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Abstract

Due to shrinking transistor sizes and lower supply volt
ages, transient faults (soft errors) in computer systems are 
projected to increase by orders o f  magnitude. Fault detec
tion and recovery can be achieved through redundancy. Re
dundant multithreading (RMT) is one attractive approach 
to detect and recover from these errors. However, redun
dant threads can impose significant performance overheads 
by competing with the main program fo r  resources such as 
the register file. In this paper, we propose using eager reg
ister release in the main program thread by exploiting the 
availablity o f  register values in the trailing thread’s register 
space. This performance optimization can help support a 
smaller register file and potentially reduce register file ac
cess time, power consumption, and increase its immunity 
towards soft errors.

Keywords: Reliability, redundant-multithreading, regis
ter file design

1. Introduction

Lower supply voltages and shrinking transistor sizes 
have led to an exponential increase in soft errors in mod
ern computer systems [21, 28, 36]. Soft errors do not cause 
any permanent device damage but can result in incorrect 
program execution for a brief period of time. Soft errors in 
memory circuits have long been known as a huge concern 
but immunity in logic circuits has become critical only very 
recently. Reliability has become a first class design con
straint in modern processor design along with power and 
performance. Several solutions have been proposed to mit
igate the effect of these errors at process, circuit, and archi
tecture level. Circuit-level solutions require re-designing of 
all components and can also add significant design com
plexity. For this reason, several studies have focused on 
architectural techniques [2, 8, 13, 18, 22, 23, 24, 25, 26, 
30, 34, 35] for fault detection and recovery at modest per
formance and complexity overheads. Most of these ap
proaches utilize some variant of redundant multithreading 
(RMT) where a redundant thread executes a copy of the
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main program for verification either on the same or on sepa
rate processor cores. In an era of multi-threaded and multi
core processor technology, it is only natural that these de
signs be extended to provide reliability, making RMT an 
attractive choice.

The register file is an important resource that deter
mines the size of the in-flight instruction window and hence, 
instruction-level-parallelism (ILP). In an SMT processor, 
the register file becomes an even bigger constraint as it has 
to support logical registers for each thread in addition to 
the rename registers [33]. Improving the efficiency of reg
ister allocation will lead to performance improvements, es
pecially for multi-threaded workloads. It can also allow a 
processor to match a baseline system's throughput with a 
smaller register file, potentially causing improvements in 
power consumption, clock speed, temperature, and poten
tially freeing up area to implement ECC/parity. The regis
ter file is already a vulnerable structure for single event up
sets [11,35] and increasing rates of multi-bit upsets [15, 31] 
will require more aggressive ECC/parity schemes.

In certain RMT implementations, the redundant thread 
(also known as trailing thread) co-executes on a single SMT 
core with the main program thread (also known as leading 
thread). Just as in any multi-threaded system, this exerts 
pressure on shared processor resources such as the regis
ter file and issue queue. To address this drawback of RMT, 
recent papers have attempted to improve register file effi
ciency in such processors. Abu-Ghazaleh et al. [1] avoid 
allocating registers for transient short-lived values. Kumar 
and Aggarwal [12] employ the following optimizations: (i) 
two narrow operands share a single register, (ii) two identi
cal register values share the same physical register. For pro
cessors without RMT, in order to improve the register file's 
resiliency to soft errors, Hu et al. [9] and Ergin et al. [7] 
propose that a single register can store copies of a narrow 
operand, while Memik et al. [17] use dead or free registers 
to opportunistically create copies of register values.

In this paper, we propose a novel register allocation 
mechanism that takes advantage of redundancy within an 
RMT processor. In a traditional register file system, the 
older mapping of a logical register is de-allocated only 
when the overwriting instruction commits. This guarantees 
that if the overwriting instruction gets squashed due to a 
misprediction, then the older mapping can be used for rein



stating the architectural state. If a copy of the older map
ping exists outside the physical register file, the older map
ping can be de-allocated early. By exploiting the availabil
ity of register values in the trailing thread's register space, 
we can employ eager release in the leading thread's register 
file. This optimization can boost the leading thread's per
formance while allowing a very small number of errors to 
go un-detected. We quantify these effects for a number of 
RMT processor models.

It must be noted that eager register release can yield per
formance benefits in any processor model, not just in RMT 
implementations. It is especially well suited to RMT im
plementations because (i) copies of register values already 
exist in the system, and (ii) RMT implementations are typi
cally multi-threaded and are more prone to register file bot
tlenecks.

