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a  b  s  t  r  a  c  t

Utah  electrode  arrays  (UEAs)  are  highly  effective  to  measure  or stimulate  neural  action  potentials  from
the central  or peripheral  nervous  system.  The  measured  signals  can  be used  for  applications  including
control  of  prosthetics  (recording)  and  stimulation  of proprioceptive  percepts.  The  UEAs  are coated  with
biocompatible  Parylene-C,  and  the  electrode  tips are  deinsulated  to  expose  the  active  electrode  coated
with sputtered  iridium  oxide  films  (SIROFs)  to  transduce  neural  signals.  In  conventional  UEA  technology,
the  electrode  tips are  deinsulated  by poking  the  electrodes  through  aluminum  foil followed  by an  oxygen
plasma etch  of the  exposed  areas.  However,  this  method  suffers  from  lack  of uniformity  and  repeatability
and  it is time  consuming.  We  focus  on laser  tip-deinsulation  technology  that  can  provide  a  repeatable,
uniform,  and  less  time  consuming  tip exposure  for UEAs.  The  laser  deinsulated  SIROF  area  is  characterized
by  X-ray  photoelectron  spectroscopy  (XPS),  scanning  electron  microscope  (SEM),  atomic  force  microscope
(AFM), and  by  measuring  the  impedance  of the  exposed  sites.  The  value  of  impedance  and  XPS peaks
showed  that  the Parylene  was  clearly  removed.  The  damage  induced  by laser  irradiation  on the  SIROF
film  was  also  investigated  to understand  the selectivity  of  laser  deinsulation.  Thicker  SIROF  films  showed
better  resistance  to fracture.  The  results  indicate  that  laser  deinsulation  is  an  effective  method  to etch
Parylene  films.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Neural interfaces for chronic implantation need to be encapsu-
lated by a biocompatible material to protect the device from the
harsh physiological environment. In addition, the encapsulation
material must be biocompatible in contact with the neural tissue in
the vicinity of the device. Parylene-C, which has a polymer structure
as presented in Fig. 1, is a representative material for encapsulation
in biomedical implants and has good adhesion, uniformity, electri-
cal insulation, and biological and chemical inertness, is non-toxic
to body tissue [1–3].

Neural recording and stimulation require the removal of the
Parylene from the active electrode tips of the UEA to facilitate
transduction [4].  In very early designs, the recording tips of the
microelectrodes were exposed either by using a heating element to
melt back the insulation or by a high-voltage arcing technique [2].
The heating method usually led to the breakdown of the insulation
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near the tip after implantation. The high voltage arcing technique
resulted in poor adhesion of the Parylene insulation at the tips and
caused tiny fractures along the electrode shaft, which decreased
the impedance values. In addition, these methods made it diffi-
cult to control the size of the tip exposure. Several other methods,
such as chemical etching, cannot be used because Parylene is
inert to most solvents. Therefore, dry etching processes are cur-
rently considered the most suitable method, and these include
plasma etching, ion reactive etching, and deep reactive etching
[5].

Oxygen plasma etching is the standard method to remove Pary-
lene from the electrode tip in UEA manufacturing [6]. Both the
photoresist and the aluminum foil mask with oxygen plasma etch-
ing have been investigated in UEA technology [7–9]. However,
the photoresist etching mask changes the surface properties of
the Parylene. Therefore, poking the electrode tips through an alu-
minum foil to the desired exposure length for deinsulation of the
Parylene has been adopted as a regular masking procedure in UEA
technology. However, the poking of an aluminum mask is a time
consuming process that is not practical on a production scale,
and it also has an inherent problem of non-uniformity and poor
repeatability leading to a large variation in the impedance values.
Moreover, the foil mask cannot be used for more complex geome-
tries, such as variable height electrodes.

0925-4005/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.snb.2012.03.073
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Fig. 1. The structure of Parylene-C.

To overcome the shortcomings of an aluminum foil mask, dein-
sulation using a laser is investigated as an appropriate alternative.
Laser ablation of Parylene has been used since the early 1990s [10].
Laser deinsulation has also been demonstrated to remove Parylene
from biomedical microelectrodes based on Pt tips [11,12], and to
ablate micron-thick Parylene films from a copper surfaces [13].

There are two primary mechanisms for laser etching, vaporation
and photoablation, which result in removal of surface layers [14]. To
use the laser photoablation method for Parylene deinsualtion from
UEA tips, several processing parameters, for example, laser wave-
length, pulse duration, the number of pulses, and fluence, need
to be optimized. In this study, we used the laser ablation method
for deinsulating the Parylene-coated iridium oxide tips of the UEA.

