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The energy dependent neutron diffusion equation (EDNDE) is converted into a moment equation which is
solved analytically for the 1-D problem of a bare sphere of pure 23°U. The normalized moments 0-5 gen-
erated analytically are compared to normalized energy moments, from Monte Carlo N Particle 5 version
1.40 (MCNP5) and Attila-7.1.0-beta version (Attila). The analytic normalized neutron energy moments,

fall between the results from MCNP5 (lower bound) and Attila (upper bound) and are accurate compared
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to MCNP5 neutron energy moments when error in this Monte Carlo simulation are considered. The error
range is from 0% to 14%. The Attila moments are less accurate when compared to MCNP5 than the ana-
lytical moments derived in this work. The method of moments is shown to be a fast reliable method,
compared to either Monte Carlo methods (MCNP5) or 30 multi-energy group methods (Attila).

© 2012 Elsevier Ltd. All rights reserved.

Introduction

Solving for neutron energy distributions in nuclear reactors is
complex and has been studied with various methods, mostly
numerical in nature (Cho, 2008). The main difficulty in solving
for neutron distributions lies in solving the neutron transport
equation, (Duderstadt and Hamilton, 1976, p. 114). The complexi-
ties and difficulties in trying to solve the transport equation arise
because it depends on seven variables: energy of the neutrons
(E), angle of neutron travel (0 and ¢), space (x, y and z) and time
(t). Simplifications are made to create a more easily solvable equa-
tion, but numerical methods are still necessary to solve for neutron
fluxes and populations (Lewis and Miller, 1993).

The success of quadrature method of moments (QMOM) for
particles is encouraging and has motivated the work presented
here. QMOM has been shown to be an excellent method to solve
partial integro-differential equations for particle population
balances (Marchisio et al., 2003), aerosols (McGraw, 1997), and
suspended particles in a fluid within computational fluid dynamics
codes (Bin-Wan and Ring, 2006), (Marchision et al., 2003). The par-
ticle equations in question are similar mathematically to the
EDNDE. The EDNDE is shown in Eq. (1). This is the first attempt
to verify the method of moments as an accurate solution to EDNDE.
Once the method of moments is proven successful, QVIOM may be
used to drastically reduce the computational burden in multi-
physics problems that include neutron transport.

* Corresponding author. Tel.: +1 8015051409.
E-mail address: douglas.crawford@inl.gov (D.S. Crawford).
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The method of moments (MOM) approach solves for the
moments of a distribution instead of the distribution itself. MOM
can be considered to be a deterministic method to find stochastic
parameters. The neutron flux can be treated as a probability den-
sity function (PDF), where the normalized moments provide the
mean, variance, skewness and kurtosis (Kenny, 1947) of the flux
so once the moments are solved for they can be put into the correct
PDF to reproduce the flux. Mathematically the mean, variance,
skewness and kurtosis (Casella and Berger, 2002) for the energy
variable of the neutron flux are represented here where ¢ in Egs.
(2)-(5) represent the energy dependent neutron flux ¢(7,E, t):

mean = %, (2)
variance = % 3)
skewness = % (4)
kurtosis = % (5)
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Table 1
Energy group structure for Attila-7.1.0-beta.

Group, # Energy range, MeV Group, # Energy range, MeV Group, # Energy range, MeV

1 2.00E+01 1.70E+01 11 7.79E+00 6.87E+00 21 8.21E-01 2.35E-01
2 1.70E+01 1.60E+01 12 6.87E+00 6.07E+00 22 2.35E-01 6.74E—02
3 1.60E+01 1.50E+01 13 6.07E+00 5.35E+00 23 6.74E—02 1.93E-02
4 1.50E+01 1.39E+01 14 5.35E+00 4.72E+00 24 1.93E-02 5.53E-03
5 1.39E+01 1.30E+01 15 4.72E+00 3.68E+00 25 5.53E-03 3.54E-04
6 1.30E+01 1.20E+01 16 3.68E+00 2.87E+00 26 3.54E-04 2.26E-05
7 1.20E+01 1.10E+01 17 2.87E+00 2.23E+00 27 2.26E-05 3.47E-06
8 1.10E+01 1.00E+01 18 2.23E+00 1.74E+00 28 3.47E-06 6.25E-07
9 1.00E+01 8.82E+00 19 1.74E+00 1.19E+00 29 6.25E-07 1.24E-08
10 8.82E+00 7.79E+00 20 1.19E+00 8.21E-01 30 1.24E-08 1.00E-11

The starting point for the analysis is the EDNDE, we have as-
sumed diffusion theory is applicable and consider only the 1-D
analytic case, a bare sphere. The same analysis can be applied to
an infinite slab as well with similar results. Neutron diffusion
theory is well documented in literature; (Duderstadt, 1976, Foster,
1977, Lamarsh, 2001, Lewis, 1993, Weinberg, 1958, etc.) and is not
discussed in detail here. An average angle of scatter for the neu-
trons (u) is also assumed. This method does not assume any distri-
bution to develop the cross-sections or a specific spectrum for
fission as a weighting value per energy group, which makes this
method very unique, the analysis does cut off at 10 MeV since this
value captures 100% of the fission spectrum and the neutron flux
above that energy is very small and assumed to be negligible.

This paper is focused on deriving and comparing analytic mo-
ments from the energy dependent neutron diffusion equation
(EDNDE) Eq. (1), with energy moments generated from MCNP5
(MCNP) and Attila 7.1.0-beta (Attila), which both are full neutron
transport codes. This seems like an apples and oranges comparison,
since this is a comparison between transport and analytic EDNDE
moments, but it is necessary because the Monte Carlo method used
in Los Alamos National Lab’s MCNP (Lab, 2008) software is widely
accepted and respected among nuclear engineers and scientists for
determining neutron multiplication factors, reaction rates and for
benchmarking criticality calculations (INL NEA/NSC DOC(95)03,
2009). Comparison of moments with Attila is important also
because it is a multi-group transport code where 30 energy groups
were used in the reported calculations. Table 1 shows the energy
groups in the Attila 30 group library.

Simplification of EDNDE for moment equation developments

The starting point for formulation of an expression for analytical
moments is Eq. (1). Eq. (1) is solved over the entire fission spec-
trum; which is well approximated to be from 0 to 10 MeV
(Lamarsh, 1966). This analysis assumes steady state so the time
dependent term, 1 %ﬁa is set equal to zero. The system is homog-
enous so the energy dependent cross-sections and diffusion coeffi-
cient depend on energy only. The EDNDE, after the assumptions are

applied has the following form in Eq. (6).
~DEVHE) + B = [ 2(E— ENp(FE.0dE + ()
0

« / CVE)S(E)p (T E)dE (6)
0

The differential scattering cross-section X (E' — E), is defined
so that integrating from 0 to oo, the probability of scattering into
E is unity and yields X (E) as the result (Duderstadt and Hamilton,
1976). The entire population of neutrons is treated as one large
energy group E, from O to 10 MeV. The two assumptions change
Eq. (6) into Eq. (7). Eq. (3) looks like the one-speed theory equation
(Duderstadt and Hamilton, 1976, p. 295), except this equation

retains the energy dependence of the cross-sections over the range
of interest, 0-10 MeV where an overall energy dependent function
F(E) will be derived for and then transformed into the moment
form of the EDNDE.

~DE)V?§(F.E) + Za(E)b(F,E) = V(E)Zf(E)$ (T, E) (7)

Derivation of F(E) for energy moments

An appropriate approximation to the energy dependency of the
macroscopic cross-sections and the diffusion coefficient is vital for
any flux calculation; so a set of functions and constants have been
carefully chosen so the energy dependent functionality is retained
as much as possible and allow an analytic solution to be found.
The macroscopic cross-sections may generally be divided into three
distinct regions: thermal, resonance and fast, and in this analysis
the authors consider a 4th region called the transition region and
it spans from 2300 eV to 0.9 MeV. The reason for this subdivision
is explained in more detail below.

The 1/v or 1/E'/? law is a good approximation to the thermal re-
gion of many isotopes and found to be mathematically viable in foil
activation (Morry and Williams, 1972). The cross-section data re-
ferred to and in use for this paper is from the evaluated nuclear
data files, ENDF information is found on the web at http://
atom.kaeri.re.kr/ (Institute, 2000) and http://t2.lanl.gov/data/neu-
tron7.html (Lab, 2000). The resonance region, a summation of
Breit-Wigner single level resonance formulas will be used to gen-
erate a function for this region to capture the complicated energy
dependence. The functional piece that dominates the Breit-Wigner

. : Constanty
formulas in general is the B s Constan; term (Lamarsh, 1966, pp.

43-64). The transition to the fast region of the cross-sections gen-
erally has a 1/E drop off rate (Weinberg and Wigner, 1958, p. 57),
and the fast region (0.1-10 MeV) has a 1/E>/? with some broad res-
onances, which makes the fast region appear somewhat like a ser-
ies of stair steps for 23°U Z(E).

It is very difficult to fit an analytic function to the resonance re-
gion, and the number of resonance peaks makes writing a function
for each peak even more daunting, but with patience a single level
Breit-Wigner can be written for each peak and has been for this
work. A summation of these single level Breit-Wigner resonance
functions was assembled to provide a functional form, that when
integrated over the function would provide correct values when
compared to the resonance values from The Chart of the Nuclides
and Isotopes 16th Edition (Lockheed Martin/Knolls Atomic Power
Laboratory, 2002). The simple functional approximations for the
energy dependent cross-sections are somewhat crude but “if we
choose the group constants properly, even one-speed diffusion the-
ory could give an accurate description of nuclear reactor behavior”
(Duderstadt and Hamilton, 1976, p. 295).

