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ABSTRACT
Intended as an introduction to the field of biomedical engineering, this book covers the topics of 
biomechanics (Part I) and bioelectricity (Part II). Each chapter emphasizes a fundamental principle 
or law, such as Darcy’s Law, Poiseuille’s Law, Hooke’s Law, Starling’s law, levers and work in the area 
of fluid, solid, and cardiovascular biomechanics. In addition, electrical laws and analysis tools are in­
troduced, including Ohm ’s Law, Kirchhoff’s Laws, Coulomb’s Law, capacitors and the fluid/electrical 
analogy. Culminating the electrical portion are chapters covering Nernst and membrane potentials 
and Fourier transforms. Examples are solved throughout the book and problems with answers are 
given at the end of each chapter. A semester-long Major Project that models the human systemic 
cardiovascular system, utilizing both a Matlab numerical simulation and an electrical analog circuit, 
ties many of the book’s concepts together.
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Preface

NOTE ON ORGANIZATION O FTH IS BOOK

The material in this book naturally divides into two parts:

1. Chapters 1-7 cover fundamental biomechanics laws, including fluid, cardiovascular, and solid 
topics (1/2 semester).

2. Chapters 8-15 cover bioelectricity concepts, including circuit analysis, cell potentials, and 
Fourier topics (1/2 semester).

A Major Project accompanies the book to provide laboratory experience. It also can be divided into 
two parts, each corresponding to the respective two parts of the book. For a full-semester course, 
both parts of the book are covered and both parts of the Major Project are combined.

The chapters in this book are support material for an introductory class in biomedical en­
gineering1 They are intended to cover basic biomechanical and bioelectrical concepts in the field 
of bioengineering. Coverage of other areas in bioengineering, such as biochemistry, biomaterials 
and genetics, is left to a companion course. The chapters in this book are organized around several 
fundamental laws and principles underlying the biomechanical and bioelectrical foundations of bio­
engineering. Each chapter generally begins with a motivational introduction, and then the relevant 
principle or law is described followed by some examples of its use. Each chapter takes about one week 
to cover in a semester-long course; homework is normally given in weekly assignments coordinated 
with the lectures.

The level of this material is aimed at first-semester university students with good high-school 
preparation in math, physics and chemistry, but with little coursework experience beyond high school. 
Therefore, the depth of explanation and sophistication of the mathematics in these chapters is, of 
necessity, limited to that appropriate for entering freshman. Calculus is not required (though it is a 
class often taken concurrently); where needed, finite-difference forms of the time- and space-varying 
functions are used. Deeper and broader coverage is expected to be given in later classes dealing with 
many of the same topics.

Matlab is used as a computational aid in some of the examples in this book. W here used, it is 
assumed that the student has had some introduction to Matlab either from another source or from 
a couple of lectures in this class. In the first half of the cardiovascular Major Project discussed below,

 ̂ A t the University of Utah, this course is entitled Bioen 1101, Fundamentals of Bioengineering I.
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Matlab is used extensively; therefore, the specific Matlab commands needed for this Major Project 
must be covered in class or in the lab if this particular part of the project is implemented.

A Major Project accompanies these chapters at the end of the booklet. The purpose of the 
Major Project, a semester-long comprehensive lab project, is to tie the various laws and principles 
together and to illustrate their application to a real-world bioengineering/physiology situation. The 
Major Project models the human systemic cardiovascular system. The first part of the problem takes 
approximately one-half of a semester to complete; it uses Matlab for computer modeling the flow 
and pressure waveforms around the systemic circulation. Finite-difference forms of the flow/pressure 
relationships for a lumped-element model are combined with conservation of flow equations, which 
are then iterated over successive cardiac cycles. The second half of the problem engages a physical 
electrical circuit to analyze the same lumped-element model and exploits the duality of fluid/electrical 
quantities to obtain similar waveforms to the first part. This Major Project covers about 80% of the 
topics from the chapter lectures; the lectures are given "just-in-time" before the usage of the concepts 
in the Major Project.

Although the Major Project included with this book deals with the cardiovascular system, 
other Major Project topics m aybe conceived and substituted instead. Examples include modeling 
human respiratory mechanics, the auditory system, human gait or balance, or action potentials in 
nerve cells. These projects could be either full- or half-semester assignments.

ACKNOWLEDGEMENTS
The overarching organizational framework of these chapters around fundamental laws and princi­
ples was conceived and encouraged by Richard Rabbitt of the Bioengineering Department at the 
University of Utah. Dr. Rabbitt also provided much of the background material and organization of 
Chapters 2 and 4. Angela Yamauchi provided the organization and concepts for Chapter 3. David 
Warren contributed to the initial organization of Chapter 8. Their input and help was vital to the 
completion of this booklet.

