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Abstract.—To study how a social group, such as an ant colony, monitors events occurring 
throughout its territory, we present a model of a network of patrolling ants engaged in informa
tion collection and dissemination. In this network, individuals follow independent paths through 
a region and can exchange signals with each other upon encounter. The paths of the ants 
are described by correlated random walks. Through simulations and analytic approximations, 
including a new approach to the spatial logistic equation, we study the efficiency with which 
such a network discovers a constantly changing stream of “ events” scattered throughout the 
region and the speed with which information spreads to all ants in the network. We demonstrate 
that efficiency of event discovery and the speed of information spread are enhanced by increased 
network size and straighter individual ant paths, and that these two effects interact. The results 
lead to predictions regarding the relations among species-specific movement patterns, colony 
size, and ant ecology.

Ants perform a variety of tasks outside their nests. The most familiar is forag
ing: collecting food and bringing it back to the nest. This task actually involves 
two components, food discovery and food collection. Models of foraging have 
focused either on individually foraging ants that both discover and collect food 
(Bovet 1981; Goss et al. 1989) or on individually searching ants (“ scouts” ) that 
recruit specialized food collectors (Taylor 1978; Harkness and Maroudas 1985; 
Johnson et al. 1987; Pasteels et al. 1987). The discovery of food is one important 
outcome of an ant colony’s efforts to monitor its environment, but colonies dis
cover other kinds of events as well, including new nest sites, ants of other colo
nies and species, sources of danger, and so on. Here we consider the general 
problem of how an ant colony might maintain an ongoing flow of information 
about its environment.

We are especially concerned with modeling the consequences for information 
collection and spread by information-gathering ants that do not search in isolation 
but encounter each other and share information. Information-gathering behavior, 
called “ scouting” or “ patrolling,” appears to be common in ants (although the 
literature on this is obscured by a tendency to assume that any ant outside the
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nest is foraging, i.e., actively engaged in food retrieval). A variety of tasks under
taken by these ants have been documented. For example, in seed-eating ants 
(.Pogonomyrmex), it is the patrollers, not foragers, that discover new food sources 
and recruit foragers to them (Gordon 1983). Each morning, furthermore, the pa
trollers explore the existing foraging trails to stable food sources. The trails cho
sen by the patrollers are used later in the day by the foragers (Gordon 1991). 
Patrollers react to other kinds of changes in the colony’s environment, such as 
alterations in the nest structure and encounters with ants of other species (Porter 
and Jorgensen 1981; Gordon 1987). In fire ants (Solenopsis invicta Buren), the 
patrollers explore new regions before they are used by other members of the 
colony (Gordon 1988).

Information sharing among patrollers seems likely given the frequency of en
counters among them. Such encounters often involve antennal contact. Ants per
ceive chemical cues with their antennae. In the course of antennal contact, one 
ant may receive chemical information about the state of the other. For example, 
an ant may perceive that the one it contacts is carrying food, or that it is a nest 
mate (Lenoir and Jaisson 1982; Holldobler and Wilson 1990). Waves of alarm are 
well documented, occurring when ants respond to an airborne pheromone by 
emitting more themselves (Bossert and Wilson 1963). It remains to be demon
strated empirically that an ant that receives a chemical signal from another in the 
course of a brief encounter can pass the signal on to a third. A recent study of 
the ant Lasius fuliginosus shows that these ants act to maintain relatively constant 
encounter rates as density changes, which suggests that reliable encounter rates 
may be biologically important (Gordon et al. 1992).

Here we develop a theoretical approach to the study of information spread 
through brief encounters, in the hope that such models will contribute to further 
empirical work. A group of workers that walk around and inspect the colony’s 
foraging range while frequently encountering other workers can be viewed as a 
sort of network. Encounters act as the vertices of this network and provide the 
opportunity for ants to exchange information.

The effectiveness of patrolling depends on how exhaustively the network cov
ers the region occupied by a colony, how sensitive it is to changes in the environ
ment, and how well it disseminates information about such changes. An ant col
ony would have complete information about its environment if there were an ant 
everywhere at all times, and if any ant could communicate instantaneously with 
any other. Colonies must balance the cost of failing to achieve this ideal against 
the cost of supporting a large contingent of patrollers and the cost of communica
tion. Moving patrollers provide one potentially effective approach to this problem 
because each ant spends most of its time distant from other ants exploring terri
tory and only a small fraction of its time close to another ant to which it can 
potentially communicate its findings. The spatial pattern of individual patroller 
paths determines both the effectiveness of a patrolling network in covering the 
region occupied by the colony and the frequency and distribution of encounters. 
To take an extreme example, if each patroller traveled only on one straight line 
leading away from the nest, the region near the nest would be explored more 
frequently and patrollers might never meet. The frequency of patroller encounters



NETWORKS OF PATROLLING ANTS 375

determines the speed with which information can spread through the network, 
and thus the time scale of events to which a colony can respond.

The model presented here has two objectives. First, we consider how patroller 
path characteristics and patroller number affect the efficiency with which a patrol
ling network explores a region. Second, we consider how patroller path character
istics and patroller number determine the rate and spatial pattern of information 
spread through a network connected by local contacts. In part, this extends work 
on the question of how an individual forager should move in order to search most 
effectively (Pyke 1978a, 1978b; Zimmerman 1979; Bovet 1981; Hoffman 1983; 
Dusenberry 1989; Stillman and Sutherland 1990) and more generally how a group 
of foragers might behave in order to search effectively as an ensemble (Cody 
1971; Harkness and Maroudas 1985; Wehner 1987).

The general context of this work is the integration of simple individual behavior 
into more complex colony-level behavior. In biological systems, such integration 
must take place through some sort of information exchange. Two modes of ex
change have received attention in the literature. In the first, exchange takes place 
directly between individuals only at a single central location, such as the nest 
(Pasteels et al. 1987; Goss and Deneubourg 1989; Beckers et al. 1990; Seeley et al. 
1991). In these models, monitoring the status of individuals, such as the food 
source they use, does not require continuously tracking locations. In the second, 
information exchange takes place indirectly through modification of the environ
ment, either through trails (Pasteels et al. 1987; Deneubourg et al. 1989; Goss 
and Deneubourg 1989; Beckers et al. 1990) or through nest characteristics (Ca- 
mazine et al. 1990). Trail models are analogous to central place exchange models 
when the trails radiate from a single source at the nest. Beckers et al. (1990) 
used a common framework to compare these two modes of information ex
change. Through simulation, Deneubourg et al. (1989) described the complex 
two-dimensional patterns that can be generated by a moving column of trail- 
producing army ants, and Camazine et al. (1990) demonstrated that the pattern 
of eggs, larvae, and honey in a comb can be generated simply by response of 
individuals to local conditions. We know of only one model (Frehland et al. 1985) 
that treats the problem of information dissemination through space. This model 
describes a system wherein alarm spreads through a network of sentries that 
remain stationary until they are alarmed.

Most previous models have been concerned with the effectiveness of discrete 
episodes of searching or the propagation of a single alarm. Our model is con
cerned with the more general problem of maintaining a stable network consisting 
of moving individuals that provide continuous information about a large region.

