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Abstract 

Combining the functionality of NetSolve, a grid-based 
middleware solution, with SCIRun, a graphically-based 
problem solving environment (PSE), yields a platform 
for creating and executing grid-enabled applications. Us­
ing this integrated system, hardware and/or software re­
sources not previously accessible to a user become avail­
able completely behind the scenes. Neither the SCIRun 
system nor the SCIRun user need to know any details 
about how these resources are located and utilized. A 
SCIRun module merely makes an RPC-style call to Net­
Solve via the NetSolve C language API to invoke a cer­
tain routine and to pass its data. Distributed computation 
and the details of remote communication are completely 
abstracted away from the SCIRun framework and its end 
user. 

1 OVERVIEW 

The idea of a compute grid [5] is analogous to the idea of 
the electric power grid. One should be able to "plug in" 
to the compute grid to obtain computing services the way 
one can plug into the electric power grid to obtain elec­
trical services. All the complicated details of electrical 
power generation, storage, and dissemination are hidden 
from the electricity user, who merely plugs devices requir­
ing power into the electric power grid via a wall socket. In 
much the same way, the details of the compute grid need 
to be hidden from the computing user for ease of use. If 
applications cannot make use of computing infrastructure 
easily, the infrastructure will remain unused. 
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However, there are many issues involved in grid­
enabling pre-existing software. Grid computing seeks to 
go ~yon~ mere networked computing by providing some 
infrastructure to support the use of resources in the way 
one would access/utilize a single machine, instead of a 
network of them. For example, Globus [4] provides a 
number of services which resemble the services provided 
by a traditional single machine operating system. such 
as UNIX. The question is how to build applications or 
executables for such a system. Usually. one compiles 
exeeutables on the target architecture (e.g., Linuxlx86, 
LinuxiAlpha), so that the executable is properly config­
ured to run on that platform (or even on a specific ma­
chine). To extend the operating system metaphor to the 
compute grid, we must ask how a grid application is con­
structed, compiled, or executed. Must it be written from 
scratch to take into account that its runtime environment 
will be a grid or can an existing application be easily mod­
ified to be grid-enabled? This question of writing grid­
enabled applications really extends our notion of portable 
code. Taking into consideration running in a grid envi­
ronment, truly portable code must be able to run on many 
hardware platforms as well as a variety of metacomputing 
environments, such as Condor [8], Globus, Legion [6], 
Ninf [11], and NetSolve. Is this a reasonable burden to 
place on application code? How can we make grid envi­
ronments easier to program to? 

NetSolve [2J, with its simple RPC semantics, exem­
plifies an easy-to-use plug to enable applications to uti­
lize the compute grid. NetSolve is a grid-enabled middle­
ware system that allows users to access computational re­
sources, both hardware ~md software. that are distributed 
across a network. It provides mechanisms to permit users 
to call remote libraries simply. Scientists and engineers 
can make use of libraries without the need to locate, con­
figure, compile, install. and upgrade these libraries. 

SCIRun [10] is a Problem Solving Environment (PSE) 
that could benefit from having access to the compute grid, 
pal1icularly access to remote numerical libraries. SCIRun 
is a scientific problem solving environment that allows the 
interactive construction, debugging, and steering of large­
scale, often parallel, scientific computations. SCIRun can 
be envisioned as a "computational workbench," in which a 
scientist can design and modify simulations interactively 



via a component-based visual programming tool. 
We provide a case study of grid-enabling a problem 

solving environment, in this case using NetSolve to grid­
enable SCIRun. Using NetSolve as a mechanism to plug 
SCIRun into the grid is simple and fairly unobtrusive to 
the PSE. SCIRun can leverage grid software resources, 
such as existing tuned numerical libraries, without need­
ing to fold library source code into its releases. Also, 
SCI Run does not need to wony about portability for 
these libraries. NetSolve facilitates heterogeneous envi­
ronments; a user can run a client from any supported ar­
chitecture regardless of the platform running the server (li­
brary). In this way, NetSolve solves the portability prob­
lem: libraries that are tied to one or two machine architec­
tures can be used by a NetSolve client running on almost 
any type of machine. 