The general functional relationships for D(E), V(E), Z{E), ~(E),
X§(E) and X,(E) with energy are incorporated into one function
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of energy F(E). The first step is to put all of the energy dependent
functions together as one function of energy, labeled F(E), see Eq.
(8). The second step is to take F(E) (Eq. (9)) and determine the func-
tional shapes of F(E) by using the ENDF-VII values arranged the
same as F(E), called ENDF-F(E). This work only shows curve fits
of F(E) for 100% 235U. The third step is to curve fit ENDF-F(E) with
the appropriate function fit for the different energy ranges. The
result of the curve fit of ENDF-F(E) is Eq. (16).

Vi) + (MO o) —o ®)
E)X(E), — 2(E
i =" 30026, 20 (2O R2(E,) ©)

It is assumed the total macroscopic cross-section, the transport
cross-section, the function v(E) (the number of neutrons released
in fission by an incident neutron of energy E), the neutron diffusion
coefficient and the average angle of scatter are:

2(E); = 2(E)q + Z(E)s (10)
2(E)igr = 2(E)i¢ — M2 (E);
1 1

Di(E) = = 12

=351, 3(2(B), — WZ(E)) 12
V(E) = vsE + vy for 0 < E < 1MeV (13)
V(E) = VfE + v for E > 1 MeV (14)
2
fi=g (15)

A is the atomic mass number of isotope, (i). Eq. (15) is a decent
approximation for the average angel of scatter for large atoms i.e.
A>16. The function v(E) is for 23U where, v, = 0.066, vy = 2.432,
vr=0.15, and v =2.349 (Duderstadt and Hamilton, 1976, p. 61)
if the energy variable is in units of MeV. The result of the function
fit of ENDF-F(E) is Eq. (16). Figs. 1-5 show comparisons of Eq. (16)
with the ENDF-F(E).

Fig. 1 shows the thermal region from 1E-5 eV to 1 eV on a log-
log plot. The first term in Eq. (16) is the dominate feature in Fig. 1.
The first resonance the F(E) of pure 23°U is also seen in Fig. 1. Figs.
2-5 are not put on a log-log plots to point out the negative regions
that show up from v(E)X(E);— 2(E), term in F(E), where the
absorption cross-section is greater than the product of v(E)X(E)y

Fig. 4 shows a comparison of ENDF-F(E) to Eq. (16) for 23°U in
the energy range of 895-1000 eV to show the difference between
the two and how the “tails” of the resonance peaks overlap. Eq.
(16) is not as sharp as the ENDF-F(E) in the overlap spaces between
each resonance peak.

Some of the minor peaks throughout the resonance region were
not modeled i.e. peak height is less than 0.2 cm~2 (see Fig. 4). The
reason for doing this is because the resonance integral value from
The Chart of the Nuclides and Isotopes 16th Edition matched the
resonance integral value from Eq. (16).

Fig. 5 shows the end of the resonance region and the beginning
of the transition region.

Fig. 6 shows the transition region and the fast region up to
10 MeV.

Z Rpl
1 E Erl +w

Nrgans
R - (VsE + V50)2300 ev to 1 Mev

“— (E — Erm)? + W

g an . (va + DfO)E>1 MeV
&~ (E—Er)*+wy-E

+

+

(16)

The constants from Eq. (16) are: Rpo[=]2“%, Rp,,s[= ]E'ﬁ%}’,

Er . S[=JEnergy, wi,,s[=|Energy’, Rpls[=]28", w.s[=|Energy’, v
& vrl=] e and vy & vp[=]neutrons, where N, Nirans and Neasr

are the number of terms included in each sum with indices I, m

and n. The Rp] s can be positive or negative because in some energy

ranges (—2(E),) is greater than in (V(E)X(E);) Eq. (9). The data for

each constant is in Appendix A. A 774 individual terms,

((E,Efplz ) are accounted for in the first summation, 104 terms
W

Rom-(vsE-0s0)2sgo ev 0 1 Mev ) jpy the second summation and nine individ-
(E—Erm)“+wn

Rop-(VE+Vf0)E=1 Mev
ual terms <7(E75rn)4+w

tion of Eq. (16).

Rp : N Rp
The first term =2 and the first summation term ", TEE

Eq. (16) were observable by visual inspection of the ENDF-F(E) plot.
The first term comes from the 1/v portions of the cross-sections
multiplied together and the first summation term captured
ENFD-F(E) in the energy range of 1-2250 eV. This range remained
visually similar to the resonance region of 2>°U X(E), except for the
few negative regions and the height and width of the each reso-
nance peak which is specific to ENDF-F(E) resonance peaks. The
height and width of each ENDF-F(E) peak can be matched by Eq.
(16) by adjusting Rp; and w; respectively.

The second and third summation terms in Eq. (16) account for
the linear effect of v(E) on F(E). The first and second terms of Eq.
(16) are not affected by v(E) because the slope is so small, just

) are accounted for in the third summa-

F(E) for the two curves from 1E-5 to 1eV on log log plot

1.00E+08

1.00E+07

1.00E+06

1.00E+05

1/cm?

1.00E+04

1.00E+03

1.00E+02

1.00E+01

— ENDF-F(E)

— Derived F(E)

1.00E+00

0.00 0.00 0.00

0.01 0.10 1.00

eVin log scale

Fig. 1. Log-log plot of F(E) from 1E-5eV to 1 eV.
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F(E) from 1eV to 100eV
5,200.00

4,200.00

3,20000
—— ENDF-F(E)

2,200.00

—— Derived F(E)

1/cm?

1,200.00

200.00 lw e IJ] | ll A A ;
T L

-800.00

-1.800.00
100 1000 1900 2800 37.00 4600 5500 6400 7300 8200 9100 10000

eV

Fig. 2. Plot of F(E) from 1 eV to 100 eV.

F(E) from 100eV to 1000eV
2.50E402

2.00E+02

——— ENDF-F(E)
1.50E+02
—— Derived F(E)

1.00£+02 I

1/cm?

5.00E+01

0.00E+00
10i 20000 300.00 400.00 500.00 600.00 700.00 800.00 900.00 1000.00

-5.00E+401

-1.00E+02

eV

Fig. 3. Plot of F(E) from 100 eV to 1000 eV.

F(E) comparison in the energy range of 895eV to 1000eV
15.00

13.00
—— ENDF-F(E)
11.00

— Derived F(E)
9.00

7.00 ‘

5.00

1/cm?

3.00

1.00 J

-1.00

-3.00

-5.00
895.00 915.00 935.00 955.00 975.00 995.00
eV

Fig. 4. F(E) for pure 23> U from 895 eV to 1000 eV shows a closer view of the comparison of the two F(E) functions.
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F(E) in the energy range from 1000eV to 2300eV

20

15

1/cm?

—— ENDF-F(E)

—— F(E) function fit

5

1000 1200 1400

1600

eV

1800 2000 2200

Fig. 5. Comparison plot of the derived F(E) to the ENDF-F(E) in the energy range of 100-2300 eV, the end of the resonance region.

F(E) in the energy range of 2,300eV to 10,000,000eV Log-Log

plot
1.00
~ 010 M\_/_ﬂ
E
=
2] — ENDF-VII
0.01
—— Derived F(E)
0.00
0.00
2.30E+03 2.30E+04 2.30E+05 2.30E+06
eV

Fig. 6. Comparison of the two F(E) functions from 2300 eV to 10 MeV.

the constant affects F(E) and it is absorbed into Rpo and the Rp;s.
The slope of v(E) does not change the value of v(E) until roughly
46 keV and only from 2.43 to 2.44. It is included in the energy
range at 2300eV because of the shape of ENDF-F(E) from
2300eV to 09MeV is a rough 1/E function, which

Rpm-<st(z')sE°r)23)go+ <0 1me j5 approximately a 1/E function. A summation
T m m

of these terms R"m'("‘Eg”SE"r)Z;S‘lj‘v’ w 1mev provided a few useful qualities
- m m

to fit the ENDF-F(E) from 2300 eV to 0.9 MeV. The first is an ability
to shift a 1/E function to this energy range at various places with-

out the sharp discontinuity from these two —— or ((‘Esiﬁ’f}) func-
tions or any similar function with an odd order in the

denominator i.e. a term W where n = 0.. .co. The second rea-
—Em

son this function is chosen is because it produced a smooth curve
(see Fig. 6 from 0.1 MeV to 0.9 MeV) with a long forward tail which
is the 1/E shape desired in this region without the sharp disconti-
nuity. The third reason for this function is, small resonance peaks
are in this energy range. The small peaks could be modeled with
this function because it can be easily tuned by adjusting Rp,, and
Wy, to have a peak at the resonance energy Er™.

The energy range 0.9-10 MeV yielded a different shape. In this
energy range ENDF-F(E) increased in a stair step shape (broad res-
onance) similar to the 233U fission cross-section shape from 0.9 to
10 MeV. The slope of v(E) in this energy range is larger and the
effect from this linear function is greater. The term inside the third

Rpy,-(v¢E- N . ..
Ren OpEtv0)e-1 wev 5 ysed for similar reasons already men-
(E—Ern)*+wn-E

tioned: a smooth curve without sharp discontinuities (no odd
ordered denominators), an ability to add an increase or “peak” at
a specific energy (Er,). The denominator ((E — Er,)* + w, -E) al-
lowed for a much broader peak and a sharper drop off creating
the level stair effect that corresponds to the broad width of the
peak. The w;, - E in the denominator along with the 4th order term
(E — Er,))* restricted any long forward or backward tail that is seen
with this these denominator choices ((E— Er,)® +E-w,) and
((E = Erm)* + wp). The elimination of the long tails in this energy
region was necessary to get the correct overlap between reso-
nances; the other function choices investigated could not provide
this effect in this energy region and consequently did not match
the ENDF-F(E).

