
VOLUME 74, NUMBER 12 PHYSICAL REVIEW LETTERS 20 MARCH 1995 

High Sensitivity Nuclear Quadrupole Resonance Approach for Detection of Modulation Wave 
Motion in Incommensurate Systems 

David C. Ailion and James A. Norcross 
Department of Physics, University of Utah, Salt Lake City, Utah 84112 

(Received 25 July 1994) 

In contrast to conventional NMR techniques that use magnetic field gradients (MFG's) to detect the 
diffusion of moving atoms, we have developed a highly sensitive approach for detecting electric field 
gradient (EFG) fluctuations seen by stationary atoms. These EFG fluctuations were observed in the 
quadrupole perturbed NMR behavior of a stationary nucleus ( 93Nb) in the incommensurate insulator 
barium sodium niobate and are attributed to motion of the modulation wave. We observed effective 
diffusion constants of order 10- 13 cm2 / s, which are 4 orders of magnitude smaller than those currently 
detectable with MFG NMR. 

PACS numbers: 76.60. - k, 64.70.Rh, 66.30. - h 

Since the early work of Hahn [1], nuclear magnetic res­
onance (NMR) has been one of the best techniques for 
studying self-diffusion of mobile nuclei. Slow transla­
tional diffusion can be observed in liquids and other sys­
tems of sufficiently narrow NMR linewidth by monitoring 
a change in the NMR frequency of a moving spin in a 
static magnetic field gradient (MPG) [2]. In this Letter 
we describe the first observations of similar effects for a 
stationary quadrupolar nucleus in a time varying electric 
field gradient (EFG). Specifically, our experiments were 
performed in an incommensurate solid where the varia­
tions in the EFG are produced by translational motion of 
the modulation wave. This approach contrasts to that used 
in the typical diffusion measurement [2] in which the in­
teraction field (the MFG) is static but the nuclear position 
varies with time. In our experiment, the position of the 
observed nucleus is constant in time but the interaction 
field (in this case, the EFG) fluctuates. 

It is shown here that extremely small diffusion coeffi­
cients can be measured by this new quadrupole-perturbed 
NMR technique. The diffusion effect shows up as a de­
cay of the magnetization with an exponent proportional 
to the cube of time, similar to the decay observed in 
conventional MFG NMR. The sensitivity of this EFG 
technique for detecting random translational motions ex­
ceeds by more than 4 orders of magnitude the sensitiv­
ity obtainable by conventional MFG NMR. The physical 
reason for this is that the modulation wave in an incom­
mensurate solid produces a much larger frequency varia­
tion over much smaller distances than are obtainable by 
conventional MFG's. Normally in a typical NMR diffu­
sion experiment, field gradients of about 0.1 T / cm (corre­
sponding to about 1-4 Hz variation over 100 A) are used. 
Even with the large fringe fields of superconducting mag­
nets [3] which produce gradients as large a 5 T / cm, the 
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frequency variation over 100 A will be only 200 Hz. The 
effective field gradient variation produced by the modu­
lation wave in barium sodium niobate (BSN) is 20 kHz 
over 100 A, which is 2 orders of magnitude larger. Fur-

0031-9007/95/74(12)/2383(4)$06.00 

thermore, since the change in NMR signal is proportional 
to the square of this field gradient variation, the effective 
sensitivity is 4 orders of magnitude better than the best 
currently available with magnetic field gradient NMR. In 
particular, we observed effective diffusion coefficients as 
small as 10- 13 _10- 15 cm2/s. 

The NMR behavior resulting from fluctuating electric 
field gradients (and thus the NMR effects) which arise 
from a mobile modulation wave and are experienced by a 
stationary nucleus should be similar to those experienced 
by a mobile nucleus diffusing along a stationary modu­
lation wave provided that the modulation wave's motion 
has sufficient range. If the modulation wave's motion is 
the result of local depinning, there will be large amplitude 
motions (which may be approximated as free diffusion) 
far from the pinning points and much smaller amplitude 
motions near the pinning points (which may be treated as 
restricted diffusion). 

