value of the 
nonlincarity parameter k: the parameter H was set to unity and 
the models were run on a 1500 X 16 X 32 grid for the full x- ®- 
<t> space (i.e.. no symmetries were used), with Xmm/a =  0.1. and 
Xxm\/a = 30. In the multipolc filtering, modes through octupolc 
were included for all fields. Comparison with the k =  0 linear 
solution shows the importance of nonlinear cffccts.

In the modified theory represented by Eq. (137), the equa
tions that determine and ty '"1’ remain unchanged, so 
these fields are found with linear equations. The nonlinear 
occurrence of in S, however, means that solves 
a nonlinear equation.

The solution to this nonlinear problem requires the 
iterative techniques that have previously been used for 
nonlinear scalar models in Ref. [151. Results from the 
applications o f these iterative methods to the modified 
theory are displayed in Fig. 6 for various values o f the 
nonlinearity parameter k . For all values o f k , the inner 
boundary conditions are taken to be those o f the linear 
problem and are imposed at ^ mjn =  0.1; for all models 
outgoing boundary conditions are imposed at ^ max =  30. 
A comparison, in that figure, with the k  =  0 linear solution 
demonstrates that the cross-coupling o f fields and nonline
arity has a strong effect on the solution to the toy model, 
changing the amplitude of the waves by an order of 
magnitude. The purpose o f this nonlinear toy computation 
is not to extract physics, but simply to suggest that the 
iteration techniques previously developed will be adequate 
at least for a range of nonlinear models.

VI. SUMMARY AND DISCUSSION

This paper has laid out the infrastructure for describing 
helically symmetric linearized gravity, and more generally 
for describing helically symmetric second-rank tensors in a 
flat background. The fields have been written in terms of

“ helical scalars," i.e., functions only of corotating coor
dinates (equivalently, labels on the curves of the helical 
Killing congruence). The paper has, furthermore, shown 
how to formulate computational problems in linearized 
general relativity in terms o f these helical scalars. The field 
equations, sources, and inner and outer boundary condi
tions have been written in this format in Sec. III.

A welcome feature of the formulation in Sec. Ill is the 
extent of the separation of “ com ponents" of the field. In 
the starting point, the Lorentz-gauge field equations 
h/xi-,a’a =  — 16-zrT’/4r, a separate equation is satisfied by 
each component hjll, with respect to an inertial Minkowski 
basis. That attractive feature cannot be taken over directly 
to the helically symmetric problem since the components 
with respect to the inertial basis are not helical scalars. It 
turns out, however, that the formulation o f the linear prob
lem in helical scalars leads to four real fields 
ty,(00,J and ^ ,20,J and three complex fields ■vj>,21,j and 
’I '1221, and that these four real and three complex fields are 
not mixed by the field equations or the inner or outer 
boundary conditions. The only mixing in the problem is 
between the real and imaginary parts of the complex fields.

Since the three corotating coordinates are general, this 
paper has also presented the explicit formulation o f the 
computational problem in the adapted coordinates that 
were found in Ref. [151 to be extremely useful. The nu
merical results in Sec. V o f the present paper demonstrate 
that the numerical challenges presented by linearized grav
ity are the same as those for the linear scalar model in 
Ref. [151. Indeed, the numerical problem for the four real 
fields is exactly the same as that for the linear scalar field. 
For the complex fields, the new features are minor mod
ifications of the boundary conditions and mixing of the real 
part and o f the imaginary part o f each of the complex 
fields. These new features do not appear to present any 
new numerical difficulty, and in fact no difficulty was 
found. Furthermore, a trial with a toy nonlinearity suggests 
that there are also no new problems in dealing with non
linear terms, except those of complexity.

Although the present paper deals almost exclusively 
with linearized gravity, the infrastructure developed here 
is more widely applicable. Our next step in the PSW 
program is to solve the post-M inkowskian problem for 
the orbiting point masses. The equations to be solved in 
this method have the same operator on the left-
hand side, but have “ sources" quadratic in h^, .^  on the 
right. (There is also a second derivative on the right m ulti
plied by an undifferentiated h^,:, this term can be treated, 
like the others, as a perturbation, or it can be moved to the 
left to modify the principal part.) In the usual spirit o f a 
post-M inkowski approximation, we could solve first for the 
first-order fields and treat them as known sources. 
Alternatively, in a numerical approach, we could treat the 
equations as a given nonlinear problem. Either way, the 
formalism developed in the present paper goes over di-

PHYSICAL REVIEW D 74, 024013 (2006)
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reedy to the post-M inkowskian problem. Again, the fields 
can be described with four real and three complex helical 
scalars, and the equations and boundary conditions follow 
from the simple relations between the helical scalars and 
their inertial equivalents, i.e., relations like those in 
Eqs. (64)-(70).