2 INTRODUCTION TO SCIRUN 
AND NETSOLVE 

2.1 SCIRuD 

SCIRun Philosophy 
SCIRun is designed to provide high-level control over 

parameters in an efficient and intuitive way, through 
graphical user interfaces and scientific visualization. The 
cause-effect relationships within the simulation become 
more evident as the scientist adjusts parameters, thus al­
lowing the scientist to develop more intuition about the 
effect of problem parameters, to detect program errors, to 
develop insight into the operation of an algorithm, or to 
deepen an understanding of the physics of the problem(s) 
being studied. SCIRun fosters the asking of "What if?" 
questions. 

SCIRun attempts to be a single-stop, usable. interactive 
problem solving environment for scientists and engineers. 
SCIRun provides a "whole" solution by integrating the 
normally discrete processing phases of modeling, simu­
lation, and visualization into one problem solving envi­
ronment. An integrated system frees the user from leam­
ing multiple systems and the data conversion headaches of 
moving data from one program to another. Next, in pre­
senting a visual programming language, SCIRun appeals 
to the engineer/scientist with little "traditional" program­
ming knowledge. Finally, SCIRun allows a user to inter­
act with the running simulation by manipulating various 
parameters, in effect guiding or steering the computation. 
These mechanisms allow a user to adjust the computation 
without losing all of the calculations already performed, 
but only those that need to be redone due to changes in 
the parameter space. We believe that allowing a scientist 
more interaction with her simulation yields a more satis­
fying scientific tool. 
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SCIRUll Architecture 
The SCIRun architecture is built around the metaphor 

of a dataflow graph of computational modules constructed 
by the user, which is in effect a visual program. A sanl­
pIe application program written using the PSE is shown 
in Figure 1. The modules are at a coarse grain of func­
tionality. The modules, represented visually as boxes, are 
linked together using wires (data pipes). Data flows from 
modules at the top of the graph to modules at the bottom 
of the graph. The linkage enforces data type checking, 
as one cannot wire together a module with an output pa-
rameter that does not match the input parameter of the 
downstreanl module. 

Figure 1: An example SCIRun network of a large-scale 
biomedical simulation shows the dataflow programming 
interface. 

Execution is multi-threaded to optimize performance. 
Each SCIRun module has its own thread of execution and 
runs as soon as it receives all of its input paranleters. In 
other words, concurrent execution based on data depen­
dency analysis, or task parallelism, is provided. SCIRun 
is targeted toward shared memory symmetric multipro­
cessor (SMP) machines such as the SGI Origin 2000 and 
SMP Linux PCs. SCIRllIl limits itself to the shared mem­
ory environment to avoid using copying and/or marshal­
ing to pass data between the various components that 
make up the SCIRun system. This self-imposed limit 



makes it difficult to extend SCI Run to be usable in a dis­
tlibuted memory environment. 

Computational steering is achieved by a user either ma­
nipulating a geometrical object, or widget, within the vi­
sualization window or by alteling a parameter associated 
with a module through that module's GUI. A dataflow de­
pendency analysis is then perfonned to identify the extent 
of the change to the dataflow graph. Only the modules 
affected by the change will be recomputed. In this way, a 
user can interact with her simulation without losing work 
unnecessarily. 

2.2 NetSolve 

NetSolve Philosophy 
NetSolve is designed to be a simple-to-use middleware 

system. NetSolve allows users to access additional hard­
ware and/or software resources available remotely. In this 
way, it promotes the sharing of these resources within 
and between research communities in the computational 
sciences. A scientist can make calls to a library rou­
tine without worrying about where the code and execu­
tion resources reside. Through the use of an intelligent 
agent, NetSolve automatically selects the most appropri­
ate machine to service the client request (based on criteria 
such as service availability, network locality, and machine 
workload). 

A simple RPC-style call gives access to complicated 
software routines. NetSolve tracks which machines have 
computational servers running and with which library ser­
vices they are provisioned. NetSolve also tracks the work­
load of each server to yield the best choice of server for a 
given client request. In other words, NetSolve takes care 
of the details of finding a machine on which to run the 
software routine. In addition, NetSolve provides the abil­
ity to harness diverse machine architectures to work to­
gether on a computation (heterogeneous computing). 

NetSolve seeks to reduce the headaches of maintaining 
software libraries. It addresses portability by permitting 
non-portable code to be run from viltually any machine 
architecture via a client call. In addition, legacy codes 
can be easily wrapped for use with new systems by using 
NetSolve. 