These functions included into Eq. (16) allowed for analytic anal-
ysis and the development of analytic moments to be created.

summation,

Derivation of energy dependent neutron moments

The set of analytical energy dependent neutron moments are
found from transforming Eq. (8) with the definition of a raw
moment. The mathematical definition of a raw moment is
my = [;° E*¢(F,E)dE where k=0, 1, 2, 3, ..., N (Casella and Berger,
2002) and N is the total number of moments desired. Transforma-
tion of Eq. (8) into moment form requires placing F(E) into Eq. (8),
multiply by, E¥ then apply the definition of a moment i.e. integrate
from 0 to infinity; the result is Eq. (17). The constant BZ, in Eq. (17)
is based on the diffusion boundary conditions that must be satis-
fied and is explained in the neutron diffusion boundary section
of this paper.

/ h V2p(F E)dE + / h E*F(E)¢(F, E)dE + / . E*B ¢ (F,E)dE = 0
0 0 0
(17)

The Laplace operator in Eq. (17) depends only on position so it
comes through the energy integral, recognize the moment defini-
tion for two of the terms in Eqgs. (17) and (18) is the 1 dimensional
EDNDE in moment form
V2 + B2, - my + / " EF(E)$ (7, E)E = 0 (18)

0
This new partial-integro differential equation, Eq. (18) needs to

be simplified further to solve analytically. The term EXF(E) can be
simplified as follows.
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’ 1 Nresonance E’( . Rp Table 2
E - FE) = Rp E + > ! 5 List of the energy constants from polynomial long division of F(E).
= E°—2ErE+Erf+w

N . Constant Value Units
+ N E” - Rpy - (VsE + Y50)0.1 mev to 1 mev CE1 0.0615 MeV/cm?
= (E — Erm)? + Wy CE2 0.0842 MeV?/cm?
N : CE3 0.3551 MeV3/cm?
2T E* - Rpy - (VFE + Vs0) o1 mev CE4 2.1254 MeV*/cm?
+ (19) CE5 135917 MeV5/cm?

= (E—Er)*+w,-E

The summations can be broken down into the various kth
components by polynomial long division; an example of polyno-
cl(b§

—b
) e
1

mial long divisions =

k
au __ ¢ k=2 c1by k-3
biuZ+byut+bs ~ by ur+ v ur+

3
C'(bz%‘b)u"*s + --- + higher order terms.
1
In general, EX- F(E) can now be written as
E*-F(E) = CpE* " + CoE* % + CE* 3 4 CouE** + CusEX° + -
+ higher order terms

where the constants are shown below with the units associated
with them

Nrgans

Ce1 =Rpy + Z VsRpp, (20)
m=1
N NRrgans
Cea=> Rpj+ > (2Rp,VsErm + R, Vs0) (21)

=1 m=1

NRrrans

N
Ces =Y 2RpEri+ ) <3Rpmstrfn + 2ErmRp,,vo — Rpmvswm)
I=1 m=1

NReast
+ > Rpyvy (22)

n=1

N
Cra = Z(3Rp,Er,2 - Rp,w,)
1=1

Nrgans

+ Y (4Rpmv5Erf’,I + 3Rp,Er% vso—4RD Ty VsWiy —Rpmwmvs())
m=1
Ngast

+ > (4Rp,Eravy + Rp,vro) (23)
n=1

N
Ces = > A4RpjEr
1=1
Nrgans
+y (5Rpmv5Er4m + 4Rp,Er? vso — 10Rp,Er2 vswi,
m=1
Npast

—4ErmRp, Wi Vso + RpyvsWi )+ (10anvarﬁ + 4anErnvf0)
n=1

(24)

The higher order moments (k > 5) can be derived from dividing
F(E) further, but the 5th energy moment is sufficient to show how
the moments from MCNP and Attila compare to the derived
neutron diffusion moments. It has been shown that five moments
is enough to reconstruct a particle population (Marchisio et al.,
2003), but for neutron fluxes that still needs to be researched
and sorted out. Table 2 shows the constants that come from Egs.
(20)-(24).

Eq. (18) becomes Eq. (25) by recognizing the terms in moment
form in the integral of E* - F(E).

V2my + Bgmy + Cermy_y + Ceamye_o + CpsMy_3 + CeaMye_a + Cpsiy_s
-0 (25)

Eq. (25) is a set of partial differential equations, PDEs where the to-
tal number of equations is N. This analysis set N to be 5. This set of
PDE’s can be turned into a set of ordinary differential equations
(ODEs) by making the assumption that the moments only depend
on 1-dimension, r in this case. Each individual ODE moment
equation is shown below and the set of moments work together
as a system of equations.

V2m0+B§0m0 = —Cpm_1— Cpam_p— Cgzm_3— Ceam_4— Cgsm_5 (26)
Vz”’h + Bél my = —Cgymgy — Ceam_1—Cgzm_—Cpam_3 — Cpsm_4(27)
Vim, + Bézmz = —Cgymy— Cppmg — Cegam_y — Cegam_p — Cpsm_3 (28)
V2ms + Biyms = —Cpymy — Ceymy — Cezmg — Ceam_y — Cesm_ (29)
V2my + Baymy = —Ceymz — Ceymy — Cesmy — Ceamg — Cesm_y (30)
31

V2m5 + B§5m5 = —Cgymy — Cpyms — Cpzmy — Cggmy — Cpsmy 31

Solution to the raw moment set come from setting the negative mo-
ments i.e. k=—1, —2, -3, etc. equal to zero. The reason for this is

these moments are not in the set defined for k; k=0, 1, 2, 3, ...,
N. The set of ODEs is now Eq. (32)

V2mo + Bgymo = 0 (32)
V2m; + Bgymy = —Ceimg (33)
V2m, + Bg,my = —Ceymy — Ceymg (34)
V2m3 + B§3m3 = —Cgmy — Cezmy — Cpzmg (35)
V?my + Bgymy = —Cgims — Ceymy — Cesmy — Ceammg (36)
V2ms + Basms = —Ceymy — Ceymz — Cesmy — Ceamy — Cesmg  (37)

Each kth moment can now be solved analytically beginning with
the Oth raw moment. The rest of the raw moments can be solved
analytically with the method of undetermined coefficients
(Edwards and Penney, 2001). The solution to Eq. (32) for a 1 dimen-
sional case turns out to be mathematically the same as the solution
to the one-speed diffusion equation, which is comforting because
this matches expectations and the flux shape from MCNP and Attila.
The particular and homogeneous solutions to the ODE set with the
corresponding constants for the raw energy dependent neutron dif-
fusion moments are listed below in Egs. (38)-(58).

@ sin(Bg - 1)

Mo = ag > (38)
ml =a; %rm-rh_ by -r-cos(Bg - 1) (39)
where
_ 0Cpy
b =5 (40)
sin(Bg; - 1) .
My =y —— =+ b, cos(Bg, - ) 4 corsin(Bg - 1) (41)

where
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a1Cg1 + aoCe2 + 20,

b, = 1CHLE % 42)
_ biCy
€=~ gt 43)
sin(Bgs - 1) . )
Mms=as fﬁ-bg €oS(Bgs - T) + C3rsin(Bgs - 1) + dsr* coS(Bgs - 1)
(44)
where
by — ,Ce1 + a1Cr2 + apCes + 263 45)
2Bg3
b,Cr1 + b1Cry + 6d;5
3= — 46
3 4By, (46)
_ 0Cp
d; = 6By, (47)
my = 04%:4'” + by COS(Bgg - 1) 4 €41 Sin(Bgy - T) + dgr?
x COS(Bgg - 1) + €413 sin(Bgg - 1) (48)
where
by = a3Cg1 + a;Cp +2(1éCE3 + aoCra + 2¢4 , (49)
E4
_ b3Ce1 + byCpa + b1 Cps + 6d
Ca= 3LE1 2 IZB 1VE3 4 (50)
E4
_ C3C 4 0 + 1264
d, = 655, (51)
_ diCp
€4 = — 8354 (52)
Ms = ds %:Sr) + bs cos(Bgs - ) + csr sin(Bgs - 1) + dsr?
x €0S(Bgs - 1) + esr> sin(Bgs - 1) + f51* cos(Bgs - 1) (53)
where
bs — a4C1 + a3Cpy + 2Cp3 + a1 Ces + AoCrs + 265 7 (54)
2Bgs
Cs = b4CE1 + b3C52 + b2C53 + b] Cgg + 6d5 (55)
4Bgs
ds C4Cr1 + 3Cpy + CCp3 + ]265 (56)
6Bs
es = — d4Cey + d3Cpy + 20f 5 (57)
o e4Cp1
=t (58)

The unknown coefficients of the raw moments, ai’s and Bg’s are
determined from the two neutron diffusion theory boundary con-
ditions, after they are put in moment form.

Neutron diffusion boundary conditions in energy moment
form

The first boundary condition that must be satisfied, is that the
flux must be finite everywhere so the moments must be finite
everywhere also. This condition is enforced by setting the ampli-
tude constants in the Ci - cos(Bgr)/r terms (which come from the
homogeneous portion of the solution for each moment) equal to

zero. The reason Cy is set to zero is; as the radius approaches zero,
Cy. * cos(Bgr)[r approaches infinity, so the C,’s are set to zero.

