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The prenyl-binding protein PrBP/3: A chaperone participating
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Expressed ubiquitously, PrBP/s functions as chaperone/co-factor in the transport of a subset of prenylated
proteins. PrBP/3 features an immunoglobulin-like B-sandwich fold for lipid binding, and interacts with
diverse partners. PrBP/3 binds both C-terminal C15 and C20 prenyl side chains of phototransduction poly-
peptides and small GTP-binding (G) proteins of the Ras superfamily. PrBP/3 also interacts with the small
GTPases, ARL2 and ARL3, which act as release factors (GDFs) for prenylated cargo. Targeted deletion of the
mouse Pde6d gene encoding PrBP/s resulted in impeded trafficking to the outer segments of GRK1 and
cone PDE6 which are predicted to be farnesylated and geranylgeranylated, respectively. Rod and cone
transducin trafficking was largely unaffected. These trafficking defects produce progressive cone-rod dys-
trophy in the Pde6d/~ mouse.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The mouse Pde6d gene encodes PrBP/5, a 17 kDa protein that
functions as a prenyl binding protein (Cook et al., 2000; Gillespie
et al,, 1989; Ismail et al., 2011; Norton et al., 2005; Zhang et al.,
2004). By NCBI homology search, PrBP/s orthologs were identified
in essentially all animals (Fig. 1), e.g., fruit fly, the eyeless Caeno-
rhabditis elegans (Li & Baehr, 1998), and the unicellular protozoan
Paramecium (Zhang et al., 2007). PrBP/5 protein sequence is highly
conserved throughout the animal kingdom, with at least 70% se-
quence identity within vertebrates, and ~50% sequence identity
among invertebrates. The closest relatives of PrBP/3 are the two
UNC119 paralogs, UNC119A and UNC119B (see accompanying
paper (Constantine et al., in press)). PDE6D and UNC119 paralogs
constitute a new class of neural genes whose common function
as lipid-binding proteins has been maintained through metazoan
evolution. This review focuses on structure/function relationships
of PrBP/& with some of its interaction proteins.

* Corresponding author at: Department of Ophthalmology, John A. Moran Eye
Center, University of Utah Health Science Center, 65 Mario Capecchi Dr., Salt Lake
City, UT 84132, USA.

E-mail address: wbaehr@hsc.utah.edu (W. Baehr).

0042-6989/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.visres.2012.08.013

2. Protein prenylation

Protein prenylation is a common posttranslational modifica-
tion of eukaryotic cells affecting up to 2% of all proteins expressed
in mammalian cells (referred to as the “prenylome”) (Nguyen
et al., 2010, chap. 14). Prenyl side chains are synthesised in all liv-
ing organisms via the mevalonate pathway and attached to newly
synthesised cytosolic proteins carrying a C-terminal CAAX box
motif (C = cysteine, A = aliphatic amino acid, X = any amino acid)
(Magee & Seabra, 2005; McTaggart, 2006). The C-terminal X deter-
mines the nature of the lipid chain as leucine specifies geranylger-
anylation and all other residues result in farnesylation. The prenyl
chain is attached to the CAAX box cysteine via a thioether bond by
cytosolic prenyl transferases (Zhang & Casey, 1996). Prenylated
proteins dock to the endoplasmic reticulum (ER) and are further
processed by the ER-associated enzymes RCE1 protease (ras-
converting enzyme 1), which cleaves AAX of the CAAX box and
an isoprenyl cysteine carboxymethyl transferase (ICMT), which
carboxymethylates the cysteine COOH (Winter-Vann & Casey,
2005) (Fig. 2). Both enzymes are essential for mouse development
as deletion of either RCE1 or ICMT are embryonic lethal (Bergo
et al,, 2001, 2002). Deletion of RCE1 in retina prevented transport
of rod PDE6 to the outer segments, but had no effect on GRK1
(Christiansen et al., 2011). The number of CAAX box-containing
proteins in the human and mouse genome, as defined by ORFs
followed by CAAX box and a stop codon, has been estimated as
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" mammals XP_0011136%6 (Macacamulatta)

Fig. 1. Dendrogram of 21 PrBP/5 orthologs. Amino acid sequences were retrieved using the accession numbers shown, and aligned using ClustalW. The dendrogram was
generated from the alignment. Sequences among vertebrates are highly conserved. PrBP/3 sequences of C. elegans and human are 65% similar suggesting conserved function

through evolution.

cytosol
SH
\prenyltransferase

#ﬁ

endoprotease Methylation by ER
(Rcelp) ICMT

Fig. 2. CAAX-protein prenylation and processing (example: PDE6a). After prenyl-
ation in the cytosol, PDE6a protein docks at the ER and undergoes enzymatic
processing by RCE1P protease that removes AAX, and an S-adenosylmethionine-
dependent methyltransferase (ICMT) that carboxymethylates the C-terminal
cysteine.

