
Efficient Protocols for Distributed Classification and
Optimization

Hal Daumé III1, Jeff M. Phillips2, Avishek Saha2, and Suresh Venkatasubramanian2

1 University of Maryland, CP, MD 20742, USA
hal@umiacs.umd.edu

2 University of Utah, SLC, UT 84112, USA
{jeffp,avishek,suresh}@cs.utah.edu

Abstract. A recent paper [1] proposes a general model for distributed learning
that bounds the communication required for learning classifiers with ε error on
linearly separable data adversarially distributed across nodes. In this work, we
develop key improvements and extensions to this basic model. Our first result is
a two-party multiplicative-weight-update based protocol that uses O(d2 log1/ε)
words of communication to classify distributed data in arbitrary dimension d, ε-
optimally. This extends to classification over k nodes with O(kd2 log1/ε) words
of communication. Our proposed protocol is simple to implement and is consid-
erably more efficient than baselines compared, as demonstrated by our empirical
results.
In addition, we show how to solve fixed-dimensional and high-dimensional linear
programming with small communication in a distributed setting where constraints
may be distributed across nodes. Our techniques make use of a novel connection
from multipass streaming, as well as adapting the multiplicative-weight-update
framework more generally to a distributed setting.

1 Introduction

In recent years, distributed learning (learning from data spread across multiple loca-
tions) has witnessed a lot of research interest [2]. One of the major challenges in dis-
tributed learning is to minimize communication overhead between different parties,
each possessing a disjoint subset of the data. Recent work [1] has proposed a distributed
learning model that seeks to minimize communication (in a series of rounds) by care-
fully choosing the most informative data points at each node in each round. The authors
present a number of general sampling based results as well as a specific two-way pro-
tocol that provides a logarithmic error bound on communication for the family of linear
classifiers in R2. Most of their results pertain to two players but they propose basic (and
as we will see, inefficient) extensions for multi-player scenarios. A distinguishing fea-
ture of this model is that it is adversarial. Except linear separability, no distributional
or other assumptions are made on the data or how it is distributed across nodes.

In this paper, we develop this model substantially with new algorithmic ideas for
solving learning problems. First, we extend the results on linear classification to arbi-
trary dimensions, in the process presenting a more general algorithm that does not rely
on explicit geometric constructions. This approach exploits the multiplicative weight

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276283021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


update (MWU) framework (specifically its use in boosting) and retains desirable theo-
retical guarantees – data-size-independent communication between nodes in order to
classify data – while being simple to implement. Moreover, it easily extends to k-
players, scaling only linearly in k, improving earlier results in two dimensions by a
factor of k.

Motivated by the insight that MWU can be used to solve distributed learning prob-
lems, we propose approximate solutions for distributed semidefinite programming. In
addition, we show how a generic multipass streaming algorithm for a problem can be
made distributed, and apply this framework to solving linear programming in a dis-
tributed setting both exactly and approximately. Together, these results indicate that
general optimization problems can be solved efficiently in our model. Exploiting the
strong link between learning and optimization will then open the door to deploying
many other learning tasks in the distributed setting with minimal communication.

Related work. Existing work in distributed learning mainly focuses on either in-
ferring an accurate global classifier from multiple distributed sub-classifiers learned
individually (at respective nodes) or on improving the efficiency of the overall learning
protocol. The first line of work consists of techniques like parameter mixing [3, 4] or
averaging [5] and classifier voting [6]. These approaches do admit convergence results
but lack any useful bounds on the communication. Voting, on the other hand, has been
shown [1] to yield suboptimal results on adversarially partitioned datasets. The goal of
the second line of work is to make distributed algorithms scale to large datasets [7];
many of these works [8, 9] focus on MapReduce. [10] proposed a MapReduce based
improved parallel stochastic gradient descent and more recently [11] improved the time
complexity of γ-margin parallel algorithms from Ω(1/γ2) to O(1/γ).

Surprisingly absent in the above lines of work is the direct study of how to use com-
munication sparingly in learning. And as [1] and this work demonstrates, intelligent
interaction between nodes, communicating key data subsets not just its classification,
can greatly reduce the necessary communication over existing approaches. On large dis-
tributed systems, communication has become a major bottleneck for many real-world
problems; it accounts for a large percentage of total energy costs, and is the main rea-
son that MapReduce algorithms are designed to minimize rounds (of communication).
This strongly motivates the need to incorporate the study of this aspect of an algorithm
directly, as presented and modeled in this paper.

Independently of this work3, research by [12] considers very similar models to those
of [1]. They also consider adversarially distributed data among k parties and provide
algorithms to learn while minimizing the total communication between the parties. Like
[1] the work of [12] presents both agnostic and non-agnostic results for generic settings,
and shows improvements over sampling bounds in several specific settings including the
d-dimensional linear classifier problem we consider here (also drawing inspiration from
boosting). In addition, their work provides total communication bounds for decision
lists and for proper and non-proper learning of parity functions. They also extend the
model so as to preserve differential and distributional privacy while conserving total
communication, as a resource, during the learning process.