In addition to its greater sensitivity, this way of study­
ing translational diffusion in solids offers new insights not 
obtainable either by conventional NMR or by non-NMR 
techniques. Hysteresis and metastability effects, such as 
dielectric and birefringence hysteresis [4] or x -ray broad­
ening of satellites [5], provide macroscopic but not micro­
scopic information about the adjustment of the modulation 
wave to the motion of pinning defects. NMR techniques 
like relaxation time and linewidth measurements provide 
the spectral density of the fluctuations and the distribu­
tion of the field gradients; however, they do not directly 
give specific information about the translational motion of 
a moving nucleus or modulation wave (e.g., how far it 
moves in a specific time). Conventional pulsed gradient 
techniques cannot be used in an incommensurate system 
because the linewidths are too broad and the sensitivity is 
too low. Our measurements, however, observe a specific 
form of the magnetization decay which reflects an irre­
versible change in the NMR frequency due to the spatial 
motion of the modulation wave. Careful measurement of 
the time dependence of this decay allows the determina-
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tion of the accumulated phase change due to the motions 
(i.e., the mean squared displacement of the modulation 
wave). Furthermore, restricted diffusion involving attrac­
tive centers [6] or fixed walls [7] results in effects which 
change the time dependence of the exponent in the magne­
tization decay from t 3 to t 2 or t, thereby allowing a deter­
mination of the crossover distance from free to restricted 
diffusion and resulting in effects that are very different 
than those normally seen in typical NMR experiments. 

Our experiments were performed on 93Nb in a single 
crystal of the insulator barium sodium niobate (BSN), 
which is incommensurate below approximately 580 K 
[8]. Barium sodium niobate (Ba2NaNbsO 15) is a spe­
cial case of a system having a four-component order pa­
rameter [8] in which two components are frozen and two 
are fluctuating. Also, BSN is characterized by nonstoichi­
ometry, which undoubtedly is responsible for a large num­
ber of mobile point defects, probably sodium vacancies 
[9J. These defects should lead to a random pinning of the 
modulation wave (making it a kind of incommensurate 
glass), but with continuous readjustment of the position of 
the modulation wave to the instantaneous position of the 
mobile defects. 

In BSN the Nb nuclei are surrounded by oxygen atoms 
to which they are covalently bound; thus they cannot 
diffuse. Hence, any motional effects observed in the 
NMR studies described here must arise from the motion 
of the modulation wave. The physical model assumed 
here is that the rapid motions of sodium vacancies 
[10] cause microadjustments in the modulation wave 
(due to pinning and depinning). The resulting slow 
variation in the EFG seen by the static quadrupolar 
nucleus 93Nb should be equivalent to that experienced 
by a mobile quadrupolar nucleus diffusing across a 
spatially varying EFG. Accordingly, we will first consider 
the behavior of a quadrupolar spin diffusing across a 
static inhomogeneous EFG arising from a static, pinned 
modulation wave. 

Bloch's equations describing the behavior of the mag­
netization for a spin diffusing across a magnetic field gra­
dient are given by [IIJ 

aM Mi + Myj 
at = (M x yH) -

(1) 

For the case of a quadrupolar nucleus diffusing across 
the inhomogeneous electric field gradients arising from 
a pinned modulation wave, the frequency yH (assumed 
to be in the z direction) in Eq. (1) is replaced by y H = 

[wo + L1 W (r)]k, where Wo represents the sum of the 
static spatially homogeneous Zeeman and quadrupolar 
interactions in the absence of incommensurability and 
L1 W (r) represents the change in the NMR frequency 
arising from the space-dependent electric field gradients 
of the incommensurate modulation wave at position r. 
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The NMR (or NQR) angular frequency of a spin at r 
due to an incommensurate modulation wave can be related 
to its position by [12] 

W (r) = Wo + WI cos[ 'P (r)] + W2 cos2 [ 'P (r)] 

(2) 

where 'P (r) is the phase of the modulation wave at r, and 
W j is proportional to the jth power of the amplitude of 
the modulation wave. In the plane wave approximation, 
which is normally valid in the high temperature portion of 
an incommensurate phase [12], the phase 'P(r) is equal to 
q'r, where q is the modulation wave vector. 