Douglas A. Christensen 
University of Utah 
March 2009



C H A P T E R  1

Basic s: Numbers, Units

1.1 INTRODUCTION
Welcome to biomedical engineering, a very rewarding field of study! Biomedical engineering is the 
application of engineering principles and tools for solving problems in health care and medicine. O f 
all the engineering specialties, it is arguably the most interdisciplinary, requiring the study of biology, 
physiology and organic chemistry in addition to mathematics, physics and engineering topics. This 
makes the field particularly challenging as well as engrossing. Many professionals in biomedical 
engineering have chosen this field because they strive to improve the lives of their fellow humans 
and society.

The goal of this book is to introduce you to some basic concepts of biomedical engineering 
by covering several fundamental physical laws and principles that underlie biomedical engineering. 
This book is focused on the biomechanical and bioinstrumentation (electrical) aspects of the field. 
An optional Major Project dealing with modeling the human cardiovascular system ties many of 
the book’s topics together. It is left to other texts to cover other important areas in the field, such as 
biochemical, molecular and biomaterial topics.

We start our studies with some basic concepts involving numbers and calculations.

1.2 NUMBERS AND SIGNIFICANT FIGURES
Numbers and values are the stock-in-trade of the engineering profession. Engineers are often in­
volved in various measurements (for example, a bioengineer may design a device to measure the 
level of blood glucose in a new and novel way), and one of the distinguishing features of a success­
ful engineer is that s/he strives to be quantitatively correct. This requires careful attention to the 
manipulation and display of numerical values.

An important characteristic of any numerical value is the number of digits, or significant 
figures, it contains. A significant figure is defined as any digit in the number ignoring leading zeros 
and the decimal point. For example:

821 has 3 significant figures
160.6 has 4 significant figures
160.60 has 5 significant figures
0.0310 has 3 significant figures
1.5 x 10J has 2 significant figures
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How many significant figures should you use when writing a number? A commonly accepted 
rule in specifying a number is to use as many, but not more, significant figures as can be reasonably trusted 
to be accurate in value. For example, let’s say you measure a tall classmate’s height with a meter-long 
ruler. W hich one of the following ways do you think has the appropriate number of significant 
figures to report the result of the height measurement?

a. 2.0131 m (with 5 significant figures)
b. 2.01 m (with 3 significant figures)
c. 2 m (with 1 significant figure)

Answer a is unrealistic, because itgives the impression that your classmate’s heightis measured 
with a precision or accuracy1 of one-tenth of a millimeter, or 0.0001 m— about the thickness of a 
human hair, which is obviously not justified2 since it depends upon the posture of the classmate at 
the time of the measurement, how much his hair was pushed down, how well the ruler was aligned 
with his spine, etc. Besides, it’s impossible to read a meter ruler to this fine an increment anyway.

Answer c is also unreasonable for the opposite reason: it doesn’t convey enough information 
about the accuracy of the measurement you took. It could describe anyone with a height between 
1.50 m (even shorter than I am) and 2.49 m (taller than any NBA player). Surely you measured 
within a tighter range than that.

Answer b is the most reasonable choice. It tells the reader that in your best judgement, your 
measurement can be trusted to within about a centimeter, which is consistent with the uncertainties 
of the measurement. Therefore you report a value to the nearest 0.01 m (which is the 2.01 m answer), 
with three significant figures.

But what if your classmate measured exactly 2 m (within a fraction of a centimeter)? Do you 
report answer c? No. Your number should make it clear that you have confidence to the centimeter 
level, so in this case you should report a measurement of 2.00 m, with three significant figures.

1.2.1 S C IE N T IF IC  N O T A T IO N
In light of the preceding discussion, numbers you come across which are multiples of 10 need to 
be interpreted with care. Consider the number 200. I t is not clear whether the trailing zeros in 
this number show the confidence level of a measurement, or are simply decimal place holders. For 
instance, the length of the 200-m dash, a track-and-field event, is actually specified by the sport’s 
rules to a high accuracy— to within 1 cm— so it really is the 200.00-m dash. On the other hand, a 
“200-m high cloud” only means a cloud whose distance off the ground is about 200 m, give-or-take 
approximately 10 m.

So, to avoid confusion and to be more specific about the intended precision, scientific notation 
is preferred by engineers in these situations. Using scientific notation, the examples in the previous

1T he concepts o f  accuracy and precision are discussed later in this chapter.
’W hether any accuracy is justified or not is object dependent. T he diameter o f  a small metal stent whose purpose is to keep open 
a coronary artery can (and should) be specified to one-tenth o f  a millimeter.



paragraph would be written as 2.0000 x 102 m and 2.0 x 102 m, respectively, indicating the intended 
precision.