The trade-off between the fluence and the number of pulses was
an important consideration for selective photoablative removal
of Parylene without leaving any cracks or damage in the iridium
oxide active electrode surfaces. Using a KrF (248 nm)  excimer laser
appears to be a useful ablation method due to a strong absorption
characteristic of the Parylene as well as the iridium oxide film in
the UV region below the wavelength of 280 nm.

We first investigated the laser ablation of the Parylene-coated
iridium oxide film deposited on flat silicon substrates to study the
influence of the laser and characterize the laser ablated iridium
oxide surfaces by scanning electron microscopy (SEM), atomic force
microscope (AFM), and X-ray photoelectron spectroscopy (XPS).
Based on the optimization of the laser parameters on planar sur-
faces, we implemented the laser ablation method to deinsulate the
Parylene from the tips of 3-D Utah electrode array.

2. Experiment

2.1. Fabrication of planar structures and microelectrode arrays

The flat substrates prepared for initial optimization of the laser
deinsulation parameters consisted of film stacking similar to the
Utah electrode array. The samples were prepared using p-type
(100) single crystal silicon wafers. Titanium (50 nm), followed by
iridium oxide (400, 800 and 1100 nm)  were deposited on the silicon

Fig. 2. (a) Scanning electron micrograph of UEAs (left) and the backscattered image of the electrode array in detail (right) and (b) schematic view of the process flow for
wafers-scale fabrication of the Utah electrode array.
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Fig. 3. Schematics diagram of the laser ablation system.

substrates by DC and Pulsed-DC sputter deposition, respectively
(TMV Super Series SS-40C-IV Multi Cathode Sputtering system).
The titanium acts as an adhesive layer and was deposited in
Ar ambient with flowing of 150 sccm at a chamber pressure of
20 mTorr and sputtering power of 90 W for 5 min. The titanium
target was 99.6% pure, 3 in. in diameter and 0.125 in. in thickness
(KurtJ Lesker, Pittsburgh, PA). SIROF was deposited in Ar and O2
plasma with both gases flowing at the rate of 100 sccm. The sput-
tering power was 100 W with deposition pressure of 10 mTorr.
The deposition rate was 10 nm/min. The pulse width and fre-
quency were 2016 ns and 100 kHz, respectively. The iridium target
was 99.8% pure, 3 in. in diameter and 0.125 in. in thickness (KurtJ
Lesker, Pittsburgh, PA). Three different thicknesses of iridium oxide
films were deposited on flat substrates in order to investigate film
damage from the laser. Annealing (Lindberg Annealing Furnace,
375 ◦C using 98% Ar and 2% H2 forming gas) was  performed to
improve the adhesion between the deposited films and the sub-
strate, and aid in the formation of Ohmic contacts. Parylene (3 �m)
film was deposited by chemical vapor deposition using a Paractech
3000 Labtop deposition system. To improve the chemical adhesion
between the Parylene and the underneath film, 0.5% Silquest A–174
silane was used. Finally, the Parylene film was  removed from the
active area by the laser system (Optec MicroMaster Excimer Laser,
KrF 248 nm).

The UEA is a 3-D silicon-based structure consisting of a 10 × 10
array of tapered silicon electrodes with a length of 1.5 mm and
pitch of 400 �m between tips as shown in Fig. 2(a). The detailed
SEM image on the right presents several electrodes just after tip
metallization which shows the connections to iridium oxide film

that form the active surface. Fig. 2(b) is the schematic view of the
process flow for wafers-scale fabrication of UEAs. To make the
UEAs, a 2 mm thick, p-type, c-Si (1 0 0) wafer with the diameter
of 75 mm and a resistivity of 0.01–0.05 �·cm was prepared as
substrates. Back-side dicing, glassing and grinding were needed to
form the back side metal pad for wire bonding. Front-side dicing
and wet etching were then used to shape the electrodes. Then,
array singulation, tip metallization and Parylene deposition were
performed to complete the devices. During the tip metallization,
titanium and iridium oxide were deposited by DC and Pulsed-DC
sputter deposition, respectively, and annealed in a way similar
to that described for the planar substrates. For the last step, tip
deinsulation was  carried out. The fabrication of UEAs is described
elsewhere in detail [7,15].

2.2. Excimer laser system and optical layout description

The laser deinsulation system used in this study includes an
excimer laser, sophisticated beam delivery optics, a precision sam-
ple motion stage, and a computer with a flexible control software as
shown in Fig. 3. The wavelength of the laser is 248 nm (KrF) which
is capable of photoablating the Parylene films. The laser operates in
a pulse mode, typically pulsing at a rate of 100 Hz. Pulses are 5–6 ns
in duration. The fluence can be controlled by laser energy.