The paper has been organized as follows. Section 2 de
scribes the redundant multi-threading implementations that 
serve as baseline processor models in this study. Section 3 
describes the eager register release mechanism for the lead
ing thread. The proposed ideas are evaluated in Section 4 
and we contrast our approach with related work in Sec
tion 5. Section 6 summarizes the conclusions of this study.

2. Baseline Reliable Processor Models

We first discuss design aspects that are common to all 
the baseline RMT implementations studied in this paper. 
The leading thread executes ahead of its counterpart trail
ing thread by a certain amount of slack to enable check
ing for errors. The leading thread communicates its com
mitted register results to the trailing thread for comparison 
of values to detect faults. Load values are also passed to 
the trailing core so it can avoid reading values from mem
ory that may have been recently updated by other devices. 
Thus, the trailing thread never accesses the L1 data cache. 
This implementation uses asymmetric commit to hide inter
core communication latency (if leading and trailing threads 
execute on separate cores) -  the leading thread is allowed 
to commit instructions before checking. The leading core 
commits stores to a store buffer (StB) instead of to memory. 
The trailing core commits instructions only after checking 
for errors. This ensures that the trailing core’s state can be 
used for a recovery operation if an error occurs. The trail
ing core communicates its store values to the leading core’s 
StB and the StB commits stores to memory after checking. 
We have used asymmetric commit even when leading and 
trailing threads execute in SMT fashion on the same core. 
This enables reduced design complexity and improves per
formance as the trailing thread need not verify the leader’s 
speculative register values.

To facilitate communication of values between leading 
and trailing threads, first-in-first-out register value queues 
(RVQ) and load value queues (LVQ) are used. As a per
formance optimization, the leading core also communicates 
its branch outcomes to the trailing core (through a branch

outcome queue (BOQ)), allowing it to have perfect branch 
prediction. If the slack between the two threads is at least as 
large as the re-order buffer (ROB) size of the trailing thread, 
it is guaranteed that a load instruction in the trailing thread 
will always find its load value in the LVQ. When external 
interrupts or exceptions are raised, the leading thread must 
wait for the trailing thread to catch up before servicing the 
interrupt. The ICOUNT fetch policy [32] is used to deter
mine priority for co-scheduled threads on an SMT processor 
as long as the slack value is within an acceptable range.

The assumed fault model is exactly the same as in [8, 
22]. The following condition is required in order to detect a 
single fault:

• The data cache, LVQ, and buses that carry load values 
must be ECC-protected as the trailing thread directly 
uses these load values.

Other structures in each core (including the RVQ) need not 
have ECC or other forms of protection as disagreements 
will be detected during the checking process. The BOQ 
need not be protected as long as its values are only treated 
as branch prediction hints and confirmed by the trailing 
pipeline.

The following additional condition is required in order 
to detect and recover from a single fault:

When an error is detected, the register file state of the 
trailing thread is used to initiate recovery. The trailing 
thread’s register file must be ECC-protected to ensure 
that values do not get corrupted once they have been 
checked and written into the trailer’s register file.

Similar to the baseline model in [8, 22], we assume that the 
above condition is not met (i.e., the trailer’s register file is 
not ECC-protected). Hence, a single fault in the trailer’s 
register file can only be detected 1. All other faults can be 
detected and recovered from.

We consider RMT implementations that make various 
design choices along the following axes: (i) the cores that 
leading and trailing threads execute on, (ii) power-efficient 
execution of trailing threads when possible, and (iii) support 
for single and multi-thread workloads.

• Simultaneously and Redundantly Threaded pro
cessor with Recovery (SRTR) is based on the fault- 
tolerant processor model proposed in [34]. In this im
plementation, the leading and the trailing thread co
execute in SMT fashion on the same core as shown in 
Figure 1(a). We have changed the model proposed in 
SRTR and added asymmetric commit to it. The hard
ware cost of redundancy is relatively low in SRTR, 
making it an attractive solution. However, SRTR suf
fers from significant performance overheads as the 
trailing thread puts pressure on shared resources.

1 If no ECC is provided within the register fi le, Triple Modular Redun
dancy will be required to detect and recover from a single fault.
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•  Chip-level Redundantly-Threaded processor with 
Recovery (CRTR) is the model proposed by [8, 22] 
where each core is a dual-threaded SMT processor. In 
the CRTR architecture, the trailing thread of one appli
cation shares its core with the leading thread of a dif
ferent application (shown in Figure 1(b). This archi
tecture has been optimized for higher throughput for 
multi-threaded workloads.