3 Preliminary versions of [12] and this work [13] were coordinated to be placed on the arXiv on
the same day.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



In contrast, this work identifies optimization as a key primitive underlying many
learning tasks, and focuses on solving the underlying optimization problems as a way
to provide general communication-friendly distributed learning methods. We introduce
techniques that rely on multiplicative weight updates and multi-pass streaming algo-
rithms. Our main contributions include translating these techniques into this distributed
setting and using them to solve LPs (and SDPs) in addition to solving for d-dimensional
linear separators.

2 Background

Here we revisit the basic model [1].
Model. We assume that there are k parties P1,P2, . . .Pk. Each party Pi possesses

a dataset Di that no other party has access to, and each Di may have both positive
and negative examples. The goal is to classify the full dataset D = ∪iDi correctly. We
assume that there exists a perfect classifier h∗ from a family of classifiers H with as-
sociated range space (D,H) and bounded VC-dimension ν . We are willing to allow
ε-classification error on D so that up to ε|D| points in total are misclassified.

Each word of data (e.g., a single point or vector in Rd counts as O(d) words) passed
between any pair of parties is counted towards the total communication; this measure in
words allows us to examine the cost of extending to d-dimensions, and allows us to con-
sider communication in forms other than example points, but does not hinder us with
precision issues required when counting bits. For instance, a protocol that broadcasts a
message of M words (say M/d points in Rd) from one node to the other k− 1 players
costs O(kM) communication. The goal is to design a protocol with as little communica-
tion as possible. We assume an adversarial model of data distribution; in this setting we
prepare for the worst, and allow some adversary to determine which player gets which
subset of D.

Sampling bounds. Given D and a family of classifiers with bounded VC-dimension
ν , a random sample from D of size

sε,ν = O(min{(ν/ε) log(ν/ε),ν/ε
2}) (1)

has at most ε-classification error on D with constant probability [14], as long as there
exists a perfect classifier. Throughout this paper we will assume that a perfect classifier
exists. This constant probability of success can be amplified to 1− δ with an extra
O(log(1/δ )) factor of samples.

Randomly partitioned distributions. Assume that for all i ∈ [1,k], each party Pi
has a dataset Di drawn from the same distribution. That is, all datasets Di are identi-
cally distributed. This case is much simpler than what the remainder of this paper will
consider. Using (1), each Di can be viewed as a sample from the full set D = ∪iDi,
and with no communication each party Pi can faithfully estimate a classifier with error
O((ν/|Di|) log(ν |Di|)) [1].

Henceforth we will focus on adversarially distributed data.
One-way protocols. Consider a restricted setting where protocols are only able to

send data from parties Pi (for i≥ 2) to P1; a restricted form of one-way communication.
We can again use (1) so that all parties Pi send a sample Si of size sε,ν to P1, and then P1

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



constructs a global classifier on ∪k
i=2Si with ε-classification error ∪k

i=1Di; this requires
O(dksε,ν) words of communication for points in Rd .

For specific classifiers [1] we can do better. For thresholds and intervals one can
learn a zero-error distributed classifier using constant amount of one-way communi-
cation. The same can be achieved for axis-aligned rectangles with O(kd2) words of
communication. However, those authors show that hyperplanes in Rd , for d ≥ 2, re-
quire at least Ω(k/ε) one-way bits of communication to learn an ε-error distributed
classifier.

Two-way protocols. Hereafter, we consider two-way protocols where any two play-
ers can communicate back and forth. It has been shown [1] that, in R2, a protocol can
learn linear classifiers with at most ε-classification error using at most O(k2 log1/ε)
communication. This protocol is deterministic and relies on a complicated pruning ar-
gument, whereby in each round, either an acceptable classifier is found, or a constant
fraction more of some party’s data is ensured to be classified correctly.

3 Improved Random Sampling for k-players

Our first contribution is an improved two-way k-player sampling-based protocol using
two-way communication and the sampling result in (1). We designate party P1 as a
coordinator. P1 gathers the size of each player’s dataset Di, simulates sampling from
each player completely at random, and then reports back to each player the number of
samples to be drawn by it, in O(k) communication. Then each other party Pi selects
sε,ν |Di|/|D| random points (in expectation), and sends them to the coordinator. The
union of this set satisfies the conditions of the result from (1) over D = ∪iDi and yields
the following result.

Theorem 1. For any hypothesis family with VC-dimension ν for points in Rd , there
exists a two-way k-player protocol using O(kd + d min{(ν/ε) log(ν/ε),ν/ε2}) total
words of communication that achieves ε-classification error, with constant probability.

Using two-way communication, this type of result can be made even more general.
Consider the case where each Pi’s dataset arrives in a continuous stream; this is known
as a distributed data stream [15]. Then applying results of [16], we can continually
maintain a sufficient random sample at the coordinator of size sε (using an generaliza-
tion of reservoir sampling) communicating O((k+ sε,ν)d log |D|) words.

Theorem 2. Let each of k parties have a stream of data points Di where D = ∪iDi.
For any hypothesis family with VC-dimension ν for points in Rd , there exists a two-way
k-player protocol using O((k +min{(ν/ε) log(ν/ε),ν/ε2}) d log |D|) total words of
communication that maintains ε-classification error, with constant probability.