1.2.2 A C C U R A C Y  A N D  P R E C IS IO N
These terms are often used interchangeably, but they really describe different things. Accuracy is 
a measure of how close a value is to the “true” value (as determined by some means). Precision 
is an indication of the repeatability of the measurement, if done again and again under the same 
circumstances. Thus a golfer would rather be accurate than precise if she repeatedly hooks her drives 
into the trees.

Accuracy and precision are sometimes specified in terms of a ±  range indicating the uncer­
tainties of a measurement, such as 56 ± 3  m m lig  or 18.5 ±0.8% of full scale. I f  unspecified, the 
uncertainty is assumed to be approximately one unit of the last significant digit of the number, as 
explained above.

1.2.3 S IG N IF IC A N T  F IG U R E S  IN  C A L C U L A T IO N S
Modern computers allow the manipulation and display of numbers with many significant figures 
(up to 10 or more). Rut you must be careful not to mislead your reader when reporting your final 
answer. Use only the number of significant figures justified by the reasoning above. Here are some 
generally accepted rules that are consistent with that reasoning:

Addition and Subtraction - After the operations of addition and subtraction, the f in a l answer should 
contain digits only as fa r  to the right as the rightmost decimal column fo u n d  in the least precise number 
used in the calculation. For example, consider the following:

31.5 
+  2.8925

34.3925 (as displayed on your calculator)

Following the rule, you should round off 3 this answer to 34.4 before you report it. This is because 
the first number, 31.5, is the least precise and has significant digits on the right out to the 0.1 decimal 
column, so your final answer should be rounded to this same column.

Here’s a thought problem explaining why: Suppose you were asked the value of your personal assets 
for an application for a scholarship. You own a computer (estimated value of $730, accurate to within 
about $10), clothes (estimated value of $23—you’re a sharp dresser), and a bank account (balance of 
$63.21). Therefore you sum your total assets:

Round off as follows: Round up the last digit kept in the answer by 1 if  the next digit (the first one to be dropped) is 5 or greater; 
otherwise don’t  change the last kept digit. Usually the displays o f calculators do this rounding automatically when set to the 
appropriate number of significant figures.

1.2. NUMBERS AND SIGNIFICANT FIGURES 3
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$730 
+ 23 
+ 63.21
$816.21 (as displayed on your calculator)

You might be tempted to put down $816.21 on the application form, but with a little thought that 
would be misleading. It would imply that you know the worth of your computer and clothes to 
the penny. More realistically, the implied accuracy of the answer should be no better than the least 
accurate of the parts (i.e., the estimated value of your computer). Using the rule above, $820 is 
the best answer. (Actually, $8.2 x 102 is an even better answer, because it clearly shows that you’re 
confident only to the $10 level).

More Examples:

0.1035 
+ 0.0076 

0.1111

The answer should be reported as 0.1111.

16.732 
- 0.11 

16.622

The answer should be reported as 16.62.

5.5 
+ 17.83 
+ 2.11 

25.44

The answer should be reported as 25.4.

2.0 
- 0.0006 

1.9994

The answer 4 should be reported as 2.0.

Multiplication and Division  -  After the operations of multiplication and division, the answer should 
contain only as many significant figures as found in the number w ith the fewest significant figures.

4This rounded-off answer may appear strange since it appears as though no subtraction took place, but remember that since the 
original 2.0 number is assumed precise only to one decimal place, the answer can be no more precise than to one decimal place. 
(If, however, the original 2.0 number is really known to four decimal places, it would have been written as 2.0000.T hen  the final 
answer would be 1.9994.)
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For example, when you multiply (83.6) x (10,858) the calculator display may show 907,728.8 but 
the final answer should be rounded to three significant figures: 908,000 (or even better, 9.08 x 105). 
As a division example, 563 /  6.2 = 90.81 should be reported as 91.

Here’s a thought problem to help explain why: Suppose you are given the task of finding the 
weight of one full Pepsi can. You decide to weigh a six-pack of Pepsi cans on a bathroom scale, and 
divide by 6 to get an “average” answer— not a bad idea. On the scale, you measure the weight of 
the six-pack (without any packaging material) at 4.7 Ibf. (Note that you have recorded a reasonable 
number of significant figures— two— for this measurement since the bathroom scale you used can 
be read only to about the nearest 0.1 Ibf.) But when you use your calculator to divide 4.7 Ibf by 6, 
you get 0.78333 Ibf as the weight of a single can. Obviously you can’t report the weight of a Pepsi 
can to a precision of 0.00001 Ibf (the weight of a grain of sand) when you originally measured the 
total six-pack to a precision of only 0.1 Ibf. It is more logical to use the degree of precision of the 
least precise number in the division, which in this problem is two  significant figures. So the final 
answer should be reported as 0.78 Ibf. (But what about the divisor, the number 6? Doesn’t it have 
only one significant figure? No; in this case, it is an exact number and therefore can be considered 
to have an infinite number of zeroes after the decimal point— i.e., an infinite number of significant 
figures. Thus the number with the fewest significant figures is the number 4.7.)