•  Single-thread Power-efficient Chip-level 
Redundantly-Threaded processor with Recovery 
(ST-P-CRTR) is a power-efficient implementation of 
a single-thread RMT processor [13, 14]. It extends 
some of DIVA’s [2] concepts to general-purpose cores. 
This model executes the leading thread on an aggres
sive out-of-order processor and its trailing thread on 
a simple in-order core as shown in Figure 1(c). An 
in-order core by itself is not capable of matching the 
leading thread’s throughput even with perfect caching 
and branch prediction. The RVQ is therefore also 
made to carry instruction source operands to enable 
perfect value prediction at the trailing core. This 
optimization does not compromise fault coverage 
because the source operands are also verified at 
the trailer. Even though this increases inter-core 
bandwidth requirements, the net effect is a reduction 
in power consumption because of the efficiency of a 
low-frequency in-order checker core.

•  MT-P-CRTR is a multi-threaded extension of ST-P- 
CRTR. Two different leading threads execute in SMT

fashion on a single out-of-order core, while their cor
responding trailing threads execute on separate simple 
in-order cores [13, 14] as shown in Figure 1(d). CRTR 
has higher performance than MT-P-CRTR. This is be
cause each leading thread in CRTR is co-scheduled 
with a trailing thread that does not execute speculative 
instructions and therefore poses less contention for the 
SMT core’s resources. MT-P-CRTR consumes much 
lower power than CRTR. Both, ST-P-CRTR and MT- 
P-CRTR, employ dynamic frequency scaling (DFS) 
to allow the trailing core to match the leading core’s 
throughput, while consuming the least possible power.

In this paper, we are not necessarily arguing for one base
line implementation over the other. These models repre
sent different points on the performance-power-complexity 
curves and enable a more comprehensive evaluation of our 
register allocation techniques.

3. Proposed Register Allocation Policies

It is a well-known result that register utilization in mod
ern out-of-order processors is extremely inefficient. Reg
isters are allocated long before a result is actually written 
into them and de-allocated much after their last use. Many 
papers have targeted both of the inefficiencies above (for 
example, [3, 5, 19]). In a conventional processor, physi
cal registers are conservatively de-allocated. When a logi
cal (architectural) register is over-written by a new instruc
tion, it is assigned a new physical register. However, the
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old register mapping for that logical register cannot be de
allocated immediately. If the new instruction is squashed 
(because of a branch mis-speculation or exception), the old 
mapping has to be re-instated. Therefore, the old mapping 
can be freed only when the new instruction commits. It 
has been proposed [3] that old mappings be copied away 
into a larger second-level register file that is off the critical 
path. This allows registers in the first-level register file to be 
recycled sooner, improving their utilization and supporting 
a larger in-flight instruction window. Since old mappings 
are not discarded, the processor can still recover from mis- 
speculations and exceptions.

Such a technique is especially well-suited to an RMT 
processor. The RMT processor already maintains multiple 
copies of register values. Hence, threads can quickly re
cycle registers and be guaranteed of safe recovery in case 
it is warranted. The only catch is that recovery may not be 
possible if a redundant copy is already corrupted. The RMT 
implementation is therefore no longer capable of detecting 
every single fault. Since most systems do not expect zero 
FIT rates, this may represent an acceptable performance- 
reliability trade-off.

3.1. Implementation Details

We first describe our eager register release mechanism in 
the context of the single-thread ST-P-CRTR model, where 
leading and trailing threads execute on separate cores (Fig
ure 1(c)). This basic design can be easily extended to other 
RMT implementations.

In a baseline system, a physical register is de-allocated 
when the instruction that over-writes the corresponding log
ical register is committed. In the proposed system with 
eager register release, a physical register P  belonging to a 
leading thread is de-allocated when the following condi
tions are met:

the physical register value has been read by all con
suming instructions in the pipeline,

the instruction that writes to the physical register (instr 
A) has been committed by the leading thread and the 
physical register value has been copied into the RVQ,

•  a new instruction that over-writes the corresponding 
logical register has entered the pipeline (instr B).

We chose to not implement a more aggressive release policy 
in order to minimize the number of recoveries.