We consider first the simplest case, where only the 
linear term in Eq. (2) (proportional to WI) is kept and 
the plane wave approximation is assumed. If the time 
variation of the phase 'P (r) is sufficiently slow that it can 
be treated as independent of time for the time duration 
of a single EFG fluctuation (this is called the "effective 
local gradient" approximation [13J and is equivalent to 
replacing the phase and thus the EFG by its average 
value); the Hahn T2 decay will be characterized by an 
exponential dependence on the cube of time t [11], 
as in the usual case of diffusion along a static linear 
magnetic field gradient [2]. However, the coefficient will 
be characteristic of the modulation wave. The dependence 
of the magnetization on frequency w can be obtained by 
replacingcos(q·r)by(w - WO)/WI. Wethenget 

MH(t, w) = M(O, w) exp(-t/T2 ) 

X exp{- Dwrq2[1 - (w WO)2/ wr]t 3 / 12}, 

(3) 

where D is the diffusion constant, M H (t, w) is the magne­
tization in the Hahn decay at time t for those spins whose 
resonance frequency is w, and M(O, w) is the magnetiza­
tion at t = 0. The wr factor, which reflects the magni­
tude of the EFG tensor variation over the incommensurate 
modulation wavelength, can be determined from the NMR 
lineshape and q is known from x-ray and neutron scatter­
ing measurements. For a Carr-Purcell (CP) sequence [14J, 
the result is again similar to the usual result, and is given 
by 

Mep(t, w) = M(O, w) exp(-t /T2 ) 

X exp{-Dwrq2[1 - (w WO)2/ WrlT 2 t /3}, 
(4) 

where 27 is the spacing between 1800 pulses. Since the 
CP decay's exponent is linear in t, whereas the Hahn 
decay's exponent ex (3, the Hahn decay will be more rapid 
than the CP decay when sufficient diffusion across large 
gradients occurs. For both the Hahn and CP sequences, 
the effective diffusion constant, which is proportional to 
D[l - (w - wO)2 / wr], varies over the inhomogeneously 
broadened NMR line, having a maximum value in the 
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center of the line where phasons dominate and going to 
zero at the edges where amplitudons dominate. 

In general, the NMR (or NQR) resonance line for an in­
commensurate system is inhomogeneously broadened. In 
order to obtain the decay for the entire line, it is necessary 
to integrate the decay for the individual spins [obtained 
from Eq. (3) or (4)] over the inhomogeneous distribution, 
which is characterized by two edge singularities [12,15] 
for the linear case considered here. 

These results can easily be extended to the case 
where W (r) is a general function, given by w (r) = 

Wo + j( coscp(r) and the phase may have a nonlinear 
dependence on position r as in the multisoliton region. 
Again using the effective local gradient approximation 
and assuming a one-dimensional modulation wave, the 
Hahn decay M H (t, x) for a single spin at position x can 
be expressed as 

MH(t,x) = M(0,x)exp(-t/T2) 

X exp[-Dj,2 sin2cp(x) (dcp /dx)2 t 3 /12], 

(5) 

where I' is the first derivative of I with respect to 
cos'P (x) . Quadratic and higher order terms in the ex­
pansion of Eq. (2) can easily be obtained by substitution 
into the above equation. As in Eqs. (3)-(4), the x de­
pendence of Eg. (5) can be replaced by the dependence 
on the Larmor angular frequency w, but the precise math­
ematical form depends on I and on the dependence of 
the phase cp(x) on x. It is clear from Eq. (5) that the 
Hahn magnetization will decay with an exponential de­
pendence on t 3 , regardless of the precise forms assumed . 
for I(cos'P) or d cp / dx, provided the effective local gradi­
ent approximation is valid, which should be the case for 
the extremely small displacements corresponding to the 
modulation wave motion. Nevertheless, the coefficient of 
[3 will depend on the nature of the modulation wave, and 
will be different for restricted diffusion than for the free 
diffusion, assumed in Egs. (3)-(5). Also, for very long 
times the breakdown of the effective gradient approxima­
tion can cause departures from the [3 dependence [13]. 