~280 candidates (Winter-Vann & Casey, 2005). Known prenylated
CAAX proteins include visual cascade components, members of
the Ras superfamily and G protein 7y-subunits, among others
(Nguyen, Goody, & Alexandrov, 2010; Winter-Vann & Casey,
2005) (Table 1).

3. Photoreceptor PDE6 and PrBP/s

cGMP-specific phosphodiesterase 6 (PDE6) belongs to a large
PDE superfamily (PDE1-11) whose members regulate cellular
concentrations of cAMP and cGMP (Conti & Beavo, 2007). PDE6 is
expressed in rods and cones and consists of two catalytic subunits
(rod Pde6op and cone Pde6a’, respectively) and two inhibitory
PDE6Y subunits (Baehr, Devlin, & Applebury, 1979; Miki et al.,
1975). PDE6a (~99 kDa), PDE6B (~99 kDa) and two PDEG6Y
(~10kDa) form a heterotetramer PDE6afyy (Fung et al., 1990).
Each catalytic subunit carries a C-terminal cysteine, part of a CAAX
box motif for post-translational prenylation (Anant et al., 1992).
Mammalian PDE6« is farnesylated while PDE6 is geranylgerany-

lated, resulting in modifications that facilitate membrane
attachment. PrBP/d was originally identified as a protein co-
purifying with PDE6afy, and named PDEGS (Gillespie et al.,
1989). Under isotonic conditions, most PDEG6 is peripherally mem-
brane-associated (Baehr, Devlin, & Applebury, 1979), but a fraction
(20-30%) remains soluble (Gillespie et al., 1989). Affinity purifica-
tion using a monoclonal antibody column to purify soluble PDE6,
yielded a novel 15 kDa polypeptide (Gillespie et al., 1989). Cloning
this peptide’s cDNA and northern blotting revealed that PrBP/5 was
present in several different bovine tissue mRNA preparations, the
strongest of which was present in the retina (Florio, Prusti, &
Beavo, 1996).

Addition of a GST-PrBP/3 fusion protein to permeabilized rod
outer segment preparations resulted in a reduction of the maximal
rate of cGMP hydrolysis in response to light (Cook et al., 2001) sug-
gesting that GST-PrBP/8 may modify the activity of the phototrans-
duction cascade by uncoupling transducin’s normal activation of
PDE6. However, it was later demonstrated that very little PrBP/8
is present in the rod outer segment (ROS) rendering this in-vitro
uncoupling mechanism physiologically insignificant (Norton
et al.,, 2005) has purified PrBP/5 has no effect on PDE activity
in vitro.

Micromolar concentrations of prenylated and carboxymethylat-
ed PrBP/§ C-terminal peptides block the Pde6- PrBP/$ interaction.
Soluble PDE6 from ROS was five-fold more highly methylated than
membrane-bound PDEG6 suggesting that PrBP/s preferentially binds
to carboxymethylated PDE6 (Cook et al., 2000). The PDE6-PrBP/s
complex is relatively stable with a half-life of about 3.5 h. Exploiting
the intrinsic tryptophan fluorescence of PrBP/d and using dansylat-
ed prenyl cysteines as fluorescent ligands in a fluorescence reso-
nance energy transfer (FRET) experiment, recombinant PrBP/5 was
shown to specifically bind geranylgeranyl and farnesyl moieties
lacking bound amino acids with Kys of ~20 and ~1 puM, respectively,
establishing unambiguously that PrBP/S functions as a prenyl-bind-
ing protein (Zhang et al., 2004). In photoreceptors, PrBP/8 was
shown to interact with PDE6 subunits, farnesylated rhodopsin ki-
nase (GRK1) and geranylgeranylated GRK7 (Zhang et al., 2004). A
cryo-EM reconstruction of the PDE6/PrBP/s complex at 18 A (Goc
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Table 1

Polypeptides interacting with PrBP/3. Column 1, proteins involved in phototransduction (red); small G proteins (green); other interacting proteins (black). Column 2, CAAX box
sequences. Column 3, prenyl side chains at the C-terminal Cys, f = farnesyl; gg = geranylgeranyl. Column 4, acyl side chains at G2. Column 5, references. (See below-mentioned

references for further information.)