After being released eagerly, physical register P  can be 
assigned to a new instruction. If a branch mis-predict or 
exception occurs between instr A  and instr B, physical reg
ister P is freed because all instructions after the branch are 
squashed. The old value of physical register P must now be 
re-instated. If the trailing thread has not executed instr A, 
the value of register P will be found in the RVQ. The leader 
re-instates this value into physical register P and continues. 
Even if the result in the RVQ is corrupted, it will undergo a

check at the trailer and the error will be flagged. If the trail
ing thread has already executed instr A , the checked value 
will be found in the trailing thread's register file (in register 
Q). Since the leading thread has not committed instr B, the 
trailing thread would also not have executed instr B  (note 
that the trailer maintains a minimum slack). Hence, the 
register value Q would not have been over-written and will 
represent the most up-to-date mapping of the correspond
ing logical register in the trailer. The value in register Q is 
copied into register P  and the leading thread resumes exe
cution.

In the second case above, it is possible that an error may 
go un-detected. When the trailing thread commits instr A , it 
verifies the result in the RVQ before storing it into register 
Q. If the value in Q then gets corrupted, the leading thread, 
on recovery, will also adopt the incorrect value. The error 
will never be detected as both threads will continue to agree 
on all results. In a baseline RMT system, if Q does get cor
rupted, an error will be flagged because the consumer of P 
in the leader and the consumer of Q in the trailer will even
tually dis-agree. However, the probability of an un-detected 
error in the new system is extremely low. The following 
conditions must be met: (i) the leader has not committed 
instr B , (ii) the trailer has committed instr A , and (iii) the 
specific register Q is corrupted. Since we maintain a large 
slack and since successive writers to a logical register are 
not greatly separated, the likelihood that (i) and (ii) are both 
true is extremely small (quantified in the next section).

We now briefly examine the storage and control struc
tures required to implement the above copy and recovery 
operations. Each physical register in the leading core re
quires a bit to track whether the corresponding logical reg
ister has been over-written (overwrite bit) and another bit 
to track if the value has been copied into the RVQ (inJZVQ 
bit). If the register value has been copied into the RVQ, 
then the corresponding RVQ address also needs to be stored 
(RVQ-address field). Each physical register maintains a 
counter for the number of outstanding consumers (pend- 
ing-consumers). This counter is incremented when con
sumers are dispatched and decremented when consumers 
leave the issue queue. Each physical register also keeps 
track of the instruction that it is assigned to. A usage ta
ble structure does the above book-keeping for each physi
cal register. The ROB entry of the over-writing instruction 
(instr B  in the example above) keeps track of the recovery 
operations it must initiate if it is squashed. This includes 
maintaining the instruction number inum (instr A  in the ex
ample above), logical register ID lreg for the physical regis
ter (P) that it caused to be released eagerly and a de-allocate 
bit.

Figure 3 shows a block level depiction of our eager re
lease implementation. Our technique can release a physi
cal register eagerly any time after the previously described 
conditions are met. In our simulations, we check the usage 
table every cycle to determine the registers that can be re
leased eagerly. An alternative approach, not considered in
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Leading Core Trailing core

F ig u re  2. Block-level Implementation of Eager Release in a ST-P-CRTR model

this study, can release physical registers eagerly when the 
number of registers in the free pool falls below a certain 
threshold.

These auxiliary structures and control logic can impose 
a non-trivial complexity overhead. However, this overhead 
may be justifiable as it enables significantly higher through
put or the design of a small register file. SMT workloads 
can especially benefit from eager release and potentially 
tolerate the complexity overhead for these structures. For 
example, the register file may now be small enough that it 
can be implemented as a single-cycle structure or it has the 
latency/power/area budget to implement ECC.

Since the auxiliary structures are outside the sphere of 
replication, they are also vulnerable to soft errors. Luckily, 
faults in these structures do not result in silent data corrup
tion (SDC). Consider an example where a bit in the usage ta
ble is affected and the pending .consumers field reaches zero 
even though active consumers exist in the pipeline. If the 
corresponding register is released eagerly and re-allocated, 
the pending consumer may read an incorrect value and pro
duce a wrong result. Such an error will be detected by the 
redundant instruction in the trailing thread. This argument 
holds true even when other fields in the usage table are cor
rupted by soft errors.