THE MODEL

Our model simulates two tasks undertaken by networks of patrolling ants: 
discovery of events (such as the appearance of food or danger) and dissemination 
of information. We do not here attempt to optimize behavior with respect to a 
particular fitness criterion with constraints (Johnson et al. 1987; Goss et al. 1989) 
but rather to study how the completion of particular tasks depends on the parame-
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TABLE 1 

P a r a m e t e r s

Parameter Description Values Used

n Number of ants 1, 30, 60, 100
r Step length 1
cr Standard deviation of turning angle .5, 1, 2, 4
do Radius of territory 25
w Perceptual radius 1.5

Mean event persistence time 50
m Number of events 10
p Reencounter avoidance parameter 0, 1

ters of the model. As in much foraging theory, we can then optimize the efficiency 
of single tasks in isolation, ignoring the fact that a strategy optimal for one task 
may be very inefficient for another.

Table 1 and figure 1 give a summary of the model parameters and model struc
ture described below. The network consists of n identical ants, each executing a 
correlated random walk (Kareiva and Shigesada 1983), a sequence of steps with 
fixed step length r and with direction chosen from a linear normal distribution 
wrapped around the circle, with mean equal to the direction of the previous step 
and standard deviation o\ A larger mean square turning angle produces a path 
with sharper turns, and, if a  is greater than about 5, one has essentially a random 
walk with no correlation. See figure 1 for illustration of random walks with differ
ent values of cr. The normal formulation of the random walk can be justified as 
a sum over several steps of a more complicated random walk (Bovet and Benha- 
mou 1988). We assume that ants’ patrolling trajectories are not affected by chemi
cal cues in the substrate. The ants remain in a circular region of radius dQ cen
tered at the nest and are constrained by a soft reflecting boundary region in which 
step directions are biased more and more toward the nest as ants move farther 
from it.

The existence of a reflecting boundary has two important implications that 
distinguish our model from previous models. First, some optimization models 
(Bovet 1981; Frehland et al. 1985; Harkness and Maroudas 1985) have shown 
that a high turning angle is necessary to keep ants from wandering far from the 
nest in the absence of a territorial boundary. Second, a reflecting boundary leads 
to roughly uniform coverage of the region by information-gathering ants, in con
trast to the decreasing coverage with distance from the nest found in models 
without a reflecting boundary (Frehland et al. 1985; Harkness and Maroudas 
1985; Goss et al. 1989). In another contrast with a previous model (Harkness and 
Maroudas 1985), our patrolling ants do not specialize in particular sectors. This 
is a consequence of the fact that we have assumed no memory in our ants, al
though this factor has been shown to have potentially important implications for 
ant foraging (Goss et al. 1989).

In our model patrollers interact with each other only through encounters, which 
occur when two ants move within a perceptual radius w of each other. We thus
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Fig. 1.— Overview of the model. The lines represent the paths of four ants, with turns 
taking place after steps of length r. The turning angle 0 is drawn from a linear normal 
distribution of mean 0 and standard deviation a  wrapped around the circle. Small solid 
squares represent events that have been discovered, and the shaded area shows the area 
explored by a single ant during a single time step. The small open circle shows an encounter 
between two ants. The circle at distance d 0 from the nest is the boundary of the region, and 
ants begin to return toward the nest when they cross this boundary into the speckled area 
(the soft reflecting boundary), as illustrated by the ant in the lower right. Representative 
paths (ca. 15 steps long) of ants with four values of cr, the standard deviation of the turning 
angle, are also shown.

ignore long-range communication through pheromones. An encounter lasts a sin
gle time step, and the ants then depart with mean directions modified by the 
reencounter avoidance parameter, (3, where (3 = 0 allows each ant to leave the 
encounter with mean direction unaltered by encounter, and p = 1 forces the 
two ants to leave the encounter with diametrically opposite mean directions. 
Intermediate values of (3, not used in this article, can be used to interpolate 
between these two cases.

Empirical tests of the model require measurement of these parameters, which 
break into the two categories: parameters describing individuals and parameters 
describing the colony as a whole. Individual parameters include the step length, 
r; the standard deviation of turning angle, a; and the perceptual radius, w. Some 
of these have been measured for some ant species in studies of the spatial behav
ior of individual foragers (Harkness and Maroudas 1985; Leonard and Herbers 
1986), or of encounter rates among foragers and patrollers (Gordon et al. 1992). 
For example, Gordon et al. (1992) show that the perceptual radius for Lasius
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fuliginosus is roughly 1.2 cm. Jutsun (1979) shows that the intraspecific perceptual 
radius of Atta cephalotes is roughly 0.8 cm, although these ants could detect 
Acromyrmex octospinosus at a larger distance of 1.5 cm. As for the colony-level 
parameters, the number of patrollers, n, could be estimated simply by counting, 
and the foraging range, d0, and the contact avoidance parameter, (3, could be 
estimated by observation.

The efficiency with which the network explores the region is studied through 
the following process. An ant discovers an “ event,” which can be thought of as 
a food item or a hint of danger, when it comes within the perceptual radius, w, 
of it. Upon discovery of an event, an ant departs with mean direction identical 
to direction of arrival (cf. Pyke 1978b). There are m events scattered randomly 
throughout the region that are immediately replaced at random upon discovery. 
Events also disappear for other reasons (to model processes such as removal by 
other species) with constant probability 1/jjl on each time step, leading to a mean 
residence time of jjl for events not discovered by ants. We define the efficiency 
of ants at discovering events to be the fraction of events that are discovered by 
ants over the course of a long run and measure efficiency for a range of param
eter values, focusing on the effects of turning angle and network size. For a 
given regime of event production and disappearance, this measure is equivalent 
to the standard rate of event discovery used in foraging theory (Stephens and 
Krebs 1986).

The spread of information through the network is studied as follows. A single 
ant is “ informed” of or discovers some unspecified piece of information. We do 
not consider the consequences of a change in the behavior of an ant once it 
becomes informed, but this would not be difficult to add to the model. When an 
informed ant encounters another ant, it informs the other ant, which can in turn 
inform other ants. Two measures of information spread are followed over time: 
the fraction of ants informed (which increases monotonically to 1 because ants 
never forget in this model), and some measure of the area covered by informed 
ants. The two measures of information spread allow us to check whether there 
is a trade-off between rapid spread of information measured as the number of ants 
informed, and coherent spread measured by the concentration of ants informed in 
the neighborhood of the original information.

A N A LY TIC  A PPROXIM ATIONS 

Nonspatial Models

We derive several approximations of the processes of event discovery and 
information spread, to be compared later with simulation results. The approxima
tions in this section ignore the spatial aspects of the process, with refinements in 
the subsequent section incorporating aspects of spatiality. Table 2 lists and de
scribes the variables used in these approximations.