4 A Two-Party Protocol

In this section, we consider only two parties and refer to them as A and B. A′s data is
labeled DA and B’s data is labeled DB (|DB| = n). Our protocol, summarized in Algo-
rithm 1, is called WEIGHTEDSAMPLING. In each round, A sends a classifier hA to B

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



and B responds back with a set of points RB, constructed by sampling from a weighting
on its points. After T rounds (for T = O(log(1/ε))), we will show that by voting on
the result from the set of T classifiers hA will misclassify at most ε|DB| points from DB
while being perfect on DA, and hence ε|DB|< ε|DB∪DA|= ε|D|, yielding a ε-optimal
classifier as desired.

Algorithm 1 WEIGHTEDSAMPLING

Input: DA,DB, parameters: 0 < ε < 1
Output: hAB (classifier with ε-error on DA∪DB)
Init: RB = {}; w0

i = 1 ∀xi ∈ DB;
for t = 1 . . . T = 5log2(1/ε) do

——— A’s move ———
DA = DA∪RB; ht

A := Learn(DA); send ht
A to B;

——— B’s move ———
RB := MWU (DB, ht

A, 0.75, 0.2); send RB to A;
end for
hAB =Majority(h1

A,h
2
A, . . . ,h

T
A);

RB can construct its points in two ways: a random sample and a deterministic sam-
ple. We will focus on the randomized version since it is more practical, although it has
slightly worse bounds in the two-party case. Then we will also mention and analyze the
deterministic version.

It remains to describe how B’s points are weighted and updated, which dictates how
B constructs the sample sent to A. Initially, they are all given a weight w1 = 1. Then
the re-weighting strategy (described in Algorithm 2) is an instance of the multiplicative
weight update framework; with each new classifier hA from A, party B increases all
weights of misclassified points by a (1+ρ) factor, and does not change the weight for
correctly classified points. We will show ρ = 0.75 is sufficient. Intuitively, this ensures
that consistently misclassified points eventually get weighted high enough that they
are very likely to be chosen as examples to be communicated in future rounds. The
deterministic variant simply replaces Line 7 of Algorithm 2 with the weighted variant
[17] of the deterministic construction of RB [18]; see details below.

Note that this is roughly similar in spirit to the heuristic protocol [1] that exchanged
support points and was called ITERATIVESUPPORTS, which we will experimentally
compare against. But the protocol proposed here is less rigid, and as we will demon-
strate next, this allows for a much less nuanced analysis.

4.1 Analysis

Our analysis is based on the multiplicative weight update framework (and closely re-
sembles boosting). First, we state a key structural lemma. Thereafter, we use this lemma
for our main result. For ease of readability, we defer all proofs to the appendix.

As mentioned above (see (1)), after collecting a random sample Sε of size sε,d =
O(min{(d/ε) log(d/ε),d/ε2}) drawn over the entire dataset D ⊂ Rd , a linear classi-
fier learned on Sε is sufficient to provide ε-classification error on all of D with con-
stant probability. There exist deterministic constructions for these samples Sε still of

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



size sε,ν [18] (and sometimes slightly smaller [19]); although they provide at most ε-
classification error with probability 1, they, in general, run in time exponential in ν .
Note that the VC-dimension of linear classifiers in Rd is O(d), and these results still
holds when the points are weighted and the sample is drawn (respectively constructed
[17]) and error measured with respect to this weighting distribution. Thus B could send
sε,d points to A, and we would be done; but this is too expensive. We restate this result
with a constant c, so that at most a c fraction of the weights of points are mis-classified
(later we show that c = 0.2 is sufficient with our framework). Specifically, setting ε = c
and rephrasing the above results yields the following lemma.

Algorithm 2 MWU (DB, ht
A, ρ , c)

1: Input: ht
A,DB, parameters: 0 < ρ < 1, 0 < c < 1

2: Output: RB (a set of sc,d points)
3: for all (xi ∈ DB) do
4: if(ht

A(xi) 6= yi) then wt+1
i = wt

i(1+ρ);
5: if(ht

A(xi) == yi) then wt+1
i = wt

i ;
6: end for
7: randomly sample RB from DB (according to wt+1);

Lemma 1. Let B have a weighted set of points DB with weight function w : DB→ R+.
For any constant c > 0, party B can send a set Sc,d of size O(d) (where the constant
depends on c) such that any linear classifier that correctly classifies all points in Sc,d
will misclassify points in DB with a total weight at most c∑x∈DB w(x). The set Sc,d can
be constructed deterministically, or a weighted random sample from (DB,w) succeeds
with constant probability.

We first state the bound using the deterministic construction of the set Sc,d , and then
extend it to the more practical (from an implementation perspective) random sampling
result, but with a slightly worse communication bound.

Theorem 3. The deterministic version of two-party two-way WEIGHTEDSAMPLING
for linear separators in Rd misclassifies at most ε|D| points after T = O(log(1/ε))
rounds using O(d2 log(1/ε)) words of communication.

In order to use random sampling, as suggested in Algorithm 2, we need to address
the probability of failure of our protocol. More specifically, the set Sc,d in Lemma 1 is
of size O(d log(1/δ ′)) and a linear classifier with no error on Sc,d misclassifies points in
DB with weight at most c∑x∈DB w(x), with probability at least 1−δ ′. We want this prob-
ability of failure to be a constant δ over the entire course of the protocol. Setting δ ′ =
δ/T , and applying the union bound implies that the probability of failure at any point
in the protocol is at most ∑

T
i=1 δ ′ = ∑

T
i=1 δ/T = δ . This increases the communication

cost of each round to O(d2 log(1/δ ′)) = O(d2 log(log(1/ε)/δ )) = O(d2 log log(1/ε))
words, with a constant δ probability of failure. Thus, random sampling in WEIGHTED-
SAMPLING requires a total of O(d2 log(1/ε) log log(1/ε)) words of communication.
We formalize below.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



Theorem 4. The randomized two-party two-way protocol WEIGHTEDSAMPLING for
linear separators in Rd misclassifies at most ε|D| points, with constant probability, after
T = O(log(1/ε)) rounds using O(d2 log(1/ε) log log(1/ε)) words of communication.