This system uses projection optics where the laser beam is
passed through a circular mask, and then was  demagnified and
focused on the sample. A circular mask was  used because the
electrode base is circular. The sample for laser deinsulation was
mounted on a vacuum chuck. The sample motion stage had a
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Fig. 4. 30◦ tilted scanning electron micrographs (SEM) of the circles on a silicon substrate after laser ablation with 1000 mJ/cm2: (a) 10 pulses, (b) 20 pulses, (c) 30 pulses
and  (d) 100 pulses.

resolution of 1 �m in x and y directions. The deinsulated area of
the tip depends not only on the mask size but also on the laser flu-
ence and the number of laser pulses. After optimization of all these
factors for the desired tip exposures on the UEAs, a circular mask
with the diameter of 550 �m and a process lens with a demagni-
fication of 7.3 and a working distance of ∼10 cm between sample
and process lens were used in our experiments.

Additionally, monitoring the sample is also important for dein-
sulation of electrode tips precisely in �m scale. Therefore, a

real-time observation by visible imaging was used to control the
deinsulation process. The laser ablation system used in this study
had dual-camera vision including an off-axis camera for general
overview and a high magnification through the lens (TTL) image in
windows on a flat screen monitor. When the sample was in focus
on the CCTV, the UV was automatically in focus on the sample. The
laser system has independent light sources, including a highlighter
for optimum contrast on the sample. This was  helpful in finding the
tip location.

Fig. 5. (a) The etch depth of the Parylene as a function of the number of laser pulses and (b) the Parylene etch rate by as a function of the fluence.
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Fig. 6. (a) SEM images (backscattering images) for films with three different thicknesses (0.4 �m,  0.8 �m,  and 1.1 �m)  exposed to a single laser pulse with 1680 mJ/cm2

fluence for investigation of iridium oxide film fracture tendency, (b) SEM images for films with three different thicknesses (0.4 �m,  0.8 �m,  and 1.1 �m) exposed to 100 laser
pulses  with 1680 mJ/cm2 fluence and (c) SEM image of the laser ablated hole on a Parylene-coated iridium oxide film.

2.3. Surface, chemical, and electrical characterization of laser
deinsulated electrodes

The surface morphology and roughness before and after laser
deinsulation were examined by scanning electron microscopy
(SEM) using an FEI Quanta SEM and a Digital Instruments atomic
force microscope (AFM). Chemical analysis of the deinsulated spots
was performed by X-ray photoelectron spectroscopy (XPS) using a
Kratos Axis Ultra DLD to examine the presence of iridium, oxygen,

carbon and chlorine, and to look for any changes in film compo-
sition due to laser irradiation. Utah electrode impedances were
measured by poking the electrodes into conductive agar using an
impedance meter (Blackrock Microsystems). The agar was  pre-
pared from phosphate-buffered saline and agarose powder in a
weight ratio of 42:1. A platinum counter electrode probe was
inserted in the agar. Impedances of individual electrodes were mea-
sured sequentially using a probe signal of 100 nA (peak to peak) at
a 1 kHz frequency.
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Fig. 7. SEM images (upper) and AFM images (bottom) of iridium oxide films before (left) and after (right) laser ablation.

3. Results and discussion

First, the effect of laser exposure after removal of the Parylene
was investigated by changing the number of laser pulses. Fig. 4
shows a set of four SEM micrographs from a laser ablated hole in
the Parylene film on the silicon substrate after laser ablation using a
fluence of 1000 mJ/cm2. When the number of pulses used for abla-
tion was 10, the Parylene remained as a ripple-shaped circle as seen
in Fig. 4(a). Figs. 4(b)–(d) have successively less Parylene remaining
as the number of pulses was increased to 20, 30, and 100, respec-
tively. Fig. 4(d) shows that a clean deinsulated surface without any
Parylene residue was obtained when 100 pulses were used.

We then investigated the effect of beam fluence on the Pary-
lene etch rate for the planar samples. Fig. 5(a) presents the etch
depth of the Parylene film as a function of the number of pulses
for 3.2 �m Parylene film. The last point of each curve indicates the
number of pulses required to remove Parylene completely without
any residue on the hole area. As expected, the number of pulses
required for complete removal of Parylene decreased as a higher
fluence was used. Fig. 5(b) shows the etch rate of Parylene as a
function of the fluence, which indicates that at least approximately
250 mJ/cm2 is required to etch Parylene.