Null model o f  event discovery.—All approximations depend on various ver
sions of a parameter X., which represents the fraction of the region newly explored 
by a single ant during a single time step. This parameter then gives the probability
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TABLE 2 

V a r i a b l e s

Variable Description Equati

i j Indices for ants
^0 Maximum fraction of total area explored in one time step (1)
4>„ Expected fraction of events discovered by n ants ignoring effects of

turning angle (3)
4>n Approximate cj>„ (4)
T, Mean residence time of event in presence of n ants (7)
lit) Nonspatial approximate number of informed ants (8)
\ Corrected fraction of total area explored in one time step 

Expected fraction of events discovered by n ants including effects of
(11)

turning angle (12)
lit) Spatial approximate number of informed ants (16)
S(t) Spatial approximate number of uninformed ants (16)
A,(t) Area taken up by informed ants (16)

that an ant discovers a particular event during a particular time step. The simplest 
approximation, denoted \ 0, is the ratio of new area explored by an ant over the 
course of a single time step, 2wr, to the total area, ire^, or

Trdz0

This ignores the fact that ants that do not walk in straight lines lose efficiency 
both by searching the same area twice on consecutive time steps and by turning 
around and searching the same area multiple times after longer delays (Cody 
1971; Pyke 1978a; Dusenberry 1989). Therefore \ 0 is an upper bound on the frac
tion of region effectively explored during a single time step. This model has been 
termed “ random search” to contrast with “ systematic search” (Dusenberry 1989).

Using \ 0, we can estimate the probability that an event is discovered by ants 
before it disappears because of other causes. Defining qn to be the probability 
that at least one of n ants finds a particular event on a particular time step, we 
then have, because ants act in parallel during the course of a single time step,

qn = 1 -  (1 -  <?,)" , (2)

where q x = \ 0 (Oster and Wilson 1978). Let p = l/|x be the probability of 
spontaneous disappearance per time step and <}>„ be the probability that the event 
is first found by one of the ants. Because of our assumptions of independence of 
discovery and disappearance, 4>„ is the ratio of the probability that ants find the 
event on a given time step to the probability that the event is found or disappears 
on that time step. The probability that an event is found or disappears on a given 
time step is 1 -  (1 -  p)(l -  qn), so
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In the case where « \ 0 is small, we have

= n \ 0,

in which case we can approximate 4>„ by <{>„ as follows:

(4)

Noting that

we can compute 4>„ in terms of 4>, as follows:

This equation describes how efficiency scales with the number of ants, and it 
is interesting to compare it with the expression for ants acting in parallel described 
by Oster and Wilson (1978). Given that a single ant has probability of success p,, 
n ants acting in parallel have probability of success p„ given by

If p] = 4>i, p„ increases to 1 as n increases much more rapidly than does <f>„. 
This diminished rate of increase in efficiency with increasing group size is not a 
consequence of the fact that events last multiple time steps, because one has 
exactly the form of equation (6) when the event lasts a fixed number of time 
steps. It is rather a consequence of the random disappearance of events due to 
other agents, and we thus term the scaling given in equation (5) the “ random 
event disappearance” rule to distinguish it from the scaling given in equation (6), 
which we term the “ constant event duration” rule. The difference between these 
two rules is due to the different way events interact with the environment, not 
to a different way that ants interact with the events or each other. The lower 
efficiency of ants experiencing the random event disappearance rule is thus not 
a consequence of interference or lack of cooperation among the ants. See Appen
dix A for further discussion of this issue.

We can also compute the expected residence time of an event in the presence 
of ants. Because the probability of event disappearance per time step is just p + 
qn ~ PQn’ independent of the age of the event, the expected residence time will 
be the reciprocal of this. When both p  and qn are assumed to be small as above, 
this residence time, T„, in the presence of n ants can be computed in terms of jjl 
and <|v

Thus residence time is proportional to the fraction of events not discovered 
by ants.

Null model o f  information spread .—Using \ 0 as the approximate probability 
that a particular ant encounters another particular ant on a given time step, we

P„ =  1 -  (1 -  P i ) " - (6)

T„ = p,(l -  4>„). (7)
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can find an approximation to the number of ants informed as a function of time. 
Letting /(f) represent the number of ants informed on time step t, we then have

E{I(t + 1)) = /(/) + k0I(t)(n -  /(/)),

where E represents the expected value. The second term represents the expected 
number of ants informed during a time step and is the product of the number of 
pairs of ants that have exactly one informed member with the probability \ 0 that 
they encounter. Such systems are considered in detail by Bailey (1975) for models 
of epidemics. For the accuracy needed here it is sufficient to make two approxi
mations: the first being to ignore the probabilistic elements of information spread, 
which is reasonable as long as neither I(t) nor n -  I(t) is too small, and the 
second being to ignore the effects of discrete time steps, which is reasonable as 
long as the expected number of ants informed during a single time step is fairly 
small. Denoting the approximate version of I{t) by I(t) we have

^  =  \ J ( t ) ( n  -  m  . ( 8 )

With the initial conditions that / 0 ants are informed at time 0, this logistic 
equation is easily solved, and predicted trajectories can be compared with simu
lated trajectories. When this equation is expressed in terms of the fraction of ants 
informed, denoted by i(t), we obtain the equation

^  = r t \0f(O(l -  fW), (9)

from which we can see that speed of information spread increases linearly with 
the number of ants. The solution of this equation is presented in Appendix B, 
wherein it is also noted that the efficiency of the network at informing a partic
ular ant in a given length of time satisfies the scaling property described in Ap
pendix A.

Spatial Models
We here describe models that take into account the fact that ants do not hop 

randomly around the region but tend instead to remain in the same area. This has 
the consequence of reducing efficiency because of multiple searches of the same 
area (Cody 1971; Pyke 1978a; Dusenberry 1989). In addition, the speed at which 
information spreads through the colony is reduced because of the fact that in
formed ants will tend to be spatially clumped and thus more likely to encounter 
each other than uninformed ants. Since encounters between ants that are already 
informed have no effect on the spread of information, these encounters are 
“ wasted,” producing the reduced speed of information spread.

Spatial model o f  event discovery.—In this section we show how the shape of 
the ants’ paths alters the efficiency of ants in discovering events because of 
self-intersection of the path. This self-intersection can be incorporated as a de
crease in \ 0, because we are interested only in the new area searched by each 
ant on a time step. This modified A. takes into account two effects of turning
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F i g .  2 . — The expected fraction of the area searched by an ant on a given time step that is 
searched again on the subsequent step. Ants moving in straight lines (<r = 0) have no such 
overlap, whereas ants moving randomly have an expected overlap of ca. 20% of the area for 
standard values of the parameters.

angle: search of the same region on two consecutive steps due to a sharp turn 
and search of the same region after a delay of several steps.

The first effect, which proves to be fairly unimportant for the parameters we 
use, can be corrected for by finding the expected overlap of two consecutive 
steps as a function of ct. This can be done through a rather messy geometric 
calculation or through simulation. Figure 2 shows the calculated percentage of 
overlap as a function of ct over the reasonable range. Subtracting the area of 
overlap from the maximum territory explored, 2wr, gives a, the reduced area 
explored per step.