5 k-Party Protocol

In Section 3 we described a simple protocol (Theorem 1) to learn a classifier with ε-
error jointly among k parties using O(kd +d min{ν/ε log(ν/ε),ν/ε2}) words of total
communication. We now combine this with the two-party protocol from Section 4 to
obtain a k-player protocol for learning a joint classifier with error ε .

We fix an arbitrary node (say P1) as the coordinator for the k-player protocol of
Theorem 1. Then P1 runs a version of the two-player protocol (from Section 4) from
A’s perspective and where players P2, . . . ,Pk serve jointly as the second player B. To do
so, we follow the distributed sampling approach outlined in Theorem 1. Specifically,
we fix a parameter c (set c = 0.2). Each other node reports the total weight w(Di) of
their data to P1, who then reports back to each node what fraction of the total data
w(Di)/w(D) they own. Then each player sends the coordinator a random sample of
size sc,dw(Di)/w(D). Recall that we require sc,d = O(d log log(1/ε)) in this case to
account for probability of failure over all rounds. The union of these sets at P1 satisfies
the sampling condition in Lemma 1 for ∪k

i=2Di. P1 computes a classifier on the union
of its data and this joint sample and all previous joint samples, and sends the resulting
classifier back to all the nodes. Sending this classifier to each party requires O(kd)
words of communication. The process repeats for T = log2(1/ε) rounds.

Theorem 5. The randomized k-party protocol for ε-error linear separators in Rd ter-
minates in T = O(log(1/ε)) rounds using O((kd+d2 log log(1/ε)) log(1/ε)) words of
communication, and has a constant probability of failure.

The random sampling algorithm required a sample of size O(d log log(1/ε)). How-
ever we can achieve a different communication trade-off using the deterministic con-
struction where, in each round, each party Pi communicates a deterministically con-
structed set Sc,i of size O(d). The coordinator P1 computes a classifier that correctly
classifies points from all of these sets having at most cw(Di) weight of points misclas-
sified in each Di. The error is at most cw(Di) on each dataset Di and so the error on
all sets is at most c∑

k
i=2 w(Di) = cw(D). Again using T = O(log(1/ε)) rounds we can

achieve the following result.

Theorem 6. The deterministic k-party protocol for ε-error linear separators in Rd ter-
minates in T = O(log(1/ε)) rounds using O(kd2 log(1/ε)) words of communication.

6 Experiments

In this section, we compare WEIGHTEDSAMPLING with the following baselines for
2-party and k-party protocols.

– NAIVE: sends all data from (k−1) nodes to a coordinator node and then learns at
the coordinator.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



– VOTING: trains classifiers at each individual node and sends over the (k−1) clas-
sifiers to a coordinator node. For any datapoint, the coordinator node predicts the
label by taking a vote over all k classifiers.

– RAND: each of the (k−1) nodes sends a random sample of size sε,d to a coordinator
node and then a classifier is learned at the coordinator node using all of its own data
and the samples received.

– RANDEMP: cheaper version of RAND that uses a random sample of size 9d from
each party each round; this value was chosen to make this baseline technique as
favorable as possible.

– MAXMARG: ITERATIVESUPPORTS that selects informative points heuristically [1].
We do not compare with MEDIAN [1] as it is not applicable beyond two dimensions.

– MWU: WEIGHTEDSAMPLING that randomly samples points based on the distribu-
tion of the weights and runs for 5 log(1/ε) number of rounds (ref. Section 4).

– MWUEMP: a cheaper version of MWU which is terminated early if the training
error has reached ε|D|.

For all these methods, SVM (from libSVM [20] library), with a linear kernel, was used
as the underlying classifier. We report training accuracy and communication cost. The
training accuracy is computed over the combined dataset D with an ε value of 0.05
(where applicable). The communication cost (in words) of all methods are reported
as ratios with reference to MWUEMP as the base method. All numbers reported are
averaged over 10 runs of the experiments; standard deviations are reported where ap-
propriate. For MWU and MWUEMP, we use ρ = 0.75.

Communication cost computation. Each example point incurs a cost of d + 1 (d
words to describe its position in Rd and 1 word to describe its sign). Similarly, each
linear classifier requires d +1 words of communication (d words to describe its direc-
tion and 1 word to describe its offset). Note that given our cost computation, for some
datasets the cost of RAND, RANDEMP and MWU can exceed the cost of NAIVE (see,
for example, Cancer).