The second boundary condition is that the flux is zero at the
transport corrected extrapolated boundary. The transport cor-
rected extrapolated boundary is, R =R +7,, and r,=2.13 - D(E)
where 1, is the extrapolated correction distance. For 1-group or
1-speed theory, D(E) is the diffusion value for one energy value
i.e. a 1MeV neutron traveling through 23°U, D(1 MeV)~1cm
(Foster and Wright, 1977, p. 250). For the purposes of having the
correct boundary for each moment, D(E) needs to ensure that at
the appropriate extrapolated distance in moment form the neutron
flux is zero. The boundary condition is satisfied and represented by
the following relationship m(R) = [;° E¢ (r= Ry, E)dE = 0. The
boundary condition at the extrapolated dlstance in moment form
is [;° RE“¢(F,E)dE = [;° RE“¢(F,E)dE +2.13 % [, E*¢(7,E)D(E) dE.
Simplify the moment form of the extrapolated distance with the
approximation that since this treatment is only at the boundary
so the position dependence can be separated out and R and R
can be treated as constants. Divide by the raw moment definition

(K Efo(F, E)dE) on each side of the expression and the spatial

o0 [ Eo(E)dE

dependence ¢(r) come through the integrals, Rm:

o [ Eal Jo B )dE .
7‘ﬂf F ol +2.13 =« 7[; Eyers the result is Eq. (59).

k
Re=R+2.13- —fo EDE(EVE

fo Ek

Values R, are found with the energy dependent diffusion coeffi-
cient, (Di(E)
tions and the assumption that ¢(E) is represented by Eq. (60)
from 1 eV to 10 MeV (Duderstadt and Hamilton, 1976, p. 330). Be-
low 1 eV the neutron flux is assumed to be a Maxwell-Boltzmann
distribution at some temperature T (298 K) (Duderstadt and
Hamilton, 1976). Eq. (61) represents (¢) the average increase in
lethargy per collision (Lamarsh, 1966, pp. 175-176).

(59)

—_1 _ 1
=5 = W) the ENDF values for the cross-sec-

¢(E) = T 3(E).E (60)

(=4 3 (61)
This method allowed the extrapolated boundary to found for

each moment and maintain the entire energy range of interest in

a nuclear reactor by numerically integrating (Chapra and Canale,

2002) Jo EoEEe ;kD(E VB

0

the extrapolated boundaries are displayed in Table 3.

For the second boundary condition to be true, either
ay = by = ¢, = di = e, = fi, = 0, the null answer or Bg, for each moment
must satisfy the boundary condition. For the Oth moment, Bg, sat-
isfies the second boundary condition by taking on the value of Z,
just like one speed theory and ag the other unknown coefficiefft
is found by, the power equation, Eq. (72) in the next section. The
rest of the moments, k = 1-5, the 2nd boundary condition is satis-
fied as follows, see Eqgs. (62)-(66).

from Eq. (58). In the case of the 100% 23°U sphere

Table 3
The extrapolated boundaries for moment 0-5.
Ro R R Rs Ry Rs
10.24 cm 10.25 cm 10.37 cm 10.38 cm 10.40 cm 10.40 cm
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Table 4
List of the Rp;’s, Er/'s and w’s.

Rp/'s Er/s wy's Rp/'s Er/s wy's Rp/'s Er's wy's
-1 0.206 8.00E-03 34 590.59 0.10 0.75 1308.00 0.11
0.5 0.2819 2.10E-03 0.4 594.94 0.05 0.2 1311.80 0.23
—70.25 0.25 5.50E-01 3 596.16 0.50 0.05 1315.05 0.20
9.521 8.78 1.75E-03 0.675 598.90 0.10 0.2 1317.07 0.20
-1.15 6.39 1.00E-03 0.35 600.30 0.10 0.1 1318.90 0.20
-0.55 4.85 2.00E-03 1 603.22 0.10 0.7 1320.87 0.20
0.175 1.12 1.50E-03 2 604.40 0.30 0.8 1323.30 0.25
-0.125 2.04 2.50E-03 0.3 608.46 0.10 0.3 1326.05 0.20
0.01 3.14 1.50E-03 1.45 610.21 0.10 0.4 1329.83 0.20
0.1025 3.60 1.50E-03 0.3 612.90 0.10 0.4 1332.23 0.20
-1.65 11.67 1.00E-03 0.3 615.43 0.10 0.8 1333.80 0.40
0.48 12.38 8.00E-04 0.3 616.89 0.10 0.2 1335.50 0.50
8 19.30 1.50E-03 0.725 619.02 0.10 0.5 1336.99 0.30
0.4 23.41 1.50E-03 0.2 626.60 0.10 0.25 1338.75 0.20
0.11 21.07 1.50E-03 0.75 628.99 0.10 1.2 1343.01 0.30
0.13 22.94 1.75E-03 0.3 630.80 0.10 4 1346.56 0.85
0.2 24.29 2.65E-03 0.3 631.69 0.10 0.9 135041 0.10

1 23.62 4.75E-03 0.4 633.64 0.10 0.35 1355.60 0.30
1.425 13.99 1.50E-02 0.4 635.41 0.10 0.65 1358.80 0.50
0.075 15.40 1.50E-03 -04 636.50 0.10 1.5 1360.37 0.20
-0.075 16.09 1.50E-03 0.7 639.14 0.20 0.6 1363.28 0.75
3.175 25.55 4.15E-02 0.7 641.17 0.20 0.6 1364.07 0.95
0.375 26.49 4.50E-03 29 644.96 0.10 0.4 1367.66 0.35
0.115 16.67 1.50E-03 0.8 646.65 0.10 2 1372.05 0.35
0.13 18.05 1.40E-03 0.025 648.83 0.02 0.05 1375.13 0.30
0.625 27.79 4.50E-03 0.1 653.07 0.10 04 1378.20 0.10
1.75 32.06 4,15E-03 0.35 656.40 0.30 0.35 1380.70 0.25
-0.15 30.89 5.15E-03 0.65 658.38 0.10 1.35 1382.10 0.30
0.25 33.55 5.15E-03 0.5 663.60 0.10 35 1387.60 0.60
1.675 34.38 4.50E-03 1.85 665.92 0.10 0.5 1390.26 0.25
15 35.18 6.50E-03 0.4 672.13 0.10 0.5 1393.80 0.35
1.75 34.87 7.50E-03 0.9 674.11 0.10 1 1395.30 0.80
3.15 39.40 7.00E-03 35 676.42 0.20 0.01 1396.16 0.15
-0.675 41.86 6.50E-03 8 678.07 0.60 0.3 1400.75 0.40
1 41.51 3.50E-02 1.75 681.79 0.10 0.3 1403.45 0.20
0.8 42.25 4.00E-02 0.15 683.82 0.10 0.5 1406.40 0.23
-03 42.70 3.00E-02 0.6 685.53 0.50 0.4 1410.50 0.22
-0.07 43.36 6.00E-03 0.45 689.12 0.10 0.4 1415.29 0.18
0.65 189.5 2.50E-02 0.4 690.45 0.10 0.55 141847 0.18
1.01 192.32 1.25E-02 2.75 692.75 0.20 0.65 1421.17 0.18
0.6 194.18 2.50E-02 0.3 696.87 0.10 0.275 1423.63 0.20
2.65 198.5 7.50E-02 0.8 699.10 0.10 0.28 1425.77 0.20
3.05 200.28 2.00E-02 0.3 702.55 0.10 0.5 1427.20 0.40

1 203.73 4.50E—-02 0.3 703.83 0.10 1.5 1430.07 0.17
0.95 206.99 2.50E-02 4 709.88 0.70 1.525 1433.53 1.00
-1.65 209.6 2.10E-02 0.3 715.75 0.10 -0.2 1436.27 0.50
1.15 213.65 1.50E-02 0.3 717.13 0.10 0.2 1439.50 0.50
0.25 217.105 2.10E-02 0.3 718.90 0.10 0.1 1442.53 0.50
5 220.62 7.50E-02 0.3 719.92 0.10 1.575 1431.75 1.00
2.5 221.69 1.00E-01 0.5 721.59 0.10 1.25 1445.29 0.20
0.55 223.16 1.50E-02 0.6 723.53 0.20 0.85 1449.75 0.28
—0.255 226.32 2.10E-02 0.2 727.41 0.10 1.25 1451.81 0.30
0.65 226.74 3.50E-02 0.65 729.38 0.10 0.25 1454.09 0.30
0.65 229.09 6.50E—-02 7.3 733.36 0.10 0.4 1456.41 0.40
3.2 231.45 4.50E-02 0.4 737.69 0.10 1 1459.68 0.30

1 232.89 2.50E-02 0.5 739.95 0.10 0.1 1463.74 0.40

1 233.83 6.50E—-02 —-0.65 741.74 0.28 0.95 1465.65 0.34
43 241.16 6.50E—-02 0.6 745.35 0.10 -0.2 1467.57 0.20
0.75 245.44 6.50E—-02 0.4 747.06 0.10 0.2 1469.52 0.20
0.75 24791 6.50E—-02 0.2 750.00 0.10 0.3 1472.37 0.40
2 248.94 6.50E—-02 0.2 751.22 0.10 0.6 1479.7 0.25
4 253.5 1.50E-01 0.5 754.05 0.10 0.25 1483.01 0.25
2 255.95 6.50E-02 1.6 758.84 0.10 0.5 1486.02 0.25
0.55 259.92 6.50E-02 0.25 761.71 0.10 0.4 1494.8 0.30
14.5 261.65 6.50E-02 0.25 762.87 0.10 0.35 1498.06 0.30
1.25 266.35 3.50E-02 2.5 766.31 0.25 0.2 1500.95 0.30

1 268.2 9.50E-02 0.1 767.99 0.10 0.45 1503.3 0.20
35 270.01 8.50E-02 0.3 770.88 0.10 -03 1504.85 0.20
3.5 272.78 8.50E-02 0.35 772.63 0.10 0.5 1507.83 0.20
1.85 276.78 2.00E-02 1.5 778.46 0.10 0.025 1509.93 0.20
2 279.84 6.50E—-02 2.35 779.41 0.20 0.35 1511.82 0.20
0.35 287.38 4.50E-02 0.25 782.38 0.10 0.3 1520.17 0.20
4 289.46 1.00E-01 1.2 785.3 0.10 0.45 15249 0.30
0.15 295.93 4.00E-02 0.3 790.32 0.10 0.2 1527.7 0.30