For most of this paper, the eager register release mech
anism is only applied to physical registers in the leading 
thread. The technique may also apply to the trailing thread. 
If a register value is eagerly discarded by the trailing thread, 
it may be unable to recover from a branch mis-predict. Note 
that a branch mis-predict in the trailer happens only when 
a soft error manifests. A missing result in the trailing reg
ister file can therefore hamper recovery. Secondly, an ILP 
improvement in the trailer may be beneficial because the 
trailer can further scale down its frequency and save power. 
We evaluated this technique, but found that the ILP im
provement of the trailing thread was marginal in most cases 
because high-ILP threads are already efficient at re-cycling 
registers. Because of the above two reasons, we only con
sider eager register release for leading threads.

Branch Predictor Comb, of bimodal,2-level (per core)
Level 1 and 2 Predictor 16384 entries
Branch Mpred Latency 12 cycles
Instruction Fetch Queue 32 (per Core)

Fetch/Dispatch/Commit width 4 (fetch upto 2 branches)
IssueQ size 40 (Int) 30 (FP) (per Core)

Reorder Buffer Size 160 (per Thread)
LSQ size 200 (per Core)

(Single thread) LI D,I-cache 32KB 2-way (per Core)
(Multi-thread) LI D,I-cache 128KB 2-way (per Core)

L2 unifi ed cache 2MB 8-way, 20 cycles (per Core)
Memory Latency 300 cycles for the fi rst chunk

RVQ/BoQ/LVQ sizes 600/200/400 entries

T ab le  1. Simplescalar Simulation Parameters

4. Results

4.1. Performance Evaluation

We use a multi-threaded version of Simplescalar-3.0 [4] 
for the Alpha AXP ISA for our simulations. The simula
tor has been extended to implement both homogeneous and 
heterogeneous CMP architectures. We have modeled each 
core as a 2-way SMT or as an in-order processor. Table 1 
shows relevant simulation parameters. CACTI-3.2 [27] has 
been used to compute area, performance, and power results 
for different register file configurations.

As an evaluation workload, we use the 8 integer and 8 
floating point benchmark programs from the SPEC2k suite 
that are compatible with our simulator. The executables 
were generated with peak optimization flags. The programs 
were fast-forwarded for 2 billion instructions, executed for
1 million instructions to warm up various structures, and 
measurements were taken for the next 100 million instruc
tions. To evaluate multi-threaded models, we have formed a 
benchmark set consisting of 10 different pairs of programs. 
Programs were paired to generate a good mix of high IPC, 
low IPC, FP, and Integer workloads. Table 2 shows our 
benchmark pairs. Multithreaded workloads are executed 
until the first thread commits 100 million instructions.
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Benchmark Set Set# IPC Pairing Benchmark Set Set# IPC Pairing
art-applu 1 FP/FP/Low/High bzip-fma3d 2 Int/FP/Low/FIigh

bzip-vortex 3 Int/Int/Low/Low eon-art 4 Int/FP/FIigh/Low
eon-vpr 5 Int/Int/High/High gzip-mgrid 6 Int/FP/Low/Low

mesa-equake 7 FP/FP/High/High swim-lucas 8 FP/FP/Low/Low
twolf-equake 9 Int/FP/FIigh/FIigh vpr-gzip 10 Int/Int/FIigh/Low

T ab le  2. Benchmark pairs for the multi-threaded workload.

4.2. Performance Evaluation

For all our experiments, we set the ROB size to 160 per 
thread and attempt to fill the window with a much smaller 
set of registers. We evaluate the effect of the baseline con
ventional register de-allocation policy as well as the eager 
register release policy as the register file size is gradually 
increased. We initially assume that there is no performance 
penalty for recovery of eagerly released register values, i.e., 
this recovery happens in parallel with the fetch of instruc
tions from the correct branch path. Later, we show the effect 
of non-zero recovery latencies.