Datasets. Six datasets, three each for two-party and four-party case, have been
generated synthetically from mixture of Gaussians. Each Gaussian has been carefully
seeded to generate different data partitions. For Synthetic1, Synthetic2, Synthetic4, Syn-
thetic5, each node contains 5000 data points (2500 positive and 2500 negative) whereas
for Synthetic3 and Synthetic6, each node contains 8500 data points (4250 positive and
4250 negative) and all of these datapoints lie in 50 dimensions. Additionally, we in-
vestigate the performance of our protocols on real-world datasets. We use Cancer and
Mushroom from the LibSVM data repository [20] as these datasets are linearly or almost
linearly separable. This shows that although our protocols were designed for noiseless
data they work well on noisy datasets too. However, when applied on noisy data, we do
not guarantee the accuracy bounds that were claimed for noiseless datasets.

In Tables 1-2, we highlight (in bold) the protocol that performs the best. By best we
mean that the method has the cheapest communication cost as well an accuracy that is
more that (1− ε) times the optimal, i.e., 95% for ε = 0.05. As will be frequently seen
for VOTING, the communication cost is the cheapest but the accuracy is far from the
desired ε-error specified, and in such circumstances we do not deem VOTING as the
best method.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



Table 1. Mean accuracy (Acc) and communication cost (Cost) required for synthetic datasets.

Synthetic1 Synthetic2 Synthetic3
Acc Cost Acc Cost Acc Cost

2-party
NAIVE 99.23 (0.0) 49.0 97.91 (0.0) 6.18 97.39 (0.0) 19.1
VOTING 95.00 (0.0) 0.01 60.64 (0.0) 0.01 74.55 (0.0) 0.01
RAND 99.02 (0.0) 29.4 97.72 (0.0) 3.71 97.16 (0.0) 6.74
RANDEMP 96.64 (0.1) 4.41 95.13 (0.1) 0.56 96.03 (0.1) 1.01
MAXMARG 96.39 (0.0) 4.26 93.76 (0.0) 6.18 73.62 (0.0) 19.1
MWU 98.66 (0.1) 49.5 97.59 (0.1) 6.24 97.11 (0.1) 11.3
MWUEMP 95.00 (0.0) 1.00 95.17 (0.1) 1.00 95.25 (0.2) 1.00

Synthetic4 Synthetic5 Synthetic6
4-party

NAIVE 99.26 (0.0) 100 97.97 (0.0) 12.7 97.47 (0.0) 54.8
VOTING 95.00 (0.0) 0.01 65.83 (0.0) 0.01 75.52 (0.0) 0.01
RAND 99.18 (0.0) 60.0 97.83 (0.0) 7.63 97.39 (0.0) 19.4
RANDEMP 97.33 (0.1) 9.00 96.61 (0.1) 1.15 96.67 (0.1) 2.90
MAXMARG 95.95 (0.0) 0.82 93.94 (0.0) 15.2 75.05 (0.0) 80.2
MWU 98.03 (0.2) 34.8 97.30 (0.1) 4.45 96.87 (0.1) 11.2
MWUEMP 95.11 (0.3) 1.00 95.11 (0.2) 1.00 95.45 (0.2) 1.00

6.1 Synthetic Results

Table 1 compares the performance metrics of the aforementioned protocols for two-
parties. As can be seen, VOTING performs the best for Synthetic1 and RANDEMP per-
forms the best for Synthetic2. For Synthetic3, MWUEMP requires the least amount of
communication to learn an ε-optimal distributed classifier. Note that, for Synthetic2 and
Synthetic3, both VOTING and MAXMARG fail to produce a ε-optimal (ε = 0.05) clas-
sifier. MAXMARG exhibits this behavior despite incurring a communication cost that is
as high as NAIVE (i.e., the accumulated cost of the support points become the same as
the cost of NAIVE at which point we stop the algorithm).

In Table 1, most of the two-party results carry over to the multiparty case. VOTING
is the best for Synthetic4 whereas MWUEMP is the best for Synthetic5 and Synthetic6.
As earlier, both VOTING and MAXMARG do not yield 0.05-optimal classifiers for Syn-
thetic5 and Synthetic6.

Figure 1 (for two-party using Synthetic1) shows the communication costs (in log-
scale) with variations in the number of data points per node and the dimension of the
data. Note that we do not report the numbers for MAXMARG since MAXMARG takes
a long time to finish. However, for Synthetic1 the numbers for MAXMARG are similar
to those of RANDEMP and so their traces are similar. Note that in Figure 1, the cost
of NAIVE increases as the number of dimensions increase. This is because the cost is
multiplied by a factor of (d +1), when expressed in words.

6.2 Real-world Results

Table 2 presents results for two and four-party protocols using real-world datasets.
Other than two-party case for Mushroom, VOTING performs best in all other cases.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
2

10
4

10
6

Number of points

 

 

Naive Voting Rand RandEmp Mwu MwuEmp

0 5 10 15 20 25 30 35 40 45 50

10
2

10
4

10
6

Number of dimensions

C
o
s
t 
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Fig. 1. Communication cost vs Size and Dimensionality for 2-party protocol.

However, note that VOTING does not yield a 0.05-optimal distributed classifier for
Mushroom using two-party protocol.

The results for communication cost (in log-scale) versus data size and communi-
cation cost (in log-scale) versus dimensionality are provided in Figure 2 for two-party
protocol using the Mushroom dataset. MWUEMP (denoted by the black line) is compa-
rable to MAXMARG and cheaper than all other baselines (except VOTING).