Estimating the extent of multiple searches of the same region after delays of 
more than a single time step requires computation of a diffusion coefficient for 
each ant. Kareiva and Shigesada (1983) give a formula for the diffusion coefficient 
associated with a correlated random walk, and this can be evaluated for the case 
of normally distributed turning angles to give the diffusion coefficient, D a, as a 
function of ct:

The expected squared distance moved by an ant in k steps, M 2k, is then given, for 
sufficiently large k, by

Decreased efficiency with high ct, and thus small D a, occurs because only a 
small region will be explored in k steps, making repeated investigations of the

(10)

E(Ml)  = 4 D ak.
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same locations unavoidable. In particular, because the expected squared distance 
traveled by an ant in k steps is 4D ak, search will remain concentrated inside a 
circle of area 4ttD ak. We take into account the directionality of the paths by 
assuming that search remains concentrated in a smaller circle of half the radius 
of the full circle centered halfway from the center to the edge, in the direction of 
the first step. The area of this smaller circle is 'nDuk. The fraction of this area 
actually explored by the ant can be approximated by pretending that the ant hops 
around randomly within this smaller region. The probability that a particular 
point is covered at least once is just the probability of success by at least one of 
k independent attempts, each of which has probability of success of alnD^k,  
which is

Therefore the total area explored is TtDak(l -  e a/7rflt’) and the fraction of the 
total area explored per step is

Note that as ct —> 0 we have that D a —» and a 2wr, which can be shown to 
imply that A. —*■ \ 0 (see eq. [1]). Thus straight paths, which never intersect them
selves, produce a maximally efficient search.

Dusenberry (1989) summarizes a different approach, which focuses on comput
ing expected times to capture of events. He considers only the case of a random 
walk without correlations, with diffusion coefficient D, and arrives at a result 
equivalent to

Note that this form, although qualitatively similar to equation (11), fails to have 
the correct limit as D —* because his method of approximation is appropriate 
only for uncorrelated random walks in large territories. The accuracy and range of 
applicability of these two methods of approximation warrant further investigation.

We can substitute X for \ 0 in equation (4) to give 4»„, the corrected approximate 
fraction of events discovered, as a function of number of ants and event persis
tence as

As in equation (5), we have that if»„ satisfies the competitive scaling rule, or 
that

k

k = t tDa{ 1 -  e - ^ ’VTtdl. (11)

,  _  2tt D  1
d1 3d° l n id0/w) -  ±

i — v|> j +

Figure 3 compares with the results of simulation over a range of ct.
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Fig. 3.— Comparison of simulated fraction of events found by a single ant (squares) with 
the theoretical prediction 4>„ (solid line) given in eq. (12). Events here have long mean 
persistence times of 500 time steps (fx = 500) to eliminate the bias created by evanescent 
events.

Spatial model o f  information spread.—We here present an approximation of 
the process of information spread through our network of ants. There is an exten
sive mathematical literature on the spread of epidemics, which are formally identi
cal to the spread of information through direct contact. The method of approxima
tion presented here differs from direct attack on partial differential equations 
(Diekmann 1978) or the contact process (Mollison 1977). Our method is designed 
to give estimates of the number and spatial distribution of ants informed through
out the dynamics.

Let /  represent the number of informed ants in this approximation, and S = 
n -  /  represent the number of uninformed (“ susceptible” ) ants. Let k,I  be the 
probability that an informed ant meets another informed ant during a particular 
time step, and XISS be the probability that an informed ant meets some unin
formed ant during a particular time step. The variables X; and XIS will depend on 
the number and locations of the informed and uninformed ants and will vary with 
time. If the informed ants are clumped, we expect X, to be larger than X. Arguing 
as in Null model o f  information spread, we have

which can be compared with equation (8).
The probability that an ant encounters another ant on a given time step is 

approximately (n -  1)X because X is the fraction of area explored by an ant on 
a given time step. This is not exact because both ants are moving, but it is a 
good approximation because the directions of movement of the two ants are

(13)



NETWORKS OF PATROLLING ANTS 385

independent. Assuming that the average rate at which informed ants meet all 
other ants (i.e., the sum of the rates at which they meet informed ants and 
uninformed ants) is equal to the average rate at which any ant encounters other 
ants, we get

(n -  1)\ = ( / -  1 )\, + SXIs.

Solving for \ /5 and substituting into equation (13) gives

f t = n(n ~ 1)* -  ( / -  D M -

Note that if \ 7 = X we reobtain equation (8) exactly.
To estimate \ 7, we define the “ area” covered by the informed ants to be the 

mean square distance between pairs of informed ants and denote this by Aj(t). 
The expected mean square distance between an arbitrary pair of ants is well 
approximated in practice by A,., the mean square distance between two randomly 
chosen points in a disk of radius d0 as long as the ants are roughly uniformly 
distributed throughout the region. It is not difficult to compute that A,. = dl.  We 
can then approximate the increased encounter rate of informed ants with other 
informed ants due to clumping by

(14)

because encounter rates are inversely proportional to area covered.
We also need an equation describing the dynamics of A t. The expected squared 

distance between two ants, like the squared distance moved by a single ant, 
increases linearly with time, but at a higher rate. Letting R k denote the distance 
between two ants after k steps, we have

E{R\) = {4Da + 4Dx)k.  (15)

The term 4D ak gives the expected squared distance moved by the first ant, and 
the term 4D.J._k, with diffusion coefficient equal to that of an uncorrelated random 
walk, gives the expected squared distance moved by the second ant relative to the 
first. The diffusion coefficient associated with the latter is that of an uncorrelated 
random walk because the paths of the two ants are uncorrelated with each other.

We can then approximate A I on time step k by

A-i = A l0 + (4 D a + 4 D x)k,

where A/0 gives the initial area. Although this equation was derived for a fixed 
number of ants, it adequately models spatial spread when new ants are being 
informed, because newly informed ants are distributed more or less randomly 
with respect to all ants except the one that informed them and thus have mean 
squared distance from informed ants only slightly reduced from the average.

Because of the reflecting boundary, of course, the spread will not continue 
indefinitely, and we thus must put an upper bound of A,, on A t. Substituting this 
into equation (8) gives the following pair of differential equations as an approxima
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tion for the spread of information and area informed:

and (16)

clA
dt

Appendix C gives the solution of this system of differential equations, demon
strating that the fraction of informed ants is approximately equal to the fraction 
of the total area informed.

This approach could be extended to model the spread of alarm through a net
work of ants, a process that differs from the spread of information only in that 
alarmed ants may alter their behavior as described by the parameters of r and cr.

The null models and spatial models make predictions about the efficiency of 
the network at discovering events and spreading information. We here give simu
lation results and compare them with the results of the theoretical models. All 
simulations were replicated 10 times, with fairly small variability among them.

We did not treat the reencounter avoidance parameter (3 analytically. However, 
as in the foraging model of Harkness and Maroudas (1985), this parameter turns 
out to have a negligible effect on the simulations, with simulations not only failing 
to show statistically significant differences between runs with 3 = 0 and 3 = 1 ,  
but failing to show differences at all. The reasons for this weak dependence on 
the avoidance parameter are unclear, but we presume it to be a consequence of 
the relative infrequency with which ants encounter each other. We have thus set
3 to be 0 (no avoidance) in the simulations discussed in the remainder of this 
article. The other parameter defaults are shown in table 1: we use r = 1, w = 
1.5, d0 =  25, |jl =  50, and m = 10 for the remainder of the article.