(continued on next page)
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Rp/'s Er/s wy's Rp/'s Er/s wy's Rp/'s Er/'s wy's
0.075 298.5 5.25E-03 0.3 792.61 0.10 0.25 1530.29 0.30
0.15 302.79 4.00E-02 0.5 795.5 0.08 0.65 1533.32 0.30
0.2 43.96 7.50E-03 0.3 796.28 0.08 0.15 1535.37 0.30
1 44.61 1.25E-02 1.65 801.33 0.20 0.15 1538.43 0.15
1 46.93 9.75E-03 0.9 806.01 0.20 0.5 1541.51 0.15
1 47.93 2.60E-02 1.6 806.95 0.40 0.1 1546.39 0.50
14 48.3 2.60E-02 0.05 810.11 0.08 1 1549.41 0.35
0.2 48.80 5.50E-03 0.55 812.757 0.30 0.05 1551.61 0.20
0.255 49.43 5.50E-03 1.45 815.11 0.50 0.2 1553.94 0.30
0.3 50.48 5.50E-03 0.25 817.9 0.10 0.7 1559.77 0.25
3.65 51.26 7.50E-03 0.65 818.9 0.20 1.5 1567.81 0.12
35 52.21 2.00E-02 0.15 821.86 0.08 0.2 1570.94 0.20
1.58 55.04 7.50E-03 0.05 823.55 0.08 0.5 1573.8 0.20
6 55.88 2.50E-02 0.05 825.51 0.08 0.5 1575.55 0.75
6.45 56.48 7.50E-03 0.05 828.5 0.08 0.7 1579.2 0.30
1.7 57.95 2.00E-02 0.05 830.13 0.08 0.9 1581.44 0.30
0.55 58.66 7.50E-03 0.675 837.15 0.15 0.3 1587.27 0.90
0.85 60.18 2.00E-02 0.9 843.03 0.30 1.075 1589.71 0.20

—-0.55 64.30 1.00E-02 1.5 847.2 0.15 1.575 1594.4 0.20
6 70.43 2.50E-02 0.1 851.29 0.15 -0.7 1596.31 0.40
0.95 72.36 5.00E-03 0.05 852.8 0.10 0.4 1598.54 0.50
0.65 74.54 5.00E-03 0.05 854.9 0.10 0.05 1600.54 0.50
1.25 75.49 3.00E-02 0.1 858.3 0.10 135 1604.4 0.25

-0.2 82.63 1.00E-02 0.7 861.36 0.08 -0.35 1606.4 0.40
5.15 84.15 4.00E-02 0.7 862.68 0.08 0.1 1609.25 0.20
0.65 84.99 3.00E-02 0.3 866.17 0.08 0.05 1612.53 0.20
1.6 88.75 3.00E-02 0.75 867.95 0.08 0.4 1616.18 0.60

-1.5 94.07 1.00E-02 0.025 871.5 0.08 0.2 1619.7 0.30

-2.55 90.35 1.00E-02 0.3 875.45 0.08 0.5 1622.2 0.15
0.5 89.77 3.50E-02 0.4 879.06 0.15 0.875 1628.13 0.15
2.65 91.24 3.50E-02 0.4 881 0.15 -0.1 1630.18 0.15
0.75 92.52 3.50E-02 0.5 883.81 0.08 0.55 1633.9 0.18
1.5 98.07 2.50E-02 0.95 884.94 0.30 0.2 1637.74 0.60
0.35 77.5 2.00E-02 0.1 886.84 0.30 0.45 1639.98 0.30
0.5 78.08 2.00E-02 0.1 892.69 0.08 0.62 1644.06 0.18
0.5 80.34 3.00E-02 -04 803.71 0.40 1 1647 0.18
0.5 81.42 3.00E-02 2.05 897.16 0.15 0.3 1650 0.25
0.65 102.91 1.00E-02 0.6 899.73 0.15 0.1 1652.5 0.50
0.55 105.21 1.00E-02 0.6 902.9 0.15 0.875 1655.64 0.15

-0.6 107.62 1.00E-02 0.5 906.09 0.15 1.2 1663.81 0.23
0.25 305.06 4.00E-02 0.15 908.82 0.08 1.2 1665.9 0.24

-0.25 308.95 4.00E-02 0.2 910.46 0.08 0.3 1671.24 0.24
0.1 312.52 4.00E—-02 -0.05 908.1 0.09 0.4 1672.77 0.15
0.075 313.55 4.00E-02 0.1 914.25 0.08 0.375 1675.12 0.20
1.25 315.35 6.50E—02 0.4 916.1 0.08 0.685 1679.47 0.18
0.25 319.66 4.00E-02 0.02 920.34 0.07 0.685 1681.55 0.22
1 323.56 6.50E—-02 0.85 923.05 0.08 1.25 1683.76 0.21
1.5 324.28 5.50E-02 0.6 924.42 0.10 -0.475 1685.43 0.40
1 325.97 8.50E-02 0.075 926.53 0.08 0.7 1690.01 0.15

-0.25 327.21 4.00E-02 0.35 929.56 0.08 -0.2 1695 0.40
0.25 329.27 4.00E-02 0.15 931.84 0.08 2.35 1699.63 0.15
0.1 330.6 4.00E-02 0.2 934.66 0.08 0.4 1701.95 0.35
0.3 332.44 4.00E-02 -0.2 940.09 0.30 0.25 1702.96 0.25
0.25 334.05 1.65E-02 0.75 941.91 0.08 0.075 1706.86 0.25
0.225 336.63 1.65E-02 0.15 944.72 0.10 0.17 1709.31 0.25
0.1 338.71 4.00E-02 0.5 947.39 0.08 0.3 1713.64 0.25
1.25 340.07 1.85E-02 0.15 949.25 0.10 0.4 1717.47 0.25
0.125 342.23 4.00E-02 0.9 951.6 0.25 0.1 1720.12 0.30
0.325 343.95 1.50E-02 0.5 957.19 0.08 0.65 17225 0.30
0.31 346.98 1.50E-02 0.1 959.78 0.08 1.25 1726.36 0.23
0.1 349.37 4.00E-02 -0.25 961.17 0.08 0.65 1731.66 0.22
0.1 350.73 4.00E-02 0.075 965.36 0.08 0.65 1735.01 0.30
0.2 351.65 4.00E-02 0.075 967.88 0.08 0.2 1738.22 0.40
0.25 353.14 3.75E-02 0.17 974.9 0.08 0.6 1741.22 0.20
0.25 355.33 2.25E-02 0.475 978.14 0.08 0.7 1745.56 0.20

-0.12 356.06 4.00E-02 0.5 980.58 0.20 1.32 1749.6 0.20
0.1 359.66 4.00E-02 0.5 983.69 0.20 0.6 1751.58 0.50
0.1 360.51 4.00E-02 0.6 984.99 0.20 0.2 1755.03 0.35
0.275 361.6 3.00E-02 0.1 986.79 0.08 1 1760.23 0.20
0.7 365.28 8.00E-02 0.2 990.9 0.08 1 1762.1 0.50
0.1 370.38 4.00E—-02 0.1 993.05 0.08 1.2 1771.82 0.20
0.1 371.31 4.00E-02 0.1 998.23 0.08 0.3 1774.44 0.15

-0.25 372.6 4.00E—-02 0.7 898.5 0.25 0.8 1777.28 0.25
0.125 373.14 4.00E—-02 0.5 901 0.25 0.9 1779.3 0.25
0.165 377.72 4.00E—-02 1 953 0.85 0.9 1783.3 0.30
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Table 4 (continued)

Rp/'s Er/s wy's Rp/'s Er/s wy's Rp/'s Er/s wy's
1 379.81 3.50E-02 0.6 1001.05 0.08 1 1788.37 0.25
0.6 383.34 5.35E-02 0.1 1004.42 0.08 0.1 1791.43 0.20
0.85 387.48 4.00E-02 -0.1 1005.67 0.08 2 1794.88 0.22

-0.5 109.79 2.00E-02 0.225 1007.5 0.08 0.175 1799.53 0.40
0.15 113.55 1.00E-02 0.03 1010.49 0.08 0.5 1803.07 0.20
0.75 115.94 1.50E-02 -0.1 1011.24 0.15 0.3 1808.12 1.00
1.75 118.23 4.50E-02 -0.15 1014.7 0.08 0.75 1815.7 0.20
1.25 121.92 7.00E-03 0.12 1015.91 0.25 0.5 1819.56 0.30
0.45 124.75 3.50E-02 -0.1 1017.62 0.08 2 18219 0.25
5.5 125.98 7.50E-02 0.05 1019.08 0.25 0.4 1825.24 0.20
2 126.35 5.00E-02 -0.1 1020.1 0.08 0.3 1829.04 0.50