The effect of SIROF thickness on the damage to the film from
laser ablation was investigated. The incident laser energy absorbed
in the surface material is converted into electronic or vibrational
excitation energy, which causes laser desorption or ablation. The
skin depth for excitation is typically on the order of tens of nanome-
ters. Within a skin depth of about 50–100 nm of the surface, there is
an extremely high density of excitation [14]. We  compared several
iridium oxide film samples with different thicknesses to inves-
tigate the film damage that is caused by laser energy. Fig. 6(a)
shows the SEM images of iridium oxide films with three different
thicknesses (0.4 �m,  0.8 �m,  and 1.1 �m)  after being exposed to a
single laser pulse with 1680 mJ/cm2 fluence. As can be seen in the
figure, a thicker film had a higher resistance to damage. The thresh-
old fluences for film damage were 1200, 1440, and 1920 mJ/cm2

for the film thickness of 0.4 �m,  0.8 �m,  and 1.1 �m,  respectively.

Additionally, the fluence and the number of pulses were also exam-
ined, and expected the iridium oxide film suffered from more
fracture as higher laser fluence was used. However, the number
of pulses did not show significant difference in film damage for up
to 100 laser pulses as shown in Fig. 6(b). Based on these results, we
chose the iridium oxide film thickness of 1.1 �m since it had a larger
safety margin for clean removal of the Parylene without damaging
the underlying iridium oxide film. Fig. 6(c) shows the SEM image
of a laser deinsulated hole on a 1.1 �m thick iridium oxide film
coated with 3 �m thickness of Parylene. The fluence and the num-
ber of pulses were 1000 mJ/cm2 and 100, respectively. The image
shows the deinsulated iridium oxide film without any damage.

The surface of an iridium oxide film was inspected using SEM
and the data are presented in Fig. 7, with micrographs from (a)
before and (b) after laser illumination. The surface became more
granular after laser irradiation. Atomic force microscopy was  also
performed to examine the surface roughness of the iridium oxide
film before and after the laser ablation. The left bottom image of
Fig. 7 is the AFM image of an as-deposited iridium oxide film with
the scan area of 3 �m × 3 �m and the Rrms of the film was 64 nm.
The right bottom image of Fig. 7 shows the AFM images of an iridium
oxide film with the same scan area after laser ablation and the Rrms

of the film was 67 nm.  However, when the scan area was reduced
to 0.5 �m × 0.5 �m,  the Rrms changed from 21.6 nm before laser
ablation to 18 nm after laser ablation. This confirms that the surface
of the iridium oxide film became smoother through heat treatment
by laser energy.

To investigate change of the elemental/chemical composition of
the iridium oxide surface during ablation, the XPS spectra using an
Al K� anode operated at 300 W and 15 kV were collected from the
film from the 200 �m diameter ablated hole shown in Fig. 6. The
XPS spectra from a bare Parylene film deposited on top of an iridium
oxide film substrate show C1s and Cl 2p peaks as shown in the left
of Fig. 8(a). The analysis area was approximately 700 �m × 300 �m.
The XPS spectra from an ablated surface show Ir 4f and O 1s and C
1s peaks. The Ir 4d peak is very close to C 1s as can be observed
in the right of Fig. 8(a). The XPS beam spot size was  chosen as
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Fig. 8. X-ray photoemission spectra of (a) the Parylene film (left) and laser ablated spot on Parylene coated iridium oxide film (right), (b) as deposited iridium oxide film
(left)  and Ir 4f peaks in high resolution scan (right) and (c) laser ablated spot on as deposited iridium oxide film (left) and Ir 4f peaks in high resolution scan (right).

110 �m × 110 �m to analyze the ablated area of hole. The C 1s peak
in the figure could be due to the debris of carbon coming onto the
surface after the Parylene decomposition by the laser energy. Dur-
ing ablation, the molecular fragments ejected from the ablation
zone could have the momentum exchange with the surrounding
atmosphere and could have been redeposited on the ablated area.
The redeposition occurs generally in vicinity of the ablation area.
Although there are carbon deposits in the ablated area indicated by
the C 1s peak, the absence of the chlorine peak indicates that the
Parylene has been removed.

Fig. 8(b) and (c) presents XPS spectra of an as-deposited irid-
ium oxide and a laser irradiated spot on the iridium oxide film.
Both spectra show the Ir 4f and O 1s peaks. These peaks are simi-
lar to those observed in the right of Fig. 8(a) except for the carbon
peak. The images on the right of Fig. 8(b) and (c) show the detailed
Ir 4f peaks with high resolution which has very metallic charac-
teristics. For the as-deposited iridium oxide shown in Fig. 8 (b)
the peak position is 61 eV for Ir 4f7/2 and 64 eV for Ir 4f5/2. How-
ever, after laser ablation the position of the peaks shifted to the
lower binding energy as shown in Fig. 8(c). This is attributed to the
removal of the natural oxygen from the surface by laser energy.
The XPS analysis shows that the laser ablation carried out in this

experiment did not change elemental/chemical composition of the
iridium oxide.