In this section we illustrate three major results regarding event discovery: first, 
greater efficiency with more ants; second, lower efficiency with a higher turning 
angle; and third, reduction in cost of a high turning angle in large networks of 
ants. Simulation results are compared with three approximations. The first is the 
theoretically derived estimate of the fraction of events discovered, and the 
second two are suitably calibrated versions of the random event disappearance 
rule, equation (5), and the constant event duration rule, equation (6). Calibration 
is achieved by setting the efficiencies of a single ant, <f>, and p!5 to the efficiency 
measured in the simulations.

The first result, increased efficiency of larger colonies, is illustrated in figure 4 
for a network of ants with a low ct of 0.5. Measured efficiency is very close to 
the scaling associated with the random event disappearance rule (eq. [5]) but is

RESU LTS

Event-Discovery Efficiency
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n
Fig. 4 .— Efficiency as a function o f netw ork size for the low value of 0.5 for cr. Lines 

com pare the mean of 10 simulations (solid circles), the theoretical approxim ation (solid 
squares, dotted line), the results o f the constant event disappearance rule (open squares), 
and the results o f the constant event duration rule (open circles). In the last two, the success 
of a single ant is set equal to m easured success.

much lower than the calibrated version of the constant event duration rule (eq. 
[6]) and is well approximated by i|i„. Note that the curve is concave down, indicat
ing that, although total efficiency increases with more ants, the per-ant efficiency 
decreases with more ants, and that the colony fairly rapidly reaches the point of 
diminishing returns.

The second result, decreased efficiency with higher turning angle, is illustrated 
in figure 5 for networks of four different sizes. Note that each of the four curves 
decreases as cr increases, indicating diminished efficiency. Under our model of 
event production, high turning angle, which might seem to be a good idea because 
ants search a given area more thoroughly, always decreases efficiency. This result 
differs from that of Bovet (1981), who finds an intermediate optimum value of cr 
in a case with no territorial boundary and where individual searchers must return 
to the nest after each find, because of the trade-off between searching efficiently 
and remaining close to the nest. Simulations of foraging on a grid (Cody 1971; 
Pyke 1978a) have found an intermediate optimum level of turning in a square 
territory. Pyke (1978a) demonstrated that this is a consequence of the boundary 
effects, showing that nonreflecting boundaries and larger territories lead to a 
straighter optimal path, with a perfectly straight path being optimal in an infinite 
territory. Zimmerman (1979) found that random movement is optimal for organ
isms foraging on large patches that cannot be appreciably depleted in a single 
visit. Similarly, uncorrelated movement has no cost in systems where patches 
regenerate quickly (Cody 1971; Stillman and Sutherland 1990).

A close examination of figure 5 indicates our third result, the reduced effect of
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Fraction 
of events 

found

Fig. 5.— Simulated efficiency of netw orks o f four different sizes for a range of values of 
cr. N ote that efficiency alway decreases as ct increases, with the largest relative decrease 
occurring for small n.

Fraction 
of events 

found

Fig. 6.—A, The results of simulation of the event-discovery process for four values of cr 
as a function of n: solid squares, ct = 0.5; open squares, cr = 1; solid circles, ct = 2; and 
open circles, ct = 4. Note that the difference in efficiency caused by a higher turning angle 
decreases as n increases. B, The theoretical approximation for the same parameters fails to 
capture this phenomenon. See text for explanation of this discrepancy.

high turning angle on large networks. The result can be seen in this figure as a 
reduction, when n is large, in the relative difference between efficiency for high 
and low values of ct. Figure 6A  illustrates this result in a different way by plotting 
the fraction of events found in simulations for various values of ct. Here, the 
diminished effect of a high turning angle on large networks shows up as conver
gence of the curves for large n. Figure 6B, which plots the theoretically predicted
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n
F ig . 7 .— Efficiency as a function of netw ork size for the high value o f 4 for cr. The notation 

is the same as in fig. 4.

fraction of events discovered, for the same values of cr, shows no such conver
gence for large n. The reason that a large turning angle produces a relatively 
smaller decrease in efficiency in large colonies than in small ones can be under
stood as follows. A large portion of the theoretically estimated decreased effi
ciency associated with high turning angle (see eq. [11]) is a consequence of multi
ple investigations of the same area several or many time steps apart. However, 
repeated investigations that take place many time steps apart will produce no 
reduced efficiency if the average residence time of events is short, because the 
information gathered on a previous visit rapidly becomes obsolete. Equation (7) 
shows that residence time of events decreases as the probability of discovery by 
ants increases, and we saw above that the probability of event discovery increases 
as the number of ants increase. Hence, as the number of ants increases, the 
effective self-interference of each ant decreases as a consequence of the shorter 
residence time of events. This is similar to the fact that an uncorrelated walk is 
close to optimal for organisms foraging in patches that quickly regenerate (Cody 
1971; Stillman and Sutherland 1990).

How effective this process is can be seen in figure 7 (for ct = 4), which should 
be compared with figure 4 (for ct = 0.5). Both figures show how the fraction of 
events actually found in simulations compares with the theoretical prediction and 
with the random event disappearance and constant event duration rules. In figure 
7, the fraction actually discovered lies almost exactly between the random event 
disappearance rule and the constant event duration rule when both n and cr are 
large, with the theoretical approximation, which ignores the effects of residence 
time, lagging behind. Large colonies can thus patrol efficiently even when individ
ual patrollers follow apparently inefficient paths. Thus, if there are benefits to a
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F ig .  8 .—Trajectories showing the fraction of ants informed as a function of time for three 
network sizes. Note that large networks are more efficient than small networks.

large turning angle, such as the maintenance of information in the neighborhood 
where it was first gathered, large colonies need not sacrifice efficiency of event 
discovery to gain these other advantages.

The two basic effects noted for event discovery, increased efficiency with more 
ants and decreased efficiency for higher turning angle, also hold for efficiency of 
information spread. Here, efficiency is defined as the fraction of ants informed a 
certain amount of time after the first ant is informed. Figure 8 shows the fraction 
of ants informed as a function of time for various values of n for the low value 
0.5 for cr.

Figure 9A shows the simulated fraction of ants informed as a function of time 
in a network of 100 patrollers for various values of ct and compares these with 
the solution of equations (16) to assess the quality of the approximation. The 
approximation captures qualitatively the significant effect high turning angle has 
in slowing down the process, here by as much as a factor of three. However, just 
as with event discovery, the approximation consistently overestimates the effect 
of large turning angle. Note that the fraction of ants informed increases approxi
mately linearly rather than logistically as a function of time.