-0.5 125.5 1.50E-02 0.1 1022.77 0.25 0.3 1830.74 0.75

-0.15 129.9 1.50E-02 0.175 1025.15 0.08 0.75 1835 0.20
0.25 128.05 2.00E-02 0.1 1030.53 0.08 -0.8 1837.8 0.50
1 131.29 4.00E—-02 0.455 1033.27 0.08 1.55 1839.86 0.30
14 132.08 7.50E-02 0.05 1036.5 0.08 0.2 1843.17 0.50
1.1 132.7 5.00E-02 1.1 1043.75 0.30 4 1849.52 0.42
0.35 133.54 1.00E-02 0.825 1044.82 0.15 2.05 1857.55 0.20
3 135.25 2.50E-02 0.2 1049.66 0.08 0 1860.42 0.10
1.2 141.99 3.00E-02 0.9 1053.64 0.25 0.6 1863.3 0.30
0.75 145.54 1.00E-02 0.85 1056.08 0.25 03 1865.9 0.30
0.3 147.26 2.00E-02 0.15 1059.8 0.15 0.1 1868.3 0.30
1.2 149.06 3.00E-02 -0.1375 1061.87 0.08 1.15 1871.36 0.18
0.35 149.88 3.00E-02 0.6 1064.03 0.30 0.295 1875.05 0.20
0.285 153.38 5.00E-03 1.25 1068.19 0.18 0.5 1877.8 0.60
0.25 154.83 3.00E-02 0.05 1071.4 0.06 0.9 1881.95 0.30
0.35 156.75 2.00E-02 0.05 1074.62 0.10 0.75 1885.1 0.20
0.55 158.51 5.00E-02 2.15 1076.83 0.23 1.2 1889.61 0.30
0.55 159.12 5.00E-02 21 1077.74 0.20 0 1893.33 0.50

-0.8 160.94 2.00E-02 0.1 1080.06 0.08 0.4 1897.04 0.20
1.45 163.6 2.50E-02 1 1082.56 0.30 0.55 1902.6 0.20
1.55 166.25 7.50E-02 0.6 1084.2 0.08 0.45 1906.65 0.30
0.85 168.02 2.50E-02 0.05 1086.75 0.08 0.2 191042 0.30
0.35 169.33 2.50E-02 0.8 1089.92 0.40 2.25 1915.5 0.30
2.75 174.48 8.50E-02 0.4 1093.28 0.08 2.3 1917.54 0.30
0.45 176.54 2.50E-02 0.4 1095.59 0.23 0.95 1922.7 0.30
3.75 177.54 1.87E-02 0.75 1097.5 0.30 0.7 1924.5 0.40

-0.3 178.54 2.50E-02 2 1100.16 0.30 0.6 1930.37 0.30

-0.25 179.42 2.50E-02 1.5 1103.44 0.30 0.6 1933.32 0.20
1.05 180.31 2.50E-02 0.075 1108.42 0.20 1.25 1937.95 0.30
0.65 181.99 6.50E—02 —0.04 1110 0.10 1.85 1940.64 0.20
0.7 392.17 4.00E-02 0.07 1111.2 0.10 1 1945.2 0.60
0.1 356.7 4.00E-02 -0.1 1113.62 0.30 0.4 1952.2 0.35
0.5 396.55 3.25E-02 0.1 1116.08 0.15 0.85 1955.3 0.30
0.1 402.18 3.50E-02 0.75 11183 0.30 1 1960.3 0.30
1.752 405.1 2.00E-01 0.35 1123.6 0.30 0.7 1963.67 0.30
0.3 408.45 5.00E-02 0.535 1126.11 0.50 3.2 1967.8 0.21
0.1 414.37 4.00E-02 0.425 1128.2 0.15 0.5 1972.71 1.00
0.25 415.34 5.00E-02 1.345 1132.3 0.10 2.2 1977.16 0.18
0.75 418.26 3.00E-02 0.15 1134.39 0.20 0.9 1979.7 0.28
0.35 419.83 4.00E-02 0.6 1136.48 0.35 0.2 1983.8 0.80
0.535 423.25 4.00E—-02 2.645 1139.08 0.35 0.3 1985.8 0.50
0425 425.46 4.00E-02 0.85 1143.43 0.10 1.1 1989.29 0.30
0.215 427.42 4.00E—-02 1.7 1146.66 0.15 1.1 1993.6 0.20
0.15 428.83 4.00E-02 0.075 1149.9 0.15 03 1997.85 0.70
0.75 430.66 9.00E-02 0.1 1152.79 0.20 0.6 1999.84 0.70
1.2 433.81 4.00E-02 0.5 1156.1 1.00 1 2002.45 0.50
2 434.88 2.00E-01 1.1 1159.65 0.08 03 2006.36 0.50
0.3 439.14 4.00E—-02 1.9 1161.5 0.28 0.6 2008.22 0.50
1.025 440.4 4.00E—-02 3.8 1163.3 0.28 0.1 2010.9 0.30
0.81 442.26 4.00E-02 25 1165.23 0.25 -0.18 2037.9 0.50
0.1 448.5 4.00E-02 1 1167.55 0.20 -0.27 2045.17 0.20
0.85 449.94 1.00E-01 0.6 1170.27 0.10 0.1 2042.43 0.40
0.3 453.7 4.00E-02 0.8 1172 0.10 0.75 2050.17 0.20
0.7 458.7 1.00E-01 0.5 1174 0.20 0.7 2053.18 0.19
1.5 462.02 1.00E-01 0.75 1175.99 0.20 2 2054.84 0.90
35 463.8 8.50E-02 0.1 1178.6 0.25 0.2 2058.85 0.60
0.05 466.53 2.00E-02 0.5 1180.7 0.30 0.4 2063.75 0.30
0.6 468.93 1.00E-01 1 1184.41 0.30 0.5 2067.31 0.35
0.75 471.77 4.00E-02 0.9 1187.46 0.25 0.4 2069.75 0.35

-0.1 476.53 4.00E-02 0.1 1190.1 0.08 1 2072.10 0.50
0.1 477.16 4.,00E-02 0.1 1192.67 0.08 0.2 2081.23 1.00
1 479.23 3.80E-02 0.1 1194.18 0.08 0.75 2085.12 0.26
1.05 481.33 3.80E-02 0.4 1197.20 0.25 1 2090.43 0.60
0.2 483.51 5.50E-02 1.25 1200.80 0.10 2 2093.07 0.42

(continued on next page)
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Table 4 (continued)

Rp/'s Er/s wy's Rp/'s Er/s wy's Rp/'s Er/'s wy's
0.1 485.29 4.00E-02 0.3 1204.56 0.30 0.5 2095.29 0.40
0.2 487.1 4,75E-02 -0.35 1206.15 0.10 1 2099.65 1.65
0.4 489.46 5.50E-02 0.5 1207.49 0.35 -0.5 2106.22 1.25
0.6 490.47 5.50E-02 3 1214.20 0.35 0.5 2108.78 0.80
0.425 495.64 5.00E-02 0.175 1216.10 0.25 0.2 2118.20 0.70
1.65 500.28 1.00E-01 0.4 1220.19 0.20 0.75 2121.42 0.70
2 502.1 2.50E-01 0.6 1224.59 0.20 0.3 2124.65 0.50
2 503.36 2.50E-01 0.25 1225.88 0.20 0.75 2129.05 0.50
0.4 506.01 1.00E-01 0.75 1229.70 0.20 2.75 2134.61 0.50
0.4 507.89 5.00E-02 0.5 1232.86 0.40 0.2 2137.75 0.35
24 511.40 1.00E-01 0.4 1235.60 0.40 -0.35 2141.90 0.70
2.35 513.16 5.00E-02 0.1 1237.34 0.10 1.75 2145.14 0.40
1.2 519.76 1.00E-01 0.5 1239.65 0.20 0.85 2148.50 0.35
0.2 524.29 5.00E-02 0.75 1243.20 0.40 0.6 2153.21 0.40
0.3 528.03 5.00E-02 0.75 1248.20 0.40 0.4 2160.80 0.35
4 530.51 4.00E-01 0.3 1251.71 0.25 1 2164.15 0.50
0.3 535.33 9.00E—-02 0.3 1254.05 0.25 0.7 2168.27 0.35
1 537.81 1.00E-01 0.2 1255.81 0.25 -0.45 2172.90 1.00
0.1 539.84 5.00E-02 0.45 1258.17 0.35 0.7 2179.37 0.40
0.23 542.15 5.00E-02 0.65 1263.12 0.25 4 2183.35 1.40
0.85 543.81 5.00E-02 0.15 1267.02 0.20 0.75 2189.31 0.23
1.15 546.19 5.00E-02 04 1268.31 0.30 0.1 2196.33 1.00
0.625 551.91 1.50E-01 0.4 1270.00 0.30 0.45 2199.99 0.75
2 557.77 1.50E-01 1.15 1272.95 0.10 0.75 2202.80 0.40
0.4 561.01 1.00E-01 0.25 1278.46 0.10 0.25 2207.17 0.70
0.3 564.73 9.00E-02 0.25 1280.37 0.10 4 2213.88 2.00
0.35 566.70 2.00E-01 0.35 1283.72 0.10 3.65 2216.99 1.00
0.75 570.98 5.00E-02 0.2 1287.50 0.50 1.15 2223.71 0.45
3 572.56 8.50E-02 0.3 1290.61 0.10 1.15 2226.61 0.45
2 575.83 2.00E-01 1 1291.89 0.80 0.3 2233.24 0.45
3.9 577.64 3.00E-01 1.375 1296.89 0.25 0.3 2236.21 0.75
0.05 579.60 2.00E-02 1.375 1298.63 0.23 1.2 2240.52 0.90
3 585.50 3.00E-01 0.1 1300.78 0.10 0.5 2247.90 0.35
0.3 587.50 5.00E-02 1 1305.59 0.21 0.2 2250.00 0.10