NetSolve provides a "blue collar grid computing" solu­
tion by tying together PSEs and grid resources (metacom­
puting environments). As shown in Figure 2, NetSolve 
acts as a middleware plug to the grid by supporting inter­
faces to various front-ends, such as PSEs, and to various 
grid back-ends, such as Globus or NetSolve itself. 

NetSolve's interfaces to PSEs such as Matlab and 
Mathematica extend the functionality of PSEs to soft­
ware and hardware not supported by the native PSEs. In 
this way, NetSolve enables PSEs to make use of software 
without requiring that the routines be provided by the 
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Figure 2: NetSolve as the middleware connecting PSEs to 
grid environments. 

PSE. For example, a user could invoke ScaLAPACK rou­
tines on an Massively Parallel Processor (MPP) through a 
NetSolve call within a Matlab interface even though Mat­
lab is not natively MPP-enabled. In this way, we can ex­
tend the hardware and software on which these PSEs can 
operate (i.e., run routines on platfonns outside of those 
supported by the PSE). 

NetSolve Architecture 
The NetSolve architecture is based on a client/server 

design with an intelligent agent that keeps the state of the 
system so a client only needs to know where an agent 
is located. NetSolve works through the use of persis­
tent servers that service requests made by a user call 
invoking the NetSolve client. Each NetSolve server is 
pre-configured to run a set of services (or wrapped li­
brary routines) at compile time. The server registers it­
self and its set of services with the NetSolve agent with 
which it chooses to be associated upon startup. Then, 
the agent takes in client service requests and returns the 
"best" server for the client to use based on proximity and 
machine workload. Next, the client sends the library rou­
tine call and data to the server for processing. Finally, the 
server returns the result to the client. 

NetSolve provides simple RPC-style calls as its client 
API. All a client sees is that it makes a call and a result 
is returned. All the intelligence in the system happens 
"behind the scenes." NetSolve supports APIs for C and 
Fortran programming languages, as well as for Matlab and 
Mathematica problem solving environments to facilitate 
use by programmers and non-programmers alike. 

In addition, NetSolve provides extensible service cre­
ation. NetSolve provides a Problem Description File 
(PDF), which is merely an Interface Definition Language 
(IDL), as the mechanism for generating wrappers to li­
brary code. The various problems described in a PDF then 



become NetSolve services which can be enabled by server 
instances. In this way, one can create NetSolve services 
that can be run by NetSolve servers from any stand-alone 
code module. 

Different proxies supp0l1 multiple metacomputing 
back-ends. NetSolve supports different grid computing 
back-ends through the use of client proxies which can in­
terface to these various back-ends. For now, one cannot 
mix back-ends, but must choose one grid back end when 
the client is installed. 

All elements of NetSolve run on most UNIX platforms. 
In addition, NetSolve has a Windows 95/98INT client in­
terface. 

3 GRID-ENABLING THE 
SCIRUNPSE 

Must a grid application be written from scratch to take 
into account that its runtime environment will be a grid or 
can an existing application be easily modified to be grid­
enabled? We believe it is not possible in practice to write 
an application completely independent of its target execu­
tion environment. There are too many assumptions that 
must be made about the environment to make a totally 
general piece of code. However, grid environments should 
not be complex to program. NetSolve provides a mid­
dle layer between an applications programmerlPSE and a 
grid environment to abstract away the details of interact­
ing with a grid. Therefore, we believe it must present the 
simplest of interfaces to programmers/users. 

NetSolve, as glid middleware, provides an easy-to-use 
plug for an existing application to grid-enable itself. How­
ever, grid-enablement is not automatic - application pro­
grammers must augment their code with calls to use grid 
resources. 

3.1 Methods 

Our goal is to allow a SCIRun user to easily choose 
whether or not to use NetSolve within their application. 
Creating a set of grid-nmnable components (modules) 
that are either interchangeable with pre-existing SCIRun 
components or are new components is a clear, but unob­
trusive way of integrating NetSolve capabilities into the 
SClRun PSE. A SClRun applications programmer must 
target their application to be run on the grid by select­
ing grid-enabled modules. Thus the complexity of using 
the grid is reduced to the much more simple problem of 
calling a NetSolve-enabled module. As far as the task of 
writing grid-enabled SCIRun modules, existing modules 
can be used as templates for the NetSolve-enabled mod­
ules, which merely require the addition of a few calls to 
NetSolve. 