Figure 3 shows the IPC curve for the SRTR model where 
both leading and trailing threads execute on the same SMT 
core. With eager register release, a physical register file 
of 100 entries has performance equivalent to a base model 
with 160 register entries. Compared to a baseline proces
sor with a 100-entry register file, the eager release policy 
enables a 10% performance improvement. For the CRTR 
model (Figure 4), we see a similar result trend as SRTR, 
where the eager release policy can match the baseline’s per
formance with 37.5% fewer register entries. With a fixed 
register file size of 100, the eager release policy yields a 
34% performance improvement over the baseline policy. A 
similar result is also seen for the MT-P-CRTR model (Fig
ure 6) where the allocation of threads to cores is different 
and the trailing threads are frequency-scaled. Finally, we 
verify our results for the single-thread ST-P-CRTR model 
(Figure 5). Since only a single thread context executes on 
each core in this case, we find that a 50-entry register file 
with eager release is equivalent in performance to an 80- 
entry conventional register file. Floating-point programs ex
hibit higher performance improvements with eager register 
release -  for a 50-entry register file, eager release causes an 
improvement greater than 20% for five FP programs (swim, 
art, mesa, mgrid, lucas) and one integer program (vpr). Pro
grams with poor branch prediction accuracies do not benefit 
as much from quick register re-cycling and larger in-flight 
windows -  gcc, equake, eon, and fm a3d  show an improve
ment of less than 3%. In general, we find that models that 
execute two leading threads on the same core (MT-P-CRTR) 
benefited much more from eager register release because of 
the much higher pressure on the register file.

We observe that the cost of copying eager released val
ues back to the leading thread on a recovery is not very high. 
For a single-thread 100M instruction simulation, about 70 
million registers are released eagerly, of which only 6% are 
copied back as part of a branch mispredict recovery. The

without eager release for SRTR

without eager release for CRTR

without eager release for ST-P-CRTR
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without eager release for MT-P-CRTR

head in all RMT models

Single Thread Register File
RF Size Energy (nj) Access time (ns) Area (cm2)

50 0.78 0.506 0.00764
60 0.805 0.527 0.00821
70 0.848 0.59 0.00958
80 0.879 0.627 0.0101

Multi-thread Register File
100 2.41 1.005 0.0421
120 2.617 1.145 0.0466
140 2.816 1.248 0.051
160 3.027 1.411 0.0555
200 3.432 1.72 0.0644

T ab le  3. Access time, energy and area results derived 
from CACTI (90nm technology)

programs bzip and eon have the highest percentage (13%) 
of copy-backs, while programs such as swim, lucas, and 
mgrid have a low branch mispredict rate and much fewer 
total copy-backs. The cost of copying results back depends 
on the program’s branch prediction rate. On average, each 
branch mispredict requires that 6.6 register values be copied 
back to the leading thread. We expect that the cost of copy
ing results back into the leader can be hidden by the cost to 
fill the pipeline with correct-path instructions. As a sensitiv
ity study, Figure 7 shows the average IPC loss for each RMT 
implementation if the latency for a branch mispredict recov
ery is increased by 5 and 10 cycles. For a 5-cycle penalty, 
the maximum observed performance degradation is 4%. In 
all our RMT implementations, the trailing thread continues 
to execute while the leading thread recovers from a branch 
mis-predict. If we pessimistically assume that branch re
covery consumes all register ports and even trailing threads 
are stalled during the recovery phase, the additional loss in 
performance is less than 1% for all models.

4.3. Fault Injection Analysis

As described in Section 3, the eager release mechanism 
can lead to un-detected faults. This can happen if the gap 
between successive writes to a logical register is greater 
than the slack between leading and trailing threads. We 
computed the intervals between successive writes to a logi
cal register and observed that 90% of the time, this interval 
was less than 100 instructions. For most of our simulations, 
the average slack hovers around 500 instructions. This en
sures that for more than 99% of all cases, an eagerly re
leased register value can be found in the RVQ, not in the 
trailer’s register file. We evaluated the effect on error cover
age by injecting faults into our Simplescalar simulations2. 
Once every 1000 cycles, a valid bit is flipped in a random 
register in the trailer. Only 0.0004% of all these incorrect 
values were copied back into the leader, causing an error to 
go un-detected. This analysis is conservative because some 
errors will get architecturally masked and not lead to silent 
data corruption (SDC).

4.4. Discussion

Our results so far have shown that eager register release 
causes a minor decrease in fault coverage, but can improve 
a fixed register file’s performance by up to 34%. Alterna
tively stated, a 50-entry register file with eager release, can 
match the performance of an 80-entry register file. We mod
ified CACTI-3.2 to model access time, area, and energy of 
various register file organizations at 90nm technology. The 
move from an 80-entry register file to a 50-entry register file 
has a number of favorable implications, quantified below.