Table 5
List of the Rpy's, Erm’s and wy,’s.
Rpm’s Ery's Wi's Rpm's Ery's Wi's Rpw's Ery's Wp's
2.50E-05 2.30E+03 8.00E+03 5.00E—-06 8.00E+03 2.00E+04 1.00E-05 2.10E+04 1.60E+05
6.00E-05 2.50E+03 1.50E+04 5.00E-06 8.20E+03 2.00E+04 1.00E-05 2.21E+04 1.00E+05
1.50E-05 2.65E+03 8.50E+03 5.00E-06 8.40E+03 2.00E+04 1.00E-05 2.32E+04 2.60E+05
1.50E-05 2.90E+03 1.00E+04 5.00E-06 8.50E+03 2.00E+04 1.00E-05 2.37E+04 2.60E+05
1.50E-05 3.00E+03 1.00E+04 5.00E-06 8.70E+03 2.00E+04 1.00E-05 2.40E+04 2.60E+05
9.00E-06 3.15E+03 8.00E+03 5.00E-06 9.00E+03 2.00E+04 1.00E-05 2.42E+04 2.60E+05
2.00E-05 3.25E+03 1.00E+04 5.00E-06 9.15E+03 2.00E+04 1.00E-05 2.46E+04 5.00E+05
1.50E-05 3.50E+03 1.00E+04 5.00E-06 9.50E+03 2.00E+04 1.00E-05 2.50E+04 2.00E+05
1.50E-05 3.70E+03 1.00E+04 5.00E-06 9.60E+03 2.00E+04 1.00E-05 2.57E+04 3.00E+05
1.20E-05 3.80E+03 1.00E+04 7.00E-06 1.00E+04 5.00E+04 1.00E-05 2.62E+04 3.00E+05
8.00E—06 3.90E+03 1.00E+04 1.00E—-04 1.04E+04 1.00E+06 1.00E-05 2.72E+04 3.00E+05
8.00E—-06 4.00E+03 1.00E+04 1.00E-04 1.07E+04 1.00E+06 1.00E-05 2.75E+04 3.00E+05
8.00E—-06 4.15E+03 1.00E+04 1.00E-04 1.09E+04 1.00E+06 1.00E-05 2.83E+04 3.00E+05
8.00E—-06 4.25E+03 1.00E+04 5.00E-05 1.12E+04 1.00E+06 1.00E-05 2.88E+04 3.00E+05
8.00E—-06 4.35E+03 1.00E+04 5.00E-05 1.17E+04 1.00E+06 1.00E-05 2.93E+04 3.00E+05
1.10E-05 4.50E+03 1.00E+04 5.00E-05 1.20E+04 1.00E+06 1.00E-05 3.00E+04 5.00E+05
8.00E-06 4.80E+03 1.00E+04 5.00E-05 1.24E+04 1.00E+06 1.00E-05 3.11E+04 5.00E+05
8.00E-06 5.00E+03 1.00E+04 5.00E-05 1.28E+04 1.00E+06 1.00E-05 3.18E+04 5.00E+05
8.00E—06 5.15E+03 1.00E+04 5.00E-05 1.31E+04 1.00E+06 1.00E-05 3.21E+04 5.00E+05
8.00E—-06 5.35E+03 1.00E+04 5.00E-05 1.31E+04 1.00E+06 1.00E-05 3.28E+04 5.00E+05
8.00E-06 5.50E+03 1.00E+04 5.00E-05 1.33E+04 1.00E+06 1.00E-05 3.42E+04 5.00E+05
5.00E-06 5.60E+03 1.50E+04 5.00E-05 1.37E+04 1.00E+06 1.00E-05 3.50E+04 5.00E+05
5.00E-06 5.65E+03 1.50E+04 5.00E—-06 1.43E+04 1.00E+06 1.00E-05 3.62E+04 5.00E+05
5.00E—-06 5.80E+03 1.50E+04 5.00E-06 1.48E+04 7.00E+04 1.00E-05 3.70E+04 6.00E+05
5.00E-06 6.00E+03 1.50E+04 5.00E-06 1.50E+04 7.00E+04 1.00E-05 3.79E+04 6.00E+05
5.00E—-06 6.15E+03 1.50E+04 5.00E-06 1.53E+04 7.00E+04 1.00E-05 3.91E+04 6.00E+05
5.00E—-06 6.40E+03 1.50E+04 1.00E-05 1.60E+04 7.00E+04 1.00E-05 4.00E+04 6.00E+05
5.00E—-06 6.50E+03 1.50E+04 1.00E-05 1.72E+04 7.00E+04 1.00E-05 4.10E+04 6.00E+05
5.00E-06 6.60E+03 1.50E+04 1.00E-05 1.79E+04 7.00E+04 1.00E-05 4.20E+04 6.00E+05
5.00E—-06 6.75E+03 2.00E+04 7.50E-06 1.84E+04 7.00E+04 5.00E-02 5.00E+04 1.10E+09
5.00E—-06 7.00E+03 2.00E+04 7.50E-06 1.89E+04 1.00E+05 5.55E-02 1.50E+05 1.05E+10
5.00E—-06 7.25E+03 2.00E+04 7.50E-06 1.94E+04 7.00E+04 7.00E-02 3.00E+05 4.35E+10
5.00E—-06 7.35E+03 1.00E+04 1.00E-05 1.98E+04 1.60E+05 1.22E-01 5.00E+05 4.85E+11
5.00E-06 7.50E+03 1.00E+04 1.00E-05 2.00E+04 1.60E+05 6.20E-01 9.00E+05 1.00E+12

5.00E-06 7.70E+03 2.00E+04 1.00E-05 2.05E+04 1.60E+05
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Fig. 7. Comparison plot of the mean energy for the GODIVA benchmark.

Fig. 10. Comparison plot of the kurtosis of energy for the GODIVA benchmark.
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Fig. 11. Comparison plot of the 5th energy moment for the GODIVA benchmark.
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Fig. 8. Comparison plot of the variance of energy for the GODIVA benchmark. T'able 6
List of the Rp,’s, Er,’s and w,’s.
Rp,'s Ery's wy's
. o 1.25E+12 1.00E+06 5.00E+22
Comparison of the skewness (m,_;/m,) within 5% 6.50E+11 3.00E+06 1.70E+18
of MCNP 1.00E+10 4.00E+06 9.00E+16
3300 2.10E+10 5.00E+06 9.00E+16
31.00 1.10E+10 6.00E+06 4.00E+16
SEa 1.50E+10 7.00E+06 2.50E+16
: 9.00E+09 8.00E+06 1.30E+16
27.00 8.00E+09 9.00E+06 1.00E+16
2 2500 Ak 5.00E+08 1.00E+07 6.00E+14
v —#- Attila-7.1.0-beta
S 23.00 -
~+— Analytic T
21.00 N
1 i —% as = =5\ ~ = =
19.00 % - {f —-—I 1 = T‘M (k + C4R4 + €4R‘31> Slrl(BE4 . R4) = —<b4 + d4R‘21) COS(BE4 . R4) (65)
17.00 4
15.00 as ~ =3\ . ~
0 1 2 3 a 5 6 7 8 9 =+ Cs5Rs +esRz | sin <BEs . RS)
radius from the center of the sphere [cm] Rs

Fig. 9. Comparison plot of the skewness of energy for the GODIVA benchmark.

% Sin(BEl . k]) = 7b1 COS(BE] . k]) (62)
1

<%—2+ C2k2> Sil‘l(BEQCdOtkz) = —b2 COS(BE2 . kz) (63)
2

(%34’ C3E3> Sirl(BE3 . E?,) = *<b3 + dgk%) COS(BE:; . kg‘,) (64)
3

= 7<b5 -+ d5k§ +f51~?§> COS(BE5 - kg)

(66)

It turns out the only way for these equations to be equal and have
positive amplitudes (the a;s), and positive moments is for the sine
and cosine terms to be equal and opposite at R,. Sine and cosine
have equal and opposite values when the Bg values are 3%, so the

4Ry

set of equations become the following because sin(%ik) =
k

—cos <3T" . §k> and the remaining unknown coefficients, a,s follow

4Ry
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from working through the algebra of this set of expressions and the
amplitudes are positive.

a; = Rib (67)
a; = Ry(by — C3Ry) (68)
s = Rs (b3 —C3Rs + dgkg) (69)
a, =R, <b4 — 4R +dyR2 — eﬁi) (70)
as = Rs (b5 7c5§5+d5§§7e5§§+f5§§) (71)

The power equation in energy moment form, finding a,

For any nuclear reactor, the power is a design choice and a
known quantity. Power is proportional to the fission rate multi-
plied by a conversion factor and averaged over the volume of the
fueled region of the nuclear reactor. The Power equation below is
general and is applicable to any reactor (Lamarsh, pp. 257-258).

Cy» is a conversion factor to convert from fissions to Joules.

CpMiNay [

Wy |, orEamde (72)

Power =
The constants and parameters in Eq. (72) are: V=volume of the
fueled  region, Cp=32x107" e My=mass of the fuel,
MW; = molecular weight of the fuel, Ny = Avogadro’s number, 6{E) = e-
nergy dependent microscopic fission cross-section and

H(E) :% /Vqﬁ(r, E)dV = volume averaged flux (73)

The volume averaged flux can be isolated and transformed into
moment form by multiplying by E° inside the volume integral since
this is the only part of the expression that has position dependence
shown below.

‘l/ /v /0 wE°¢(r7E)dEdV:‘l/ /V modV (74)

The moment form of the volume average flux is the 0th moment
integrated over the volume

- 1
BB~y [ moav (75)
v
The Power equation in moment form becomes Eq. (76)
_ CpMyNa [~
Power = MW,V J, or(E) // modVdE (76)

The Power equation can be numerically integrated by multiply-
ing the ENDF-VII values with the results of the integrated volume
averaged moments (¢(E)), where the differential volume for the
sphere is 4nr?dr.

R ¢j /C .
/ medV = 47'EA0/ sin (Vo 1) r’dr
v 0 r
— 4nA, sm(Bgo "R) R-cos(Bg - R) (77)
Bz, Bro
If Ro ~ R then Eq. (76) becomes Eq. (77)
/ modv — AR _ 4002 (78)
% Bro
The power equation becomes Eq. (79).
CpMfNy [
Power, = le(/mf/f A /O or(E)4aoR*dE (79)

Now ag is shown in Eq. (80).