101 

Our initial approach is to extend the functionality of a 
few SClRun modules in a domain-specific way. Initially, 
we built a NetSolve-enabled sparse matrix solver module; 
work has already begun to extend this approach to dense 
problems as well. The NetSolve-enabled matrix solver 
modules use highly tuned numerical libraries which are 
accessible through NetSolve's client API. In this way, we 
extend the functionality of the SCIRun framework, while 
also providing a mechanism for distlibuting the compute­
intensive code (in this case the solve) to an MPP. Us­
iug NetSolve to call these sparse and dense numelicalli­
brary routines allows the NetSolve user the ability to run 
MPI [12] on distributed memory processors without hav­
ing to learn the interstices of a message passing numerical 
library (i.e., the SCIRun developers need not find a way to 
merge SCIRun's multi-threaded environment with MPI). 
Since each module in SCIRun has a separate thread of 
execution, the module functions essentially atomically as 
a single unit of computation. This execution model fits 
well with NetSolve's black box approach. NetSolve takes 
care of finding a server that can run the package (e.g., 
PETSc [7]), as well as handling the details of MPP ex­
ecution (e.g., starting the distributed memory run, passing 
the data back and forth, etc.), so that these details are ab­
stracted away from the PSE. 

The NetSolve-enabled modules are patterned after the 
existing SCIRun matrix solver module, SolveMatrix, that 
supports sparse matrices and provides several iterative 
methods (e.g., variations of conjugate gradient, Jacobi, 
Richardson, and minimal residual methods). The original 
module allows a user to choose the method to be used and 
to adjust parameters such as error tolerance, maximum 
number of iterations, and preconditioner. The NetSolve 
SparseSolve module allows the user to choose a numeli­
cal package to use for the solve as well setting the error 
tolerance and maximum number of iterations. Sparse iter­
ative and sparse direct methods are supported, enabling a 
user to choose either PETSc or Aztec for an iterative sol ve 
or MA28 or SuperLU for a direct solve. Depending on the 
method chosen, a net~ol ve call is formatted and a client re­
quest created for one of the services listed above. We used 
a NetSolve blocking call, so the call waits until it receives 
the result back from whichever server the NetSolve agent 
assigns to the request. The user must specify a NetSolve 
agent in her environment before executing this module. 
Also, we had to build and link the NetSolve client library 
into the SCIRun PSE executable. 

In general, a module wliter must translate between the 
SClRun objectldatatype (C++ class) and the parameters 
required by the NetSolve API to the target numerical li­
brary or user-defined service. A SClRun module receives 
its input from input ports of particular types and sends out 
its output through output ports that are also typed. So, in­
put data must be converted for the call to NetSolve, and 



the output from NetSolve must be converted back into the 
SCI Run datatype. 

In our specific case, we sought to make components 
plug-compatible or interchangeable which required us to 
preserve the SCIRun solver "interface" (i.e .. the number 
and types of module inputs and outputs). Both modules 
take essentially the same input: a sparse matrix and a vec­
tor (right-hand side), although it is conceivable that one 
could wire a dense matrix into the normal SCIRun solver, 
that is explicitly prohibited with the NetSolve Sparse­
Solve module. A dense matrix would be treated as a 
sparse matrix by the normal SCIRun solver, so it is not 
pragmatic to do so. Both modules output a vector (left­
hand side). So, the original SCIRun module and the 
NetSolve-enable SparseSolve module are interchangeable 
witilin any given SCIRun application. 

3.2 Preliminary Results 

Creating a SCIRun module to make use of a NetSolve ser­
vice was simple. Three lines of code enabled a SCIRun 
module to utilize NetSolve for the numerical solve. We 
created a SparseSolve module which can be used in place 
of the normal SCIRun SolveMatrix module. The only dif­
ference is that the module uses NetSolve to call a standard 
sparse package to do the solve. Preliminary results reveal 
cases where the NetSolve-enabled PETSc service allows 
SCIRun users to solve problems that could not be solved 
using the unaugmented PSE. These findings warrant fur­
ther investigation. 