Finally, the laser tip deinsulation was performed on the 3-D Utah
electrode array. The thickness of the iridium oxide film was  1.1 �m,
which was determined from prior experimental data on the pla-
nar structure as described previously. The electrode tip exposure
should be targeted at more than 20 �m from the tip of the elec-
trode to the encapsulation edge in the Utah electrode to acquire
good neuron sensitivity and impedance value enough for neural
recording applications in cortical tissue [6].  Fig. 9 shows 30◦ tilted
scanning electron micrograph images of a Utah electrode tip with
1.1 �m thick iridium oxide film after laser illumination. Fig. 9(a)
shows the images of laser deinsulated tips after they were exposed
to 35, 100, and 200 laser pulses with a fluence of 1440 mJ/cm2.
The exposures of the electrode tip to the encapsulation edge are
∼5, 30, and 90 �m for 35, 100, and 200 laser pulses, respectively.
Fig. 9(b) shows the images of laser deinsulated tips after they were
exposed to the fluence of 1200, 1440, and 1680 mJ/cm2 with 150
laser pulses. The exposures of the electrode tip to the encapsula-
tion edge are ∼45, 60 and 80 �m for the fluence of 1200, 1440, and
1680 mJ/cm2, respectively. These results indicate that the exposure
of the electrode tip can be controlled by fluence and number of
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Fig. 9. 30◦ tilted scanning electron micrograph using backscattered electron images of a Utah electrode tip having 1.1 �m thickness iridium oxide film after laser deinsulation
by  (a) 35, 100, and 200 pulses with the fluence of 1440 mJ/cm2 and (b) fluence of 1200, 1440, and 1680 mJ/cm2 with 150 laser pulses.

Fig. 10. Impedance values as a function of the tip exposure of laser deinsulated Utah electrode. The tip exposure lengths were measured by SEM at a 30◦ sample tilt angle.
The  solid line is the trend line with the equation y = 41.309x−1.406.
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laser pulses. The uneven removal of Parylene from the electrode tips
is attributed to the nonuniformity of laser power and the varying
oblique angles between the laser beam and the electrode tip sur-
face. However, the tip exposure was highly reproducible, leading to
the same area of exposure under the same deinsulation conditions.

Fig. 10 shows the impedance values as a function of the tip expo-
sure of laser deinsulated Utah electrode arrays. The y-axis is a log
scale to express the impedance value in the entire tip exposure
range from ∼2 �m to ∼130 �m.  The tip exposure lengths were
measured by SEM at a 30◦ sample tilt angle. The solid line is the
trend line with the equation y = 41.309x−1.406. The impedance value
became around 0.02 M� as the tip exposure is increased beyond
140 �m and become larger than 1 M� for tip exposures of less
than 20 �m.  The rather high deviation of impedance values from
the trend line is attributed to the variation of the contact force
of the working probe during impedance measurement and the
variation of the amount of carbon redeposition on the active tip
surface during the laser ablation process. The electrode tip expo-
sure larger than 100 �m provides the impedance value of a few tens
of kilo-ohm, which is the normal target impedance value for neural
interface applications [6].

4. Conclusions

This study demonstrated that the laser ablation using a KrF
excimer laser is an effective deinsulation method for Parylene-
coated Utah electrode array. Optimum conditions for deinsulating
the electrode tips in the UEA using the laser ablation were inves-
tigated through XPS, SEM, and AFM analyses and impedance
measurement. The thickness of the iridium oxide film that is resis-
tant to the film fracture induced by laser energy was  derived and the
parameters of laser ablation in terms of the fluence and the num-
ber of laser pulses for complete removal of Parylene film from the
electrode tip were also derived. The laser ablation process was  used
for deinsulation of Parylene-coated Utah electrode array, producing
the electrode impedance in the range of tens of k� that is suitable
for implantable neural interface device applications. A more sophis-
ticated method to remove the residual carbon redeposited on the
deinsulated electrode surface will be explored to reduce the rather
large variation of the electrode impedance value. The results sug-
gest that the laser ablation using a KrF excimer laser is acceptable
for deinsulation of the Utah electrode tips and more complicated
electrode structures for implantable device applications.
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