Hanzal-Bayer et al., 2002)

Ismail et al., 2011; Gelb et al., 2006)

Nancy et al., 2002; Hanzal-Bayer et al., 2002)
Wilson and Smyth, 2006)
Li et al., 1998; Linari et al., 1999b)

Target CAAX prenyl acyl References
PDEa cciq f - (Cook et al., 2001)
PDEB ccil  gg - (Cook et al., 2001)
GRK1 clis f - (Zhang et al., 2004)
GRK7 clil ag - (Zhang et al., 2004)
cTy cvls f - (Zhang et al., 2007)
Ty cvis f - (Zhang et al., 2007)
DmPDE5/6 call  gg - (Day et al., 2008)
Rab13 clig f - (Marzesco et al., 1998)
Rheb csvm f (

(
Rho6(Rnd1) csim f 16:0? (Nancy et al., 2002)
Rapia clil a9 - (Nancy et al., 2002)
Rapib cqll  gg - (Nancy et al., 2002)
Rap2a cniq f (Nancy et al., 2002)
Rap2b cvil  gg 16:0? (Nancy et al., 2002)
H-Ras cvls f (Nancy et al., 2002)
N-Ras cvwm f 16:0 (Nancy et al., 2002)
K-Ras cvim f (Nancy et al., 2002)
RhoA civl  gg - (Nancy et al., 2002)
RhoB ckvl gg 16:0? (
Prostacyclin-R csle f (
RPGR-RCCH1 - - (
ARL2-GTP - - (Renault et al., 2001)
ARL3-GTP - - (Linari et al., 1999a)

et al,, 2010) is shown in Fig. 3. The structure roughly resembles a
skull showing two pronounced cavities, the larger of which is
formed by the catalytic domains at its top (behind the PDE6vy bind-
ing sites) and the GAF-B domains at its bottom. GAF domains are
important as they function as non-catalytic cGMP binding sites,
sequestering most of the cGMP present in photoreceptors (Ho,
Burden, & Hurley, 2000; Martinez et al., 2008).

4. Interaction of PrBP/s with prenylated Ras and Rho GTPases

Doubts concerning the identity of PrBP/d as a PDE6 subunit ar-
ose when it was shown that the eyeless nematode C. elegans ex-
pressed a PrBP/s ortholog (C27H5) whose functional properties
were identical to human PrBP/5 (Li & Baehr, 1998). Both proteins
eluted native PDEG6 from ROS membranes with nearly identical effi-
ciencies (Fig. 4). Further, human PrBP/$ interacts with several
prenylated small GTPases of the Ras and Rho subfamilies present
in essentially all cells (Table 1). Almost all members of the Ras fam-
ily carry the CAAX motif and are prenylated, a modification which
is essential for function.

Recombinant PrBP/5 extracted Rab13 from cellular membranes
as it dissociates PDE6 from photoreceptor disk membranes
(Marzesco et al., 1998). This PrBP/s function was determined to
be specific as RhoGDI, another known prenyl binding protein spe-
cific for Rho GTPases, was unable to substitute for PrBP/s. PrBP/s
also interacts with many other small GTPases e.g., Ras, Rac, Rap,
Rho, Rheb, RhoA, RhoB and Rho6 (Table 1), each of which is preny-
lated (Hanzal-Bayer et al., 2002; Nancy et al., 2002). These experi-
ments established PrBP/5 as a promiscuous prenyl-binding protein
capable of interacting with multiple prenylated proteins. The phys-
iological significance of most GTPase interaction with PrBP/§
remains unknown. Yeast two-hybrid screens indicate that several
prenylated proteins do not interact with PrBP/3, suggesting that

specificity is mediated in part by protein-protein interactions.
Examples of non-interacting prenylated GTPases include Rala, Ralb,
and Rab6 (Nancy et al., 2002), as well as Arf1, Arf6, Arl6, Racl,
Rab1, Rab2, Rab7, and Ran (Hanzal-Bayer et al., 2002).