B PoweroMW¢
4R*C,MyNy [5° o (E)dE

0 (80)

Each of the constants a;’s, by's, c’s, etc. have ag in the numerator so
when these constants are normalized ay is divided out, for the pur-
poses of this paper power can be set is such a way that ag is 1.

Normalized energy dependent neutron diffusion moments

The set of moments that are plotted for comparison are the nor-
malized moments. The moments m; =1, 2, 3, 4, 5 are normalized
by the Oth moment, my. The normalized moments provide infor-
mation about the population density function i.e. mean energy
(mq/my), variance of the energy (m,/mg), skewness (ms/mg) and
kurtosis (my4/mg). The normalized energy dependent neutron diffu-
sion moments (NEDNDM) are seen in Eqgs. (81)-(86), where ao = 1.
The set of normalized moments, m,/m:

Mo B do sin(liﬂyr)

Mo q Si“(lifo*)

1 (81)

m 4 sin(Bg; -1) by -1-cos(Bgy - 1)

Mo o Sin(Bg - 1) (o Sin(Bgo - T) (82)
my _ aysin(Bg - 1) barcos(Bgy - 1) cpr? sin(Bg, - 1) (83)
Mo  Gpsin(Bgy -1)  dosin(Bg - 1) ap sin(Bgo - 1)
m; _ as sin(Bgz - 1) bsrcos(Bgs - 1)  c3r? sin(Bgs - 1)
My Gpsin(Bg -1)  dgsin(Bg - T) ap Sin(Bgo - 1)
d3r3 cos(Bgs - 1)
ap Sin(Bgo - 1) (84)
my _ a4Sin(Bes - 1) bar coS(Bgs - 1) €41 Sin(Bgg - 1)
Mo  Gosin(Bgy -1)  dgsin(Bg - 1) ap sin(Bgo - 1)
dar3 cos(Bgy - 1) eqr*sin(Bgg - 1) (85)
ap sin(Bgo - 1) ap Sin(Bgo - 1)
Ms _ asSin(Bgs -1)  bsrcos(Bes -1) s sin(Bgs - 1)
Mo  Gosin(Bgy -1) ~ aosin(Bgg -7)  doSin(Bgg - T)
dsr3 cos(Bgs - 1) esr*sin(Bgs - 1) fsr> cos(Bgs - 1) (86)

ap Sin(Bgo - 1) ao Sin(Bgo - 1) ap Sin(Bgo - 1)

The normalized moments or simply called moments for the rest
of the paper are plotted in Figs. 7-11 in the Results and discussion
section of the paper. There are three curves in Figs. 7-11: in blue
the MCNP moment, in red the Attila moment and in green the ana-
lytic moment.

Results and discussion

The plots in Figs. 7-11 below show the comparison of the mo-
ments from the three methods (MCNP5, Attila and Analytic). Mo-
ments were generated from MCNP5 by creating concentric
spheres at roughly 1 cm radii away from each other, so for the
MCNP model, nine spheres were modeled so a tally could be made
at roughly 1 cm increments up to the edge of the sphere (8.35 cm).
The MCNP5 tallies are f2 tallies over each surface and each tally
was broken into 1000 evenly spaced energy bins up to 10 MeV. En-
ergy bins from 10 MeV to 20 MeV showed large relative er-
rors > 20% and were omitted due to limits in computer power the
authors have access to for this work (i.e. a 64-bit laptop with a
hex core processor and 6 gigabytes of RAM). To get relative errors
below 5% for energy bins from 1E—-11 to 10 MeV the number of
particles tracked in the MCNP model was 6 million. The f2 tally
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data in each energy bin was then put in an excel spreadsheet and
the various moments were computed numerically based on the
definitions already presented for the mean, variance, skewness,
kurtosis and higher order moments. Computing times for the
MCNP5 calculations were roughly a day, 26.3 h, and Attila compu-
tation times were 3-4 h for a normal mesh of 0.01 cm which gave
about 100,000 mesh nodes. The reason for the day time frame for
MCNP was due to the high number of energy bins and particle
histories needed to get in the 5% error range for the 1000 bins in
the MCNP case.

Attila moments are created from the 30 group cross-section file
radion5 created by Transpire Inc. (energy bins are in Table 1). The
data to create energy moments from Attila are from a custom re-
port created in Attila where a line edit was made to collect the flux
in each energy group at approximately 1cm increments up to the
system edge to match the MCNP5 sphere surface tallies. The points
along the line edit from Attila are not exactly 1cm apart but close
enough because each point lined up on a mesh point. The flux data
in each energy group are numerically calculated similar to the
MCNP5 method where the data was put in an excel spreadsheet
and integrated according to the definitions already presented for
the mean, variance, skewness, kurtosis and higher order moments.
The reason why the Attila moments are higher than the MCNP
moments are because they are tuned to the fission spectrum which
should give an expected mean energy value of about 1.98 MeV (La-
marsh and Baratta, 2001, p. 87) for a sphere of pure 23°U. The high-
er order moments should be higher valued than MCNP because of
the fission spectrum weighting. Researchers (Sevast’yanov et al.,
2000) claim that the fission spectrum for 23U could be a superpo-
sition of five exponential functions and these researchers
calculated an average energy value of 1.475 MeV + 3.77%. As men-
tioned in the introduction the method of neutron energy moments
does not assume a fission spectrum weighting factor which did not
shift the values of the moments to that spectrum. Method of neu-
tron energy moments is still diffusion based which is not perfect
but the comparison plots show a good agreement with the trans-
port codes general shape, meaning the faster neutrons populate
the edges of the system or leak out because of the longer diffusion
length or streaming effect of these fast neutrons.

The interesting thing about the analytic moments is that they
start to peel away from the MCNP moments right around 3 mean
free paths from the boundary of the sphere, about 5 cm (if 1.1cm
is taken to be the average mean free path) and then correct back
to the boundary value, due to the transport correction factor, r,.
Diffusion theory is valid in finite media at points that are more
than a few mean free paths near the edge of the medium (Lamarsh,
1966, p. 129). The limitation of diffusion theory near the boundary
of a source is noted and is not valid near the boundary which why
it is transport corrected (Glasstone and Sesonke, 1967, p. 112).
Even though diffusion theory has its limits the results agree very
well with MCNP, the industry gold standard. For multiphysics-
engineering type calculations having a continuous energy solution
quickly only14% off in the highest moment that is within engineer-
ing limits i.e. 20% is an excellent benefit that can be very useful to
see multiphysics effects on nuclear reactors.

The shape of the functions for MCNP and Attila are very similar,
the Attila moment functions have a sharper up turn and less of a
parabolic shape which the analytic and MCNP moments have.
The reason for this could be the group structure of the radion5 neu-
tron cross-section file. The authors do not have control over this
file and are thankful for the use of the code from Transpire Inc.

The dominate functional shapes that form the constants, CE’s
for the moments are from the last two summation terms in F(E),
see Eq. (16). If the resonance region was not included it would
not have changed the value of the analytic moments much for this
case, because the contribution from the resonance summation was

much smaller than the transition and fast region summations in
Eq. (16). This makes sense for a fast reactor such as the theoretical
sphere analyzed in this paper. The summation over index | from Eq.
(16) does not contribute to the average energy (moment 1) at all
and little to moments 2-5. A different functional shape might be
more suited to fit the data better in this energy range, but the fit
of F(E) to the ENDF-F(E) is good and the moments compare very
well, so it might be that the fast reactor analyzed in this paper does
not depend on the resonance region, so it would not affect the
moment values. More work still needs to be done to see how reli-
able the method is for a broader set of reactor types.

Overall the analytic moments compare well with the two com-
putational platforms; Monte Carlo and the 30-energy group, Sy or-
der, Py order, finite element code Attila. The higher moments tend
to drift away from the MCNP moments and the error bars shows
this, where the error range is 5% for the 1st moment to 14% in
the 5th moment and no surprises the normalized Oth moment is
1 for all three cases with 0% error, there is not a figure showing this.

The difficulty in finding continuous energy solutions with the
multigroup method is the number of group equations to achieve
an accurate solution which can be as high as 1000 (Duderstadt
and Hamilton, 1976, p. 292). Continually iterating over the inte-
grals of the neutron flux multiplied by the cross-section until con-
vergence is reached can be computationally expensive and Monte
Carlo methods are very time intensive as well, although accurate.
The method of neutron energy moments shown here is computa-
tionally cheap comparatively, only 6 equations to solve and diffu-
sion equations which are relatively quick to solve
computationally (Chapra and Canale, 2002) for many numerical
methods.

Conclusions and future work

The EDNDE has been reformulated in terms of a moment equa-
tion and solved analytically for a 1-D sphere. The analytic moment
solution to the EDNDE agrees quite with (MCNP5 and Attila) in
terms of showing that the higher energy or faster neutrons popu-
late the outer radius of the sphere where they leak out of the
system. This leakage is seen by the upturn of all of the moments
for all three solution methods at the outer radii of the sphere.
The analytical moment results fall within the error bars associated
with MCNP5 results for all moments (0-5) calculated. The analyt-
ical moment results are much more accurate than the 30 energy
group Attila simulation because of the reasons stated in the Results
and discussion section of this paper.
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Appendix A. Table of constants for F(E)

Appendix A is the list of constants for each functional piece in
the summations that make up F(E), Eq. (16). The energies, Erjmn’s
are listed in eV. The Rp;,,’s are listed in eV/cm?. The Rp,’s are listed
in eV4/cm?. The wy,,’s are listed in eV2 The w,’s are listed in eV>.
Table 4 is the list of Rp/'s, Er/'s and wy's. Table 5 is a list of Rp,,’s,
Ery’s and wy,’s. Table 6 is a list of Rp,’s, Er,’s and wy,’s.
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