0 1000 2000 3000 4000 5000 6000 7000 8000

10
4

10
6

Number of points

 

 

Naive Voting Rand RandEmp MaxMarg Mwu MwuEmp

0 20 40 60 80 100

10
2

10
4

10
6

Number of dimensions

C
o
s
t 
in

 w
o
rd

s
 (

lo
g
−

s
c
a
le

)

Fig. 2. Communication cost vs Size and Dimensionality for 2-party protocol.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



Table 2. Results for Cancer (|D|= 683, d = 10) and Mushroom (|D|= 8124, d = 112).

Cancer Mushroom Cancer Mushroom
Acc Cost Acc Cost Acc Cost Acc Cost

2-party 4-party
NAIVE 97.07 (0.0) 3.34 100.00 (0.0) 20.01 97.07 (0.0) 1.00 100.00 (0.0) 28.61

VOTING 97.36 (0.0) 0.01 88.38 (0.0) 0.00 97.36 (0.0) 0.03 95.67 (0.0) 0.01
RAND 97.16 (0.1) 4.52 100.00 (1.1) 36.97 97.19 (0.1) 12.81 100.00 (0.6) 105.70

RANDEMP 96.90 (0.2) 0.88 100.00 (0.0) 4.97 96.99 (0.1) 2.50 99.99 (0.0) 14.20
MAXMARG 96.78 (0.0) 0.22 100.00 (0.0) 1.11 96.78 (0.0) 0.56 100.00 (0.0) 2.34

MWU 97.36 (0.2) 49.51 100.00 (0.0) 24.88 97.00 (0.2) 48.46 100.00 (0.1) 24.65
MWUEMP 96.87 (0.4) 1.00 99.73 (0.5) 1.00 96.97 (0.3) 1.00 98.86 (0.4) 1.00

Remarks. The goal of our experiments was to show that our protocols perform
well, particularly on difficult or adversarially partitioned datasets. For easy datasets,
any baseline technique can perform well. Indeed, VOTING performs the best on Syn-
thetic1 and Synthetic4 and RANDEMP performs better than others on Synthetic2. For
the remaining three cases on synthetic datasets, MWUEMP outperforms the other base-
lines. On real world data, VOTING usually performs well. However, as we have seen,
for some datasets VOTING and MAXMARG fail to yield an ε-optimal classifier. In par-
ticular for Mushroom, using the two-party protocol, the accuracy achieved by VOTING
is far from ε-optimal. These results show that there exists scenarios where VOTING and
MAXMARG perform particularly worse and thus are not safe strategies.

7 Distributed Optimization

Thus far, we have focused on solving the binary classification problem in a distributed
setting. Classification however is merely one kind of learning task, and one might ask
whether other problems can be addressed using the MWU framework we describe. A
useful insight here is that many learning tasks can be formulated as optimization prob-
lems in which the data act as constraints. For example, a simple linear SVM formulation
has for each labeled point (x,y) the constraint y(〈w,x〉+b)≥ 1.

Thus, a natural way to study a general class of learning tasks via optimization is as
follows. Each player i has a set of constraints Ci = { fi j(x)≥ 0}, and the goal is to solve
the optimization ming(x) subject to the union of constraints ∪iCi. As earlier, our goal
is to solve the above with minimum communication.

7.1 Optimization via Multiplicative Weight Updates

A first observation is that the MWU framework described in previous sections applies
to distributed optimization. Consider the problem of solving a general LP of the form
ming>x, subject to Ax ≥ b, x ∈ P, where P is a set of “soft” constraints (for example,
x ≥ 0) and Ax ≥ b are the “hard” constraints. Let z∗ = ming>x∗ be the optimal value
of the LP, obtained at x∗. Then the multiplicative weight update method can be used to
obtain a solution x̃ such that z∗ = g>x̃ and all (hard) constraints are satisfied approx-
imately, i.e ∀i, Aix̃ ≥ bi− ε , where Aix ≥ bi is one row of the constraint matrix. We

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



call such a solution a soft-ε-approximation (to distinguish it from a traditional approx-
imation in which all constraints would be satisfied exactly and the objective would be
approximately achieved).

The standard protocol works as follows [21]. We assume that the optimal z∗ has
been guessed (this can be determined by binary search), and define the set of “soft”
constraints to be P= P∪{x | g>x = z∗}. Typically, it is easy to check for feasibility in
P. We define a width parameter ρ = max{maxi∈[n],x∈P Aix−bi,1}. Initialize mi(0) = 0.
Then we run T = O((ρ2/ε2) lnn) iterations (with t = 1,2, . . . ,T ) of the following: (1)
Set pi(t) = exp(−εmi(t− 1)/2), (2) Find feasible x(t) in P∪{x | ∑i piAix ≥ ∑i pibi},
(3) mi(t) = mi(t−1)+Aix(t)−bi. At the end, we return x = (1/t)∑t x(t) as our soft-ε-
approximation for the LP.

We now describe a two-party distributed protocol for linear programming adapted
from this scheme. The protocol is asymmetric. Player A finds feasible values of x and
player B maintains the weights mi. Specifically, player A constructs a feasible set P
consisting of the original feasible set P and all of its own constraints. As above, B
initializes a weight vector m to all zeros, and then sends over the single constraint
∑i piAix ≥ ∑i pibi to A. Player A then finds a feasible x using this constraint as well
as P (solving a linear program) and then sends the resulting x back to B, who updates
its weight vector m. Each round of communication requires O(d) words, and there are
O((ρ2/ε2) lnn) rounds of communication. Notice that this is exponentially better than
merely sending over all constraints.