Figure 9B compares plots of the fraction of area informed as a function of time 
as found in simulations with the solution of the approximate equations (16), again 
giving fairly good agreement. Recall that the “ area informed” is defined as the 
mean squared distance between informed ants and has a maxmum of d}y The 
fraction informed is just the area informed divided by this maximum. Note that 
area informed increases linearly as a function of time. This implies that, if we 
plot the fraction of ants informed as a function of the area informed, the graph

Information Spread
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T im e

B

Tim e

Fig. 9.—A, Trajectories of the fraction of ants informed; B, trajectories of the fraction of 
area informed as functions of time for a network of 100 ants and four values of cr: solid 
squares, a  = 0.5; open squares, cr = 1; solid circles, cr = 2; and open circles, a  = 4. Solid 
lines show the mean times from 10 simulations, and dotted tines show the results of eqq.
(16) with initial conditions matched to those generated by simulations.

will again be close to linear, as shown in figure 10. In fact, it is shown in Appendix 
C that the fraction of area informed approximates the fraction of ants informed 
more or less independently of cr. This means that, when half the area is informed, 
roughly half the ants will be informed no matter what the value of ct is. The 
process of information spread then differs for different cr only insofar as the time 
until half the area is informed differs, with higher turning angle slowing the pro
cess down. Put another way, the process of information spread depends on a  
only in rate and not in qualitative dynamics. Intuitively, it might seem that a 
higher turning angle would be effective in maintaining information near the loca-
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Fig . 10.—Trajectories plotting the fraction of ants informed against the fraction of area 
informed for a network of 100 ants and four values of cr. Symbols are the same as in fig. 9.
The dotted line has slope 1, representing equality of the fraction of ants informed with the 
fraction of area informed. The trajectories begin in the lower left with a few ants informed 
in a small area and proceed upward to the right, nearly parallel to the dotted line (see App.
C). Note that the large differences among curves for different values of a  have disappeared.

tion of its discovery and in informing all ants near that location. Our simulations 
show that this is not the case; a higher turning angle is not more effective in 
informing only those ants near the location where information was first discov
ered. Whether ants that alter behavior on being informed can achieve such infor
mation localization remains to be investigated.

This article provides a basic model of the potential consequences of information 
transfer through networks of patrolling ants, focusing on the efficiency with which 
such a network gathers and disseminates information. We give approximations 
of the efficiency of these processes that take into account their inherently spatial 
nature. The results lead to some general predictions. We first consider how effi
ciently an ant colony discovers events occurring randomly in space and disap
pearing randomly in time. We show that more ants find more such events, but 
that the efficiency of networks increases more slowly with network size than it 
would if events had constant duration. Path shape also influences the efficiency 
of a patrolling network. The rate at which events in the environment are discov
ered is diminished by a higher turning angle (more wiggly patrolling paths), be
cause such paths increase the extent of multiple searches of given locations. We 
present an analytic approximation of this diminished efficiency, which takes into

DISCUSSION
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account different degrees of directionality. Diminished efficiency proves to be 
less important in large networks because larger networks discover events more 
quickly and produce more rapid turnover, which reduces the cost of multiple 
searches of the same region.

Results for information spread are similar to those for event discovery. We 
show that the spread of information takes place more quickly in larger colonies 
and is impeded by increased turning angle. Although high turning angle slows 
information spread overall, it might seem intuitively likely that information 
spreads more efficiently locally, near the location of the discovery. Our simula
tions show that this is not the case. Instead, when some given fraction of ants 
has been informed, which takes longer with a higher turning angle, the number 
of informed ants near the discovered event is independent of the turning angle.

If future empirical observations indicate that the assumptions underlying this 
model are correct, our results regarding the effects of turning angle and number 
of ants on patrolling efficiency raise intriguing questions about the ecology of 
patrolling behavior. A first step will be to examine variation among colonies 
within species, to establish the extent to which both individual path shapes and 
colonywide patroller behavior are species specific. The next step will be to con
sider species differences in patrolling behavior. Constraints on patroller number 
are to some extent species specific, because overall colony size varies greatly 
among species. In addition, patroller number depends on environmental condi
tions, because colonies can produce more workers when food is abundant. The 
model predicts that patrollers will adopt straighter paths when patroller numbers 
are limited. This prediction invites interspecific comparisons. It could also be 
investigated intraspecifically, through experimental manipulation of food avail
ability or of a colony’s ability to produce patrollers. A recent study of Lasius 
fuliginosus shows that workers actively regulate the rate at which encounters 
occur, keeping contact rates high when numbers of workers per unit area are 
low, and avoiding contact when densities are high (Gordon et al. 1992). The 
spatial characteristics of this behavior remain to be investigated.

The model and method of analytical approximation presented here could be 
extended in several ways. The behavior of informed ants could be modified in 
step length (speed) and turning angle. For example, ants of many species increase 
both turning angle and velocity when alarmed. Changes in the behavior of in
formed ants could work either to keep information near the source or to disperse 
it rapidly throughout a larger region. The latter might serve to mobilize the entire 
colony rapidly about danger, while the former might be effective against a weak 
enemy or as a response to clumped food resources through a sort of area- 
restricted search. Preliminary simulations indicate that efficiency of patroller dis
covery of clumped events can be highly enhanced if patrollers increase turning 
angle in response to both event discovery and encounters with patrollers already 
exhibiting the higher turning angle.

The model could also be extended to include a measure of colony fitness. Such 
optimization models have been applied to various aspects of social insect behav
ior (Oster and Wilson 1978; Taylor 1978; Harkness and Maroudas 1985; Johnson
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et al. 1987; Goss et al. 1989). To extend the present model in this way, it would 
be necessary to include details on the mode of forager recruitment and the size 
of food resources, as emphasized in Goss et al. (1989). In addition, the costs of 
failing to acquire or spread information must be put into the currency of colony 
fitness. Finally, the constraints on the number of ants available for the tasks of 
foraging and patrolling would need to be included, on the basis of the needs of 
the colony for ants to accomplish other tasks.

The combination of information retrieval and spread by groups of organisms 
makes this model suitable for general studies of group foraging. Several authors 
have considered the benefits of division of labor and the costs of interference 
associated with group foraging (Cody 1971; Levin et al. 1977; Pulliam and Caraco 
1984; Clark and Mangel 1986), whereas others have looked at efficient means by 
which information can be spread through groups without centralized control 
(Brown 1988; Wilson and Holldobler 1988; Seeley 1989). Our model gives a simple 
framework to attack these two problems simultaneously, although we ignore 
problems regarding conflicts of interest among individual ants, a problem impor
tant in group formation in other species (Pulliam and Caraco 1984; Clark and 
Mangel 1986). One possible test problem is consideration of how much more 
rapidly and accurately a communicating network can respond to changes in the 
environment than can an individual forager. Another such problem, mentioned 
above, is the consideration of the potential increased efficiency of networks in 
discovering and exploiting patchily distributed food through enhanced area- 
restricted search.