4 RELATED RESEARCH 

Work investigating grid-enabling entire problem solving 
environments is relatively new, with many open research 
questions. The most popular and widespread Problem 
Solving Environments (PSEs) are "programmed" in the 
language of math: Matlab, Mathematica, and Maple. Net­
Solve provides interfaces to Matlab and Mathematica, al­
lowing users of these PSEs to leverage the power of the 
grid via NetSolve (i.e., gain access to additional hardware 
and software that is not provided within these systems). 

However, some investigations have used some pre­
existing code to cobble together grid applications. 
Casanova, et af. [3] grid-enabled an existing Monte Carlo 
simulator for neuron functions called MCell. They used 
AppleS [1] and NetSolve to collect resources and sched­
ule a massively parallel parameter space search that al­
lowed biomedical researchers to make strides in their re­
search. 

Finally, previous work on a distributed version of the 
SCIRun PSE [9] investigated executing portions of a 
SCIRun application program remotely. This work showed 
feasioility, hut the work stopped short of grid-enabling the 
SCIRun problem solving environment. However, since it 
was woven into the fabric· of the SCIRun runtime environ­
ment, this work provided a more generalized solution to 
distributed computing within SCIRun. 

5 CONCLUSIONS 

To answer the question about burdens on application pro­
granuners to achieve portability, we must conclude that 
indeed some design must be targeted toward grid envi­
ronments, but grid environments need to be easy to plug 
into. In our case, we created separate modules to achieve 
our grid-enablement of SCIRun. But we found that it is 
simple and feasible to create SCIRun modules that use 
NetSolve to utilize remote services. With a few simple 
changes, a SCIRun user gains access to grid software ser­
vices, in this case numerical libraries. 

A PSE and its users gain access to software packages 
without having to support these libraries. In this way, 
the functionality of a PSE is greatly increased without the 
usual increase in maintenance and packaging work usu­
ally needed to fold library code into the software to pro­
vide a turnkey system. For example, the SCIRun source 
tree does not need to keep or distribute the PETSc source 
in order to make lise of the set of PETSc functionality 
accessed by NetSolve. Lastly, with the NetSolve inter­
face in place, it will now be relatively easy to access other 
grid platforms, such as Condor, Globus, Legion, and Ninf, 
through the NetSolve plug since NetSolve is building in­
terfaces to these metacomputing back-ends. 

As far as work investigating running applications on the 
grid, most of the work has focused on writing new appli- 6 
cations which presuppose the existence of a grid. This 
allows them to program to the specifics of a particular 
grid environment. The Globus team wrote an interest­

INTEGRATION 
FUTURE WORK 

ISSUES AND 

ing grid application that gathers data from a remote high­
end instrument, a synchrotron light source; configures the 
resources needed to perform tomographic image recon­
struction from grid resources; and allows a user to steer 
the computation by selecting and altering parameter val­
ues and to visualize the results [13]. 
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It would be nice to have a user select modules to be run 
remotely and have the proper code emitted to configure a 
NetSolve server comprised of the modules selected, and 
have the NetSolve client call fomlatted and invoked au­
tomatically (under the hood). Unfortunately, the SCIRun 
infrastructure gets in our way. There is just no easy way 



to hook NetSolve into the persistent I/O SCIRun rou­
tines. It is a simple to add the sockets calls at this level, 
but we need a layer of abstraction above raw sockets or 
file manipulations to automatically emit NetSolve code 
that could execute normal SMP-targeted SCIRun code re­
motely. 

In addition, a number of areas of future work in Nct­
Solve would help the integration with SCIRun. First, Net­
Solve does not support steering. NetSolve services are 
a black box. There is no way within NetSolve to halt a 
computation willIe it is running and restart it with new pa-
rameters, in other words to steer the computation. Guid-
ing the computation in this way is one of the hallmarks of 
SCIRun, so allowing user interaction is imp0l1ant. Sec­
ond, a variety of interfaces from NetSolve to numerical 
libraries should be supported. SCIRun needs an interface 
that exposes lots of parameters which a user can interact 
with or steer; whereas, a typical Matlab user of NetSolve 
may want the simplest interface to a library. One can think 
ofthese as expert and non-expert APIs. 
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