PrBP/s-interacting Ras GTPases are oncogenes which, in normal
cells, act as a switch to signal cell growth when cell surface recep-
tors are stimulated by hormones or other agents. When HRAS is
“switched on,” it signals the cell to grow, but when “switched
off,” the cell is dormant. HRAS is an important oncogene as it is
mutated in approximately one third of human cancers causing un-
checked cell growth. Such a mutation may not, in and of itself, be
enough to cause a cell to become cancerous as mutations in other
genes may also be required. Rheb (Ras homolog enriched in brain),
a novel, highly conserved member of the Ras superfamily of
G-proteins, is vital in regulation of growth and cell cycle progres-
sion and was recently co-crystallized with PrBP/s (Ismail et al.,
2011) (see below). Rho6 (Rho-related GTP-binding protein 6) lacks
intrinsic GTPase activity and constitutively binds GTP. Rho6 also
controls rearrangements of the actin cytoskeleton. In general, the
Rho family of small GTPases regulate the actin cytoskeleton in
various cell types (Etienne-Manneville & Hall, 2002). Like other
GTPases of the Ras superfamily, RhoGTPases serve as molecular
switches by cycling between GDP- and GTP-bound states. In the
GTP-bound state, interaction with effectors leads to a variety of
biological functions. The physiological role of PrBP/3 interacting
with Rho and Ras GTPases remains unknown; most likely PrBP/s
acts as a GDI-like solubilizing factor contributing to Ras and Rho
signaling in cells (Chandra et al., 2012).

5. Interaction of Pde6d with non-prenylated proteins

Yeast two-hybrid screens have shown that PrBP/3 interacts with
the RCC1-like domain of RPGR (Becker et al., 1998; Linari et al.,
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A B neither myristoylated nor prenylated (Hanzal-Bayer et al., 2002).
membrane soluble PDE This interaction was verified by co-crystallization (Hanzal-Bayer
bound PDE et al, 2002; Renault, Hanzal-Bayer, & Hillig, 2001), fluorescence
spectroscopy and co-immunoprecipitation (Hanzal-Bayer, Linari,
A e & Wittinghofer, 2005).
membrane

qiup

Fig. 3. PDE6 may be membrane-bound or soluble. (A) Schematic of PDE6afyy
bound to ROS disc membranes via prenyl side chains. (B) Association of PDE6afyy
with PrBP/§ (delta) forms a soluble and diffusible complex. (C) Structure of soluble
PDE6aByy58 by Cryo-EM at 18 A resolution in two orientations (adapted from Goc
et al., 2010).

1999). RCC1 is a GEF for the small GTP-binding protein Ran, which
helps to control transport between the nucleus and cytoplasm
(Clarke & Zhang, 2008). The interaction between RPGR and PrBP/
3 was confirmed by both pull-down assays (Li & Baehr, 1998)
and surface plasmon resonance experiments (Linari et al., 1999).
Oddly, the C-terminal region of RPGR which carries a CAAX box
motif did not interact with PrBP/d suggesting that RPGR may lack
posttranslational prenylation (Linari et al., 1999). Missense muta-
tions in RPGR linked to X-linked Retinitis pigmentosa 3 (RP3)
showed reduced interaction with PrBP/3, suggesting that RPGR
mutations may give rise to retinal degeneration via the dysregula-
tion of intracellular protein localization and transport. PrBP/$ also
interacts with the Arf-like proteins, Arl2 and Arl3, in GTP-specific
manner (Linari, Hanzal-Bayer, & Becker, 1999) (Renault,
Hanzal-Bayer, & Hillig, 2001). Closely-related, Arl2 and Arl3 are

A
100
=3
.E.S" % g0 hPrBP/6
==
Qo
5 S 60 cePrBP/&
>
ot
On
= 40
2o 20
o
AE
0+ : : + +
0 500 1000 1500 2000
[PrBP/d] (nM)
B

N N R

Fig. 4. Function and sequence comparison of human and C. elegans PrBP/s. (A)
Extraction of PDE6 as a function of human PrBP/$ versus its ortholog expressed in C.
elegans. (B) Sequence alignment of human PrBP/s (1) and C. elegans PrBP/s (2) (Li &
Baehr, 1998).