Theorem 7. There is a 2-player distributed protocol that uses O((dρ2/ε2) lnn) words
of communication to compute a soft-ε-approximation for a linear program.

A similar result applies for SDP (based on an existing primal MWU-based SDP
algorithm [21]) as well as other optimizations for which the MWU applies, such as
rank minimization [22], etc.

7.2 Optimization via Multi-Pass Streaming

We now present a different approach to distributed optimization. This approach intro-
duces a novel reduction from multipass streaming to distributed communication. Given
the extensive literature on streaming algorithms[23], this reduction is useful as a de-
sign strategy for algorithms in this model. Specifically, we show how fixed dimensional
linear programming can be solved using this reduction.

A streaming algorithm [23] takes as input a sequence of items x1, . . .xn. The algo-
rithm is allowed working space that is sublinear in n, and is only allowed to look at each
item once as it streams past. In multipass streaming, the algorithm may make more than
one pass over the data, but is still limited to sublinear working space and a single look
at each item in each pass. Lemma 2 shows that any (multipass) streaming algorithm can
be used to build a multiparty distributed protocol.

Lemma 2. A streaming algorithm for problem P that has s words of working storage
and makes r passes over the data can be made into a k-player distributed algorithm for
P that uses krs words of communication.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



Note that streaming algorithms often have s=O(poly logn) and r =O(logn), yield-
ing (sublinear) O(k poly logn) words of communication.

We can apply this lemma to get a distributed algorithm for fixed-dimensional linear
programming4. This relies on an existing result [24]:

Theorem 8 ([24]). Given n halfspaces in Rd (d constant), their lowest intersection
point can be computed by a O(1/δ d−1)-pass Las Vegas algorithm that uses O((1/δ O(1))nδ )
space and runs in time O((1/δ O(1))n1+δ ) with high probability, for any constant δ > 0.

Corollary 1. There is a k-player algorithm for solving distributed linear programming
that uses O(k(1/δ d+O(1))nδ ) communication, for any constant δ > 0.

While the above streaming algorithm can be applied as a blackbox in Corollary 1,
looking deeper into the streaming algorithm reveals room for improvement. As in the
case of classification, suppose that we are permitted to violate an ε-fraction of the con-
straints. It turns out that the above streaming algorithm achieves its bounds by eliminat-
ing a fixed fraction of constraints in each space, and thus requires logr n passes, where
r = nΘ(δ ). If we are allowed to violate an ε-fraction of constraints, we need only run
the algorithm for logr 1/ε passes, where r is now O(1/εΘ(δ )). This allows us to replace
n in all terms by 1/ε , resulting in an algorithm with communication independent of n.

Corollary 2. There is a k-player algorithm for distributed linear programming that vi-
olates at most an ε-fraction of the constraints, and uses O(k(1/δ d+O(1))(1/ε)δ ) com-
munication, for any constant δ > 0.

8 Conclusion

In this work, we have proposed a simple and efficient protocol that learns an ε-optimal
distributed classifier for hyperplanes in arbitrary dimensions. The protocol also grace-
fully extends to k-players. Our proposed technique WEIGHTEDSAMPLING relates to
the MWU-based meta framework and we exploit this connection to extend WEIGHT-
EDSAMPLING for distributed convex optimization problems. This makes our protocol
applicable to a wide variety of distributed learning problems that can be formulated as
a convex optimization task over multiple distributed nodes.

References

[1] Daumé III, H., Phillips, J., Saha, A., Venkatasubramanian, S.: Protocols for learning classi-
fiers on distributed data. In: AISTATS’12. (2012)

[2] Bekkerman, R., Bilenko, M., Langford, J., eds.: Scaling up Machine Learning: Parallel and
Distributed Approaches. Cambridge University Press (2011)

[3] McDonald, R., Hall, K., Mann, G.: Distributed training strategies for the structured percep-
tron. In: NAACL HLT. (2010)

4 Fixed-dimensional linear programming is the case of linear programming where the dimension
is treated as a constant.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



[4] Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale dis-
tributed training of conditional maximum entropy models. In: NIPS. (2009)

[5] Collins, M.: Discriminative training methods for hidden markov models: theory and exper-
iments with perceptron algorithms. In: EMNLP. (2002)

[6] Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bag-
ging, boosting, and variants. Machine Learning 36(1-2) (1999)

[7] Dekel, O., Gilad-Bachrach, R., Shamir, O., Xiao, L.: Optimal distributed online prediction
using mini-batches. arXiv:1012.1367 (2010)

[8] Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G., Ng, A.Y., Olukotun, K.: Map-reduce
for machine learning on multicore. In: NIPS. (2007)

[9] Teo, C.H., Vishwanthan, S., Smola, A.J., Le, Q.V.: Bundle methods for regularized risk
minimization. J. Mach. Learn. Res. 11 (March 2010) 311–365

[10] Zinkevich, M., Weimer, M., Smola, A., Li, L.: Parallelized stochastic gradient descent. In:
NIPS. (2010)

[11] Servedio, R.A., Long, P.: Algorithms and hardness results for parallel large margin learning.
In: NIPS. (2011)

[12] Balcan, M.F., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication com-
plexity and privacy. In: COLT’12 (to appear). (June 2012) arXiv:1204.3514.