We measured both the Hahn decay and the CP decay 
at 8.5 T over the temperature range 300-650 K for the 
central transition of 93Nb in a single crystal of BSN. At 
all temperatures the Hahn decay was more rapid than 
CP, suggesting that diffusion of the modulation wave 
is occurring, since the covalently bonded Nb atoms can 
not diffuse. Recently published TI and T2 93Nb data 
[16] are consistent with diffusive motions dominating the 
relaxation. The CP decay is multiexponential and can 
be fit by two or more components [17]. This behavior 
is consistent with the discussion. following Egs. (3) and 
(4) pointing out that the effective diffusion constant will 
be different for different portions of the inhomogeneously 
broadened NMR line. 

Figure 1 shows the Hahn decay at T = 25°C obtained 
with a selective pulse sequence (HI = 8 G) that excites 
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FIG. 1. Magnetization vs echo time in Hahn decay for a 
selective pulse sequence. The dashed curve represents a fit 
using Eq. (3), which assumes an exponential dependence of 
the magnetization on the cube of the echo time, after the 
dependence on T2 is removed. 

only the central portion of the line. This figure shows 
that the decay can be fit by a time constant proportional 
to t 3 , as predicted by the above discussion. The fact that 
the t 3 fit to the decay may not be as good at very long 
times suggests that restricted diffusion may be important. 
As we discussed earlier, diffusion near an attractive force 
center will result in a slower magnetization decay, more 
likel y characterized by a coefficient proportional to t 2 • 

Such behavior would be expected for the signals from 
Nb nuclei that are located near pinning centers. Another 
possibility is that this departure from t 3 behavior may 
be due to motions of sufficiently large range and that 
the use of an effective local gradient is no longer valid. 
The time dependence of the magnetization decay has also 
been studied in other incommensurate systems [18,19] at 
lower temperatures where the modulation wave is pinned 
by impurities, and no [3 dependence was observed. 

Figure 2 shows a plot of the temperature dependence 
of the effective diffusion coefficient D determined from 
the experimentally measured coefficient of t 3 in the Hahn 
decay using Eq. (3), using relatively nonselective pulses 
for which HI was 69 G. These data were obtained 
from the short-time portion of the decay, before the 
crossover to restricted diffusion. According to Eq. (3) 
the coefficient of [3 is D wrq2/12 at the center of the 
resonance line (where w = wo). The y axis of this figure 
was obtained by using 21T(20 kHz) for Wl (determined 
from NMR linewidth measurements [16] in BSN) and 
4.5 X 106 cm -1 for the incommensurate wave vector q 
(determined from x-ray data [8,20]). This behavior shows 
a significant decrease in effective diffusion constant with 
decreasing temperature, consistent with the idea that the 
modulation wave becomes more strongly pinned as the 
temperature is lowered. The root mean square atomic 
displacement can be estimated from (x 2 ) = 2Dt. For 
t = 10 ms and D = 10- 13 cm2/s, the rms displacement 
is about 4.5 A, which is consistent with the idea that we 
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FIG. 2. Diffusion constant D vs temperature. For each point 
D was determined from the experimentally measured coefficient 
of t 3 in an exponential fit to the initial part of the Hahn decay 
before the crossover to restricted diffusion. 

are measuring very small amplitude microreadjustments 
of the modulation wave. These displacements are several 
orders of magnitude smaller than the smallest observable 
with conventional magnetic field gradient NMR. 

In summary, we have used the principles underlying 
NMR diffusion techniques to develop a new approach 
to study electric field gradient fluctuations at the site of 
stationary quadrupolar nuclei. Instead of using NMR to 
observe the diffusion of nuclei in large magnetic field 
gradients, we have used high field NQR to observe 
the small amplitude fluctuations in the electric field 
gradient due to diffusive motions of the modulation 
wave in an incommensurate insulator. This approach 
has resulted in a much higher sensitivity to very small 
diffusion constants, corresponding to much smaller atomic 
displacements, than can be observed by conventional 
magnetic field gradient NMR. These measurements also 
give insight into the nature of modulation wave dynamics 
in incommensurate systems. 
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