6. Structure of the PrBP/5-Arl2-GTP complex

The 2.3 A co-crystal structure of PrBP/5 and Arl2-GTP was a sig-
nificant breakthrough in resolving how PrBP/$ interacts with both
prenylated and nonprenylated proteins (Fig. 5) (Hanzal-Bayer
et al., 2002; Renault, Hanzal-Bayer, & Hillig, 2001). The complex
crystallized in two crystal forms (Renault, Hanzal-Bayer, & Hillig,
2001) (Protein Data Bank codes 1KSG, 1KSH and 1KSJ): form-1
grew within days and form-2 crystallized over the course of several
months to 1year (Hanzal-Bayer et al, 2002; Renault,
Hanzal-Bayer, & Hillig, 2001). Form-1 contained Arl2-GTP, whereas
form-2 contained partially hydrolyzed GTP (GDP and phosphate).
The Arl2 structure in both forms is very similar exhibiting no sig-
nificant structural differences. The PrBP/3 structure (Figs. 5 and
6) contains an immunoglobulin-like B-sandwich fold comprised
of two B-sheets forming a hydrophobic pocket. One sheet is formed
by strands B1, B2, B4 and B7, while the other is formed by B3, B5,
B6, B8 and B9. The N-terminal region forms an o-helix (o1) and
the loop connecting B7 and B8 is disordered. The interface between
Arl2-GTP and PrBP/s is formed by B-sheet interactions involving
B2 from Arl2 and B7 from PrBP/5. The immunoglobulin-like
B-sandwich fold of PrBP/s is closely related to RhoGDI (Hoffman,
Nassar, & Cerione, 2000) and UNC119A (Zhang et al., 2011) despite
the sequence similarity between these polypeptides being rela-
tively low. The major structural differences between these three
proteins consist of the length and structure of the loops connecting
B-sheets and the N-terminal regions (Hanzal-Bayer et al., 2002). In
contrast to RhoGDI and PrBP/5, UNC119A is an acyl-binding protein
with specificity for lauroylated and muyristoylated N-termini of
G-protein o-subunits (Zhang et al., 2011).

7. The structure of the Rheb (GDP)-PrBP/5 complex

Rheb (Ras homolog enriched in brain), a novel, highly conserved
member of the Ras superfamily of G-proteins, regulates mTORC1

Fig. 5. Ribbon representation of the PrBP/3-Arl2/GTP complex (PDB 1KSH). GTP
(shown as sticks in dark blue) is bound to Arl2. Arl2 blocks the entrance (arrow)
through which the lipid side chain of prenylated proteins may insert. Figure was
created with PyMOL (www.pymol.org). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Structure of the Rheb (GDP)-PrBP/5 complex. Top, structure modified from
Ismail et al. (PDB 3T5I). The C-terminal farnesyl chain of Rheb (green) is inserted
into the B-sandwich structure of PrBP/s. GDP (dark gray) of Rheb is shown. Bottom,
the structure of PrBP/3 with inserted farnesyl (green). Cys (yellow) of Rheb is
shown. The middle and right structures were generated by 90 °Counterclockwise
rotation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

(mammalian Target Of Rapamycin complex 1), which in turn regu-
lates cell growth and proliferation (Aspuria & Tamanoi, 2004;
Avruch et al., 2006; Ismail et al., 2011). The 1.7-A structure of
PrBP/s in complex with farnesylated Rheb was solved by model
building with a non-prenylated truncated Rheb and the crystalliza-
tion of PrBP/d with a C-terminal prenylated octopeptide (Ismail
et al., 2011). The structure shows the farnesyl group of Rheb buried
deeply in the hydrophobic pocket of PrBP/3, an interaction that is
independent of the nucleotide status of Rheb (Ismail et al., 2011).
PrBP/3 and the switch regions of Rheb do not interact. Importantly,
the interaction of Rheb with PrBP/3 is regulated allosterically by
Arl2 and Arl3 in a GTP-dependent manner, establishing that GTP-
bound Arl proteins act as GDI displacement factors (GDFs). In
general, GDFs function by helping to displace small prenylated G
proteins (or GRK1, PDEo’) from their lipid binding proteins,
preventing further interaction by stabilizing the “closed” form of
the GDI (or PrBP/s, or UNC119A) (Fig. 7).