[13] Daumé III, H., Phillips, J.M., Saha, A., Venkatasubramanian, S.: Efficient protocols for
distributed classification and optimization. arXiv:1204.3523

[14] Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge
(2009)

[15] Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring.
In: SODA. (2008)

[16] Cormode, G., Muthukrishnan, S., Yi, K., Zhang, Q.: Optimal sampling from distributed
streams. In: PODS. (2010)

[17] Matousek, J.: Approximations and optimal geometric divide-and-conquer. In: STOC.
(1991)

[18] Chazelle, B.: The Discrepancy Method. Cambridge (2000)
[19] Matoušek, J.: Geometric Discrepancy. Springer (1999)
[20] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM TIST 2(3)

(2011)
[21] Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite programming

using the multiplicative weights update method. In: FOCS. (2005)
[22] Meka, R., Jain, P., Caramanis, C., Dhillon, I.S.: Rank minimization via online learning. In:

ICML. (2008)
[23] Muthukrishnan, S.: Data streams: algorithms and applications. Foundations and trends in

theoretical computer science. Now Publishers (2005)
[24] Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Disc. & Comp. Geom. 37(1)

(2007) 79–102

Appendix

Proof of Theorem 3
Proof. At the start of each round t, let φt be the potential function given by the sum of
weights of all points in that round. Initially, φ1 = ∑xi∈DB wi = n since by definition for
each point xi ∈ DB we have wi = 1.

Then in each round, A constructs a classifier ht
A at B to correctly classify the set

of points that accounts for at least 1− c fraction of the total weight by Lemma 1. All

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 



other misclassified points are upweighted by (1+ρ). Hence, for round (t +1) we have
φ t+1 ≤ φ t ((1− c)+ c(1+ρ)) = φ t (1+ cρ) = n(1+ cρ)t .

Let us consider the weight of the points in the set S ⊂ DB that have been misclas-
sified by a majority of the T classifiers (after the protocol ends). This implies every
point in S has been misclassified at least T/2 number of times and at most T number
of times. So the minimum weight of points in S is (1+ρ)T/2 and the maximum weight
is (1+ρ)T .

Let ni be the number of points in S that has weight (1+ρ)i where i ∈ [T/2,T ]. The
potential function value of S after T rounds is φ T

S = ∑
T
i=T/2 ni(1+ρ)i. Our claim is that

∑
T
i=1 ni = |S| ≤ εn. Each of these at most |S| points have a weight of at least (1+ρ)T/2.

Hence we have
φ

T
S =

T

∑
i=T/2

ni(1+ρ)i ≥ (1+ρ)T/2
T

∑
i=T/2

ni = (1+ρ)T/2|S|.

Relating these two inequalities we obtain the following,
|S|(1+ρ)T/2 ≤ φ

T
S ≤ φ

T ≤ n(1+ cρ)T .

Hence (using T = 5log2(1/ε))

|S| ≤ n

(
(1+ cρ)

(1+ρ)1/2

)5log2(1/ε)

= n(1/ε)
5log2

(
(1+cρ)

(1+ρ)1/2

)
. (2)

Setting c = 0.2 and ρ = 0.75 we get 5 log2
(
(1+ cρ)/(1+ρ)1/2

)
)<−1 and thus |S|<

n(1/ε)−1 < εn, as desired since ε < 1. Thus each round uses O(d) points yielding a
total communication of O(d2 log(1/ε)) words.

Proof of Theorem 5
Proof. The correctness and bound of T = O(log(1/ε)) rounds follows from Theorem
3, since, aside from the total weight gathering step, from party P1’s perspective it ap-
pears to run the protocol with some party B where B represents parties P2,P3, . . . ,Pk.
The communication for P1 to collect the samples from all parties is O(kd + dsc,d) =
O(kd + d2 log log(1/ε)). And it takes O(dk) communication to return hA to all k− 1
other players. Hence the total communication over T = O(log(1/ε)) rounds is O((kd+
d2 log log(1/ε)) log(1/ε)) as claimed.

Proof of Lemma 2
Proof. First consider the case when k = 2. Consider a streaming algorithm S satisfying
the conditions above. The simulation works by letting the first player A simulate the first
half of S, and letting the second player B simulate the second half. Specifically, the first
player A simulates the behavior of S on its input. When this simulation of S exhausts
the input at A, A sends over the contents of the working store of S to B. B restarts S on
its input using this working store as S’s current state. When B has finished simulating S
on its input, it sends the contents of the working storage back to A. This completes one
pass of S, and used s words of communication. The process continues for r passes.

If there are k players A1, . . . ,Ak instead of two, then we fix an arbitrary ordering
of the players. The first player simulates S on its input, and at completion passes the
contents of the working store to the next one, and so on. Each pass now requires O(ks)
words of communication, and the result follows.

 
 

 
 
 
 
 
 

                                     U
U

 IR A
uthor M

anuscript                                                                  U
U

 IR A
uthor M

anuscript          

University of Utah Institutional Repository  
Author Manuscript 


	Efficient Protocols for Distributed Classification and Optimization