Our model features three innovations. First, we extend estimates of the effi
ciency of individual searchers to the efficiency of groups of patrollers, taking into 
account both group size and path characteristics. This model could be valuable 
for the study of a variety of group-living organisms (Pulliam and Caraco 1984). 
Second, we explicitly consider one mechanism of information spread through a 
network, focusing again on the effects of network size and individual movement 
characteristics. Our work is distinguished from earlier models (Beckers et al. 
1990; Seeley et al. 1991) in that information exchange occurs throughout the 
foraging area rather than being concentrated at a single central location. The 
consideration of space in our model could contribute to work on information 
sharing in group-living organisms (Brown 1988). Finally, we develop analytic 
approximations of the processes of information collection and spread that take 
into account the effects of path characteristics on the efficiency of exploration 
and the effects of path characteristics and nonrandom distribution of informed 
individuals on the spread of information. In particular, our analysis of the process 
of information spread through the network requires approximation of the spatial 
logistic equation, which arises in the many applications that require modeling 
decentralized contact processes in continuous space. These approximations could 
be extended to model situations more general than those considered in this article 
and give sufficient quantitative detail for consideration of a wider range of param
eters than would be possible through computer simulation alone. In addition to 
these theoretical innovations, our model raises new empirical questions about 
information transfer in encounters among patrollers.
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A P P E N D I X  A

R e c a l l  e q u a t i o n  ( 3 ) ,  t h e  e x a c t  e q u a t i o n  f o r  t h e  e x p e c t e d  f r a c t i o n  o f  e v e n t s  d i s c o v e r e d  

b y  n a n t s  i n  t h e  n u l l  m o d e l :

<!>„ =
<7„

P +  <7„ -  PQn

w h e r e  = 1  — (1  — \ 0 ) " .  A s  w i t h  <j)„, w e  c a n  f i n d  a n  e x p r e s s i o n  f o r  4>„ i n  t e r m s  o f  4>, 

t o  s t u d y  t h e  s c a l i n g  o f  e f f i c i e n c y  w i t h  n e t w o r k  s i z e .  W e  h a v e

s o  t h a t

S u b s t i t u t i o n  g i v e s

4>i =

A-n —

p +  (1 -  p)X0

p<$> i

l -  ( l  -  p )4>i

l -
<f>„

l -  (l -  pH  J

i -  ( i  -  p )

( A l )

l -  (l -  p)4»,_
I t  i s  i n t e r e s t i n g  t o  n o t e  t h a t  a s  p —» 1 w e  o b t a i n

4>„ = l -  (l -  <(>,)",
w h i c h  i s  t h e  p a r a l l e l  e f f i c i e n c y  o f  s c a l i n g  f a m i l i a r  f r o m  O s t e r  a n d  W i l s o n  ( 1 9 7 8 ) .  F u r t h e r 

m o r e ,  a s  p —» 0  o n e  o b t a i n s  e q u a t i o n  ( 5 ) .

W e  n o w  f i n d  a  g e n e r a l  e x p r e s s i o n  t h a t  d e s c r i b e s  h o w  <j)„ s c a l e s  a s  a  f u n c t i o n  o f  n w h e n  

t h e  a n t s  d o  n o t  c o o p e r a t e .  D e f i n e  4 > ( « ,  q) t o  b e  t h e  e f f i c i e n c y  o f  n a n t s  w h e n  o n e  a n t  h a s  

e f f i c i e n c y  q. T h i s  s h o u l d  t h e n  s a t i s f y

4>(nm, q) = $(n, q)) . ( A 2 )

T h i s  e q u a t i o n  j u s t  s a y s  t h a t  o n e  g r o u p  o f  nm a n t s  s h o u l d  b e  e x a c t l y  a s  e f f i c i e n t  a s  n g r o u p s  

o f  m a n t s .  A l l  f u n c t i o n s  m e n t i o n e d  i n  t h i s  a p p e n d i x  s a t i s f y  t h i s  s c a l i n g  e x a c t l y .

T e s t i n g  t h i s  e q u a t i o n  r e q u i r e s  t h e  a b i l i t y  t o  m o d i f y  q, t h e  e f f i c i e n c y  o f  a  s i n g l e  a n t .  I f
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w e  k n o w  t h e  v a l u e s  o f  < H « ,  <7o )  f ° r  a U n f ° r  s o m e  qQ, w e  c a n  t h e n  c o m p u t e  t h e  v a l u e  o f  

4> (m , q)  f o r  a n y  n a n d  q p r e d i c t e d  b y  e q u a t i o n  ( A 2 )  a s  f o l l o w s .  F o r  a  g i v e n  q, d e f i n e  m(q )  

a s  t h e  s o l u t i o n  o f

<t>("i(<7),<Z0) =
w h i c h  w i l l  n e c e s s a r i l y  e x i s t  i f  e f f i c i e n c y  r a n g e s  f r o m  z e r o  t o  o n e  a s  n r u n s  f r o m  z e r o  t o  

i n f i n i t y .  T h e n

4>(«, q) = <f>(n, Hm(q),  q0)) = <\>(nm(q), q0) ,
w h i c h  i s  k n o w n .  I n  t h e  a b s e n c e  o f  c o o p e r a t i o n  o r  i n t e r f e r e n c e ,  a l t e r i n g  t h e  e f f i c i e n c y  o f  

a  s i n g l e  a n t  h a s  t h e  e f f e c t  o f  s c a l i n g  t h e  h o r i z o n t a l  a x i s .  I f  w e  i n c r e a s e  q0 t o  q a n d  o b s e r v e  

t h a t

<K«, q) > ${nm(q), q0) ,
i t  s e e m s  t h a t  t h e  l a r g e r  g r o u p  o f  a n t s  d o e s  w o r s e  t h a n  i t  s h o u l d ,  i n d i c a t i n g  i n t e r f e r e n c e .  

I f  o n  t h e  o t h e r  h a n d  w e  o b s e r v e  t h a t

<|>(n, q) <  (j>(nm(q), q0) ,
i t  w o u l d  s e e m  t h a t  t h e  l a r g e r  g r o u p  o f  a n t s  d o e s  b e t t e r  t h a n  i t  s h o u l d  a n d  i s  c o o p e r a t i n g .

N o t e  t h a t  t h e  d i r e c t i o n  o f  t h e  i n e q u a l i t y ,  a n d  t h u s  t h e  d e d u c t i o n  o f  c o o p e r a t i o n  o r  

i n t e r f e r e n c e ,  m i g h t  d e p e n d  o n  t h e  m e c h a n i s m  b y  w h i c h  t h e  e f f i c i e n c y  o f  a  s i n g l e  a n t  i s  

m o d i f i e d .  F o r  e x a m p l e ,  i n  o u r  m o d e l ,  m o d i f y i n g  t h e  e f f i c i e n c y  o f  a  s i n g l e  a n t  b y  c h a n g i n g  

i t s  t u r n i n g  a n g l e  i n d i c a t e s  c o o p e r a t i o n ,  w h e r e a s  m o d i f y i n g  e f f i c i e n c y  b y  c h a n g i n g  i t s  p e r 

c e p t u a l  r a d i u s  i n d i c a t e s  n e i t h e r  c o o p e r a t i o n  n o r  i n t e r f e r e n c e .