8. Deletion of PrBP/5 in mouse produces retinal degeneration

At least six prenylated proteins are involved in mammalian
phototransduction (Table 1): three catalytic subunits of PDE6
(o, B in rods and o in cones), two G protein-coupled receptor
kinases (GRK1 and GRK7), and the rod and cone y subunits of
transducin. PDE6a, GRK1, and both Ty subunits are farnesylated,
while PDE6B and GRK7 are geranylgeranylated. These polypeptides
are synthesised in the cytosol, and posttranslationally prenylated
by soluble prenyl transferases. Prenylated proteins dock to the ER
surface, where further processing occurs (i.e., proteolytic cleavage
of —AAX of the CAAX box and carboxymethylation of Cys)
(Christiansen et al., 2011; Hannoush & Sun, 2010). Following ER
processing, GRK1 and PDE6 must be targeted to outer segment disk
membranes to participate in phototransduction.

Pde6d gene deletion resulted in a viable adult mouse that
developed normally and was fertile, but exhibited a significantly

T |

Rheb ) <
;
Soluble

/ @ complex
@3 \mﬂp
GTP

Displacement &2 DP /
m GEF Recyclingn

| Membrane 1

Ternary
complex

Membrane 2

Fig. 7. ARL3-GTP functions as a GDF (GDI-displacement factor). Top, Step1: Rheb is
extracted from membrane 1 by PrBP/3, Step 2: an intermediate ternary complex is
formed with ARL3-GTP. Step 3: Rheb is displaced to membrane 2 by ARL3-GTP
acting as a GDF. The cycle is completed by the ARL3 GAP, RP2, which produces
ARL3-GDP and free PrBP/s.

reduced body size early in life (Zhang et al., 2007). Phenotypically
the Pde6d/~ mouse primarily exhibits transport deficiencies of a
subset of membrane-associated proteins (Figs. 8 and 9). In partic-
ular, defects are seen in transporting GRK1 to rod and cone outer
segments (COS) and in cone PDE6 to COS, which resulted in
anomalous photoreceptor physiology. In Pde6d~/~ rod single-cell
recordings, sensitivity to single photons was increased (Zhang
et al., 2007). Further, double-flash electroretinograms indicated a
delay of more than 20 min in recovery to the dark state in
Pde6d~'~ rods, which is likely due to severely reduced levels of
GRK1 in rod outer segments (Zhang et al., 2007).

We hypothesized that PrBP/3 may be involved in extracting
prenylated proteins from the ER surface (Figs. 8 and 9) and either
delivering them to a post-TGN vesicular transport carrier in rods
and cones (Karan et al., 2008; Zhang et al., 2007), or directly to
ROS discs (Zhang et al., 2011). This process is likely regulated by
GTP-bound Arl proteins, which presumably act in a GDF-like
fashion. Curiously, rod PDE6 subunits were affected weakly and

A To ROS TD*ROS B To ROS To ROS
4 4 4
1 f i 1 &p" |
& M &

L
& o

Pde6d”" rod

Fig. 8. PrBP/3-dependent export of PDE6 and GRK1 from the ER in rods. (A) GRK1
and PDE6aB dock to the ER after prenylation and processing. Prenylated proteins
may be extracted from the ER by PrBP/5 (8, purple) forming a diffusible complex.
Additional prenyl binding proteins likely exist (X, in black). Transfer from ER
(membrane 1) to the transport vesicle (membrane 2) is likely mediated by ARL2/3
functioning as a GDF, as outlined in Fig. 7. (B) Deletion of PrBP/s prevents GRK1 exit
from the ER. With the help of X, PDES still travels to the OS although some PDEG6 is
retained and mislocalized in the inner segment (Zhang et al., 2007). This model is
based on (Baehr et al, 2007; Karan et al., 2008; Zhang et al., 2007). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Wt rod
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Fig. 9. PrBP/5-dependent transport in cones. (A) Processing of cone PDE6 and GRK1
in WT cones. Cone PDE6 consists of two identical geranylgeranylated subunits
(PDEo’). Both are thought to interact with PrBP/3. (B) Deletion of PrBP/5 prevents
trafficking of cone PDE6 subunits and GRK1 to the outer segments. Prenylated
subunits, unable to exit the ER, are presumably degraded.

mislocalized only partially in the inner segments (Zhang et al.,
2007), despite PrBP/5 being known to interact strongly with
PDE6. One possible explanation for this phenotype is that PDE6
may use alternate trafficking pathways independent of PrBP/s.