2Not all faults at the transistor level manifest themselves at the microar
chitectural level. The use of a functional simulator such as Simplescalar 
allows us to carry out our analysis only for faults that manifest themselves 
in data and control paths at the microarchitecture level modeled by Sim- 
plescalar.
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Table 3 shows CACTI results for both single- and multi
threaded register files. We assume that a single-threaded 
register file has 8 read ports and 4 write ports. The multi
threaded register file has 16 read and 8 write ports. If the 
register file is a cycle-time constraint, a 50-entry register 
file can enable a 19% increase in clock speed, compared 
to the 80-entry register file. The 50-entry register file also 
consumes 11% less energy and 25% less area. Similar ob
servations are made when the multi-threaded register file is 
shrunk from 160 to 100 entries. It has been reported that 
an ECC implementation imposes a 6% power and 16% area 
overhead on the register file. By implementing a smaller 
register file, we may have the power and area budget within 
the register file to implement ECC [15, 31]. The computed 
ECC overheads are for a SEC-DED (single error correc
tion and double error detection) ECC scheme. Multi-bit 
errors will require even more aggressive ECC/parity pro
tection schemes such as DEC-TED (double error correction 
and triple error detection). Note that a baseline RMT imple
mentation can guarantee error detection and recovery only 
if the trailing register file has ECC protection. Hence, the 
ability to implement ECC in the register file has important 
implications for error recovery.

In this preliminary study, we have not quantitatively 
compared the benefits of the eager release mechanism with 
other recent register file proposals, such as those that exploit 
narrow-width operands (for example, [12]). We feel that the 
eager-release strategy is orthogonal to narrow-width opti
mizations as the two techniques target different sources of 
register file inefficiency. We therefore expect that the two 
techniques can be combined to yield significantly greater 
speedups. The implementations of either technique entail 
non-trivial complexity and will likely determine the com
mercial feasibility of each approach.

5. Related Work

Many fault-tolerant architectures [2, 8, 22, 25, 26, 29, 
34] have been proposed over the last few years. AR- 
SMT [26] was the first design to use multi-threading for 
fault detection. Mukherjee et al. proposed fault detection 
using simultaneous multi-threading and chip-level redun
dant multi-threading [22, 25]. Vijaykumar et al. augmented 
the above techniques with recovery mechanisms [8, 34]. 
Some designs such as DIVA [2] use an in-order checker core 
to verify the results of an aggressive superscalar processor.

Smolens et al. study the performance impact of redun
dant execution on the issue logic and ROB [30]. Recently, 
many researchers have looked into efficient techniques to 
improve register file efficiency and reliability [1, 7, 9, 12, 
16, 17]. Memik et al. [17] propose utilizing free registers 
and predicted dead registers to store register value copies 
for increasing the register file’s immunity to soft errors. 
Memik et al. also present a reliability model that com
putes the probability of soft error occurrence as a function 
of the operating clock frequency [16]. They propose that a

register file can be overclocked for performance improve
ment and the resulting increase in soft error rate can be mit
igated by employing their earlier technique [17]. In [9, 12], 
narrow-width operands are allocated a single register to re
duce register file resource redundancy. Kumar and Aggar
wal [12] apply register re-use and narrow-width operand 
register sharing techniques to reduce the performance and 
power overheads in simultaneous redundant multithreading. 
Similarly, Hu et al. [9] eliminate the requirement of copy 
registers by storing 2 copies of a narrow-width operand in a 
single register.

A number of implementations for early register release 
in non-RMT superscalars have been proposed in recent 
years [3,6,10,20]. Continued interest in this area may well 
produce a complexity-effective implementation in the near 
future. Ergin et al. [6] introduce checkpointed register files 
to implement early register release. Jones et al. [10] use a 
compiler-assisted early register release technique. Balasub- 
ramonian et al. [3] propose using a two-level register file 
where the first level register file is smaller in size and ea
gerly released registers are stored in a second level register 
file. Our proposal is the first application of the eager release 
technique to an RMT processor.

6. Conclusions

In this paper, we have shown that redundant copies of 
a register in an RMT system make it a perfect candidate 
for the eager register release policy. The quick re-cycling 
of registers allows the register file to support a much larger 
window of in-flight instructions. The impact on fault cov
erage is marginal. We show that this technique is effective 
for a number of RMT implementations, with multi-threaded 
throughput being improved by up to 34%. We also show 
that a 100-entry register file can match the throughput of a 
160-entry register file. A smaller register file has favorable 
implications on clock speed, power, area, and even reliabil
ity by making ECC more affordable. For future work, we 
plan to investigate more complexity-effective implementa
tions of eager register release.
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