A P P E N D I X  B

W e  h e r e  p r e s e n t  t h e  s o l u t i o n  o f  e q u a t i o n  ( 9 )  a n d  c o n s i d e r  w h e t h e r  t h e s e  s o l u t i o n s  a p p e a r  

c o o p e r a t i v e  i n  t h e  s e n s e  o f  A p p e n d i x  A .  R e c a l l  e q u a t i o n  ( 9 ) :

^  =  n \0f ( f ) ( l  -  i(t) ) ,

w i t h  t h e  i n i t i a l  c o n d i t i o n s  t h a t  a  f r a c t i o n  /0 a n t s  i s  i n f o r m e d  a t  t i m e  0 .  S e t t i n g

in
u 1 -  ; ’ 1 'o

w e  h a v e

c e"Xd'i(t) = — ^----------  ( B 1 )

1 + c0enXdl
I f  w e  f i x  a  p a r t i c u l a r  t i m e  T, w e  c a n  t h i n k  o f  i(T) a s  t h e  e f f i c i e n c y  o f  t h e  n e t w o r k  

i n f o r m i n g  a  p a r t i c u l a r  a n t .  L e t t i n g  4>i b e  i(T) f o r  n = 1 ,  w e  h a v e

Cr> P̂ dT
()>1 =

W e  c a n  t h e n  c o m p u t e  t h a t

<f>„ =

1 + c%eUT

4>i
l>i + (i -  <M"!

w h i c h  c a n  b e  e a s i l y  s h o w n  t o  s a t i s f y  e q u a t i o n  ( A 2 ) .  T h u s ,  a l t h o u g h  a  l a r g e r  n e t w o r k  

i n f o r m s  a  l a r g e r  f r a c t i o n  o f  t h e  a n t s  i n  a  g i v e n  i n t e r v a l  o f  t i m e ,  i t  d o e s  n o t  d o  s o  i n  a  w a y  

t h a t  s h o w s  c o o p e r a t i o n  a m o n g  g r o u p s .
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A P P E N D I X  C

T h i s  a p p e n d i x  g i v e s  t h e  s o l u t i o n  o f  e q u a t i o n s  ( 1 6 ) ,  w h i c h  a p p r o x i m a t e  t h e  s p r e a d  o f  

i n f o r m a t i o n  i n  s p a c e :

T h e  m e t h o d  i s  t o  s c a l e  v a r i a b l e s  t o  p r o d u c e  a  s i n g l e  e q u a t i o n  o f  s i m p l e r  f o r m  a n d  s h o w  

h o w  t h e  s o l u t i o n  o f  t h e  s i m p l i f i e d  e q u a t i o n  d e p e n d s  o n  t h e  s i n g l e  r e m a i n i n g  p a r a m e t e r .

F i r s t ,  w e  d e f i n e  t h e  v a r i a b l e s  f o r  t h e  f r a c t i o n  o f  a n t s  i n f o r m e d  a n d  t h e  f r a c t i o n  o f  a r e a  

i n f o r m e d ,  r e s p e c t i v e l y ,  b y  d e f i n i n g

W e  a s s u m e  t h a t  n i s  s u f f i c i e n t l y  l a r g e  t h a t  x c a n  b e  a p p r o x i m a t e d  b y  tin. B e c a u s e  a r e a  

c h a n g e s  l i n e a r l y  w i t h  t i m e ,  w e  c a n  u s e  a a s  t h e  i n d e p e n d e n t  v a r i a b l e  a n d  a r r i v e  a t  t h e  

e q u a t i o n

T h i s  e q u a t i o n  m a k e s  n o  r e f e r e n c e  t o  a n y  o f  t h e  p a r a m e t e r s ,  i n d i c a t i n g  t h e  i n d e p e n d e n c e  

o f  t h i s  p r o c e s s  f r o m  p a r a m e t e r s  i n  e v e r y t h i n g  b u t  r a t e .

N o t e  f r o m  e q u a t i o n  ( C 2 )  t h a t  7 w i l l  b e  o f  o r d e r  n a s  l o n g  a s  t h e  d i f f u s i o n  c o e f f i c i e n t  i s  

n o t  t o o  l a r g e .  W e  a s s u m e  f r o m  n o w  o n  t h a t  7 i s  l a r g e ,  w h i c h  i s  e q u i v a l e n t  t o  a s s u m i n g  a  

l a r g e  n e t w o r k  o f  a n t s  t h a t  c a n  b e  r e a s o n a b l y  t h o u g h t  o f  a s  d i f f u s i n g .  R e c a l l i n g  t h a t  a i s  

t h e  f r a c t i o n  o f  a r e a  c o v e r e d  a n d  h e n c e  r u n s  f r o m  s o m e  p o s i t i v e  i n i t i a l  v a l u e  o f  o r d e r  1 In 
u p  t o  1 ,  w e  h a v e  t h a t  t  r u n s  f r o m  a n  i n i t i a l  v a l u e  t 0 o f  o r d e r  1 u p  t o  t h e  l a r g e  v a l u e  o f  7 . 

E q u a t i o n  ( C 3 )  c a n  b e  s o l v e d  e x a c t l y  b y  c h a n g i n g  v a r i a b l e s  t o  u = \!y, g i v i n g  t h e  s o l u t i o n

dl
dt \ i  (n -  1) -  ^ ( / -  1) 

A*

a n d

I -  1

a n d

A

(Cl)

w h e r e  t h e  s i n g l e  p a r a m e t e r  7 i s  g i v e n  b y

XArn
(C2)4 Da + 4 D J

B y  s e t t i n g

t  =  7 a
a n d

y = yx,
w e  c a n  r e w r i t e  e q u a t i o n  ( C l )  a s

( C 3 )
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w h e r e  y0 i s  t h e  v a l u e  o f  y w h e n  t  =  t 0 . W h e n  t  i s  f a i r l y  l a r g e ,  a s  i t  w i l l  b e  w h e n  i t  

a p p r o a c h e s  i t s  l i m i t  o f  7 , t h e  i n t e g r a l  i n  t h e  d e n o m i n a t o r  c a n  b e  e x p a n d e d  a s y m p t o t i c a l l y  

( B e n d e r  a n d  O r s z a g  1 9 7 8 )  a s

' e' e‘ e‘
—  d t ~ ------ 1------ .

n t T
S u b s t i t u t i n g  t h i s  i n t o  e q u a t i o n  ( C 4 )  g i v e s

y  1 +  1 / t

o r

1x ~ a ------- .
7

T h e  f r a c t i o n  o f  a n t s  i n f o r m e d  t h u s  c o m e s  t o  a p p r o x i m a t e  t h e  a r e a  i n f o r m e d  i n d e p e n d e n t l y  

o f  t h e  p a r a m e t e r s ,  a s  s h o w n  i n  f i g u r e  1 0 .  T h e  i n c r e a s e d  e f f i c i e n c y  o f  l a r g e r  n e t w o r k s  

i l l u s t r a t e d  i n  f i g u r e  8 h o l d s  o n l y  f o r  s m a l l  n e t w o r k s ,  f o r  w h i c h  t h e  a s s u m p t i o n  o f  l a r g e  7 
i s  n o t  v a l i d .  F o r  l a r g e r  n, t h e  s o l u t i o n  i s  n e a r l y  i n d e p e n d e n t  o f  n, b e c a u s e  o f  t h e  f a c t  t h a t  

d i f f u s i o n ,  n o t  e n c o u n t e r  r a t e ,  l i m i t s  t h e  s p r e a d  o f  i n f o r m a t i o n  u n d e r  t h e s e  a s s u m p t i o n s .
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