In contrast to Pde6d~/~ rod outer segments, Pde6ar’, predicted to
be geranylgeranylated, was undetectable by immunofluorescence
in Pde6d~/~ cone outer segments (COS) (Zhang et al., 2007). Under
photopic (bright light) ERG conditions, the Pde6d /- cone response
was diminished, which is consistent with reduced PDE6a’ levels in
COS. Taken together, PrBP/3 deletion in photoreceptors results in
defective transport of some prenylated proteins (PDE6 subunits
and GRK1) to the outer segment. Transport defects varied, suggest-
ing that additional unidentified prenyl binding proteins may sub-
stitute for PrBP/5 loss in photoreceptors. In Pde6~/~ rods and
cones, both the visual pigments and transducin trafficked, but
rod Ty mislocalized as some was retained in the inner segment
(Zhang et al., 2007).

9. PrBP/5 expression in non-retina mouse tissues

According to the EST database, PrBP/5 is expressed in most
mouse tissues, including RPE/choroid, brain, visual cortex, organ
of Corti, placenta, lung, testicles, spermatids, bones, bone marrow,
and tumor biopsy samples. Lung tissue expresses PDE1-5 at high
levels, and while they were detected, PDE6 subunits including
PrBP/d were found at low levels in human alveolar epithelial cells
(Nikolova et al., 2010). PDE6D mRNA, PrBP/3 protein levels, and
PDEG6Yy protein levels were reduced in lungs affected by idiopathic
pulmonary fibrosis (IPF), when compared with donor lungs,
suggesting that these PDE6 subunits may contribute to IPF patho-
genesis (Nikolova et al., 2010). Interestingly, both PDE5 and PDE63
were pulled down from mouse lung using beads coated with the
known PDE5 inhibitor, (N-(6-aminohexyl)-3-(1-ethyl-3-methyl-7-
0x0-6,7-dihydro-1H-pyrazolo[4,3-d]|pyrimidin-5-yl)-4-propoxybenze
nesulfonamide) (PF-4540124), with very high specificity (Dadvar
et al., 2009). PDES5 is closely related in sequence to photoreceptor
PDE6a or PDE6B, but lacks the CAAX motif and is therefore not
prenylated (thus excluding binding through prenyl side chains).
Using recombinant PrBP/s, it was demonstrated that PrBP/3 di-
rectly interacts with PF-4540124 with a Ka in the micromolar
range, whereas the Ka of PDE5 to PF-4540124 is in the nanomolar

10.1. Drosophila melanogaster

PrBP/d homologs are capable of interacting with non-retina
PDEs through prenyl moieties. In D. melanogaster, a homolog of
both PDE5 and PDE6, termed DmPDE5/6, contains a C-terminal
CAAX-box motif (CALL) (Day et al., 2008). DmPDE5/6 is expressed
in the renal tubules of the fruit fly, but not in ommatidia.
DmPDE5/6 is predicted to be geranylgeranylated with expression
documented in the head and body. DmPDE5/6 associates with
DmPrBP/8, a 151 amino acid homolog with high sequence similar-
ity (78%) to mammalian PrBP/§ (Day et al., 2008; Zhang et al.,
2007). Association of DmPDE5/6 with DmPrBP/5 results in its trans-
location from the plasma membrane to the cytoplasm, a function
identical to that of mammalian PrBP/3.

10.2. C. elegans

A gene with an exon/intron arrangement very similar to PrBP/8
was identified in the eyeless nematode C. elegans as part of the gen-
ome sequencing project and was given the systematic identifica-
tion tag C27H5.1 (Wilson et al., 1994). The gene product, termed
PDL-1 (PDEdelta-like 1) (Wormbase at www.wormbase.org), is
similar in sequence to PrBP/3 (Fig. 4) and also the C-terminal do-
main of neuron-specific unc-119 and mammalian UNC119A.
Expression and characterization of PDL-1 demonstrated that it
can elute PDE6 from ROS membranes (Fig. 4), a biological activity
identical to PrBP/$ (Li & Baehr, 1998). Pull-downs with GST-PDL-
1 showed that PDL-1 binds PDE6 subunits and the N-terminal of
domain RPGR indistinguishably from PrBP/5. Further, recent work
has shown that mutations in PDL-1 affect gustatory plasticity in
C. elegans (Hukema et al., 2006).
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