The full Einstein equations can also be viewed as a 
higher order extension of the post-M inkowski equations. 
In principle, the only change from the post-M inkowski 
problem is the inclusion of terms of all orders oil the 
nonlinear right-hand side of the field equations. Again 
the form alism  developed in the present paper should suf
fice for the description of the problem, and should be 
convenient. In particular, helical scalars of the background 
M inkowski space will be helical scalars o f the full metric. 
In practice, new problems will arise. One is the question of 
the relativistic Kepler's law: what is the appropriate rela
tionship relating the source strength (encoded in inner 
boundary conditions), the coordinate separation of the 
sources, and the parameter f i?  The post-M inkowskian 
approximation, for which the answer is known, will help 
clarify how this is to be handled in full general relativity. A 
more subtle question is whether it is justified to use a 
form alism  based 011 weak-field structures to describe 
strong gravitational fields. For highly curved spacetimes 
do M inkowksi-like coordinates exist with which we can 
use the formalism of the present paper? Possibly relevant to 
this is the fact that in our computations we can impose 
inner boundary conditions at some distance from  the 
sources, so that the effects of strong fields can be some what 
controlled.

In any case, the relative simplicity of the description 
presented here, along with the absence of any new com pu
tational difficulties (that is, difficulties not present in the 
scalar problem), is a reason for optimism that the next steps 
can be taken reasonably quickly.
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APPENDIX: COEFFICIENTS FOR ADAPTED 
COORDINATES

The adapted-coordinate coefficient A, B, and F  are listed 
here. Derivations are provided in Ref. [15].

As in Ref. [15] the coefficients needed for the wave 
operator in Eq. (125) are written in the form:

PHYSICAL REVIEW D 74, 024013 (2006)

2 -

\ = 9 - -  Q 2^XX v2 XX
A

(A l)

■et) =  “ T _  ^ ^ 0 0  
X

(A2)

a 2 +  ^ 2co s(2 0 ) n , T 
A,4sin2(2 0 )  °

(A3)

AxS = (A4)

A x < 5> f i  A x (j> (A5)

A fc)4, =  — O i A04) (A6)

B
a2 + 2Q

x (A7)

=  (A8) 
V e  -  cr -  X 1 C O S ( 2 0 )  X

B q> =  - o 2^ ,

where Q is given in Eq. (144).
The expressions that are multiplied by f i 2 are

(A9)

Axx
a 4sin2(2 0 )co s2$

n
AT

(A 10)

A

- _  cos2$ [^ 2 + a 2 cos(20)]2
A (-)(-)----------------------- j-----------------  ( A l l )

X

. Q + a2 + x 2 co s(2 0 )
A * *  =  s m - $ ^ ------ ,-----^ ^  (A 12)

Q -  cr -  x~ co s(2 0 )

a 2[ x 2 + ci2 co s(2 0 )] s in (20 )cos2$
*fc>

X

A
a2[Q + a2 + x 2 co s(2 0 )] s in $  c o s$  

A3

(A 13)

(A 14)

- _  sin(O)) cos(0))[a2 +  * 2 co s(2 0 ) +  Q][x 2 + a2 co s(20 )]
A a * -  x* si[l(20)--------------------------------  <AI5)
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a 2[cos2(<f>){3a2cos2(2 0 )  — Q — 2 a2 +  ^ 2 cos(20)} + Q + a2 + ^ 2 cos(20 )]
B x = -------------------------------------------------------3------------------------------------------------------ (A16)

A

PERIODIC STANDING-WAVE APPROXIMATION: . . .  PHYSICAL REVIEW D 74, 024013 (2006)

_  (3£? +  +  ^ c o s 2 0 ) s in (O )c o s (O )
B 4>----------------p.------ i------ i-----^ -----------  (A l/)Q — cr — x~ c o s2 0

are

J o  +  a2 +  y2 co s(2 0 )
B =  V 4 - frcos +  d), (A18)

X6s/Q  ~  a1 ~  ;T e o s (2 0 )

where

c =  a 2^ 4 co s(2 0 ) + 2a4 x 2 + 4 a 6 co s(2 0 )

+ 4 a4^ 2(co s(2 0 ))2 -  4 a4<2 c o s ( 2 0 ) -  2a2Q x 2 -  X6

d = x 4(a2 co s(2 0 ) + x 2)- (A20)

The coefficients needed in Eq. (126) to express the 
Sommerfeld boundary condition in adapted coordinates

p,v =  / z —  -  x — \  (a ? d
BX d Z /  X W

0 / - 3 0  ^  d 0 \ cos<f>(a2 cos(20) + x 2)

~  BX d Z j  ~  x 2
(A22)

_  (  ~ 3 0  . ^ 2 s in O sin (2 0 )

\ ~ d %  X J I J  ~  - a 2 -  x 2 co s2 0  +  Q
(A23)

Note that there were errors in the expressions given for the 
Ts in Ref. [151.
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