More Examples:

(0.431)(0.002) = 0.000862 should be reported as 0.001.
163.4 /  16.555 = 9.87013 should be reported as 9.870.
(4.3 x 10s) /  (6.241 x IO””'3) = 6.890 x 101(1 should be reported as 6.9 x IO10.

More Complex Operations -  W hen an operation of multiplying or dividing is combined with adding 
or subtracting to achieve the final answer, or when nonlinear operations such as logarithmic or 
trigonometric operations are performed, it’s harder to determine the correct number of significant 
figures in the answer. Intermediate answers must be rounded at each step, which is often difficult 
and awkward to implement. Therefore, there is no simple rule to apply here, and you should apply 
commonsense using the spirit of the previous rules as much as possible.

1.3 DIMENSIONS AND UNITS

Specifying dimensions is a scheme for grouping and labeling similar physical quantities. Thus the 
letter L represents the dimension of any length, M  the dimension of the mass of any body, T  
the dimension of time, etc. Dimensions are not the same as units, since there are several possible 
alternative units for measuring any dimension. For example, the length (of dimension L) of an object 
can be measured in units of meters, inches, yards, chains, miles, or even light-years.

There are two major systems of units in use in the world today:
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* A metric system known as the Systeme International d’Unites, or SI, which is the international 
standard used in most scientific work, and

* A non-metric system called the English system, which is in widespread use in the United 
States and Britain, especially for non-scientific applications.

Engineers need to be familiar with both major systems of units and be able to readily convert 
any value back and forth between the two systems. Biomedical engineers in particular must be agile 
with unit conversions because they must deal with units that are traditional in clinical settings but 
which are outside even the two major systems, such as blood pressure measured in m m lig  and 
cardiac output measured in L/min.

Any number reported without units is meaningless. For example, if your systolic blood pres­
sure is 2.3 (with no units), are you in good shape or bad shape? W ithout specifying the units of 
measurement, it’s impossible to tell. If  in units of psi, the pressure is fine; if in units of m m lig, it’s 
not good at all.

The importance of specifying units (and also of close communication within an engineering 
team) was painfully demonstrated by the following incident:

On September 23,1999, contact was abruptly lost with the NASA Mars Climate Orbiter.
It was later determined that due to an information error on earth, the spacecraft failed 
to enter a proper orbit around Mars and was lost. An investigation uncovered the cause:
Two teams, one in California and one in Colorado, were responsible for coordinating the 
correct maneuvering of the spacecraft as it neared Mars. As unbelievable as it sounds, one 
team used English units (e.g., inches, feet and pounds) while the other used metric units 
(centimeters, newtons), and each group was unaware that the other was using different 
units! NASA has since taken steps to make sure that this type of error doesn’t happen 
again.

1.3.1 SI U N IT S
As mentioned, metric SI units are used throughout the world. The SI is an outgrowth of the older 
MKS system, where MKS stands for meter, kilogram and second (the units for length, mass and 
time respectively). These units are retained as three of the base units of the SI. The other base units 
are the ampere, mole, kelvin, and candela. In addition, various combinations of these base units can 
define many other derived units defined for often-used quantities. Table 1.1 lists the base units and 
some important derived units in the SI.
Prefixes — Sometimes the size of a unit system does not match well the scale of the quantity being 
measured. For example, a meter is okay as it stands to use for measuring the length of a building, but 
the diameter of a virus is much smaller than a meter, and the diameter of the earth is much larger. So 
standard multiplying factors represented by prefixes are used to scale the meter (or any other unit) 
to better match the measurement. Some common prefixes to scale the root unit by multiples of ten 
are given in Table 1.2.
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For example, the diameter of a flu virus is approximately d =  0.00000010 m =  1.0 x 
10-7  m =  0.10 j i m. Notice how much more convenient the prefix notation is when specifying 
this value. Also note that the proper use of prefixes, like scientific notation, can avoid the ambiguity 
of how many significant figures are intended in a number that is a multiple of 10.

Table 1.1: Some Base and Derived SI Units

Q uantity U nit Symbol Equivalent to
length meter m (base unit)
mass kilogram kg (base unit)
time second s (base unit)
electrical current ampere A (base unit)
material amount mole mol (base unit)
temperature kelvin K (base unit)
light intensity candela cd (base unit)
force newton N kg-m/s2
pressure pascal Pa N /m 2 = kg/(m-s2)
energy joule J N-m = kg-m2/s2
power watt W J/s = kg-m2/s3
frequency hertz IIz 1/s

Table 1.2: Common Prefixes

Prefix Symbol M ultiplier
femto- f i o - 15
pico- P i o - 12
nano- n ]C ry

micro- M 1CT6
milli- m 1CT3
centi- c i c r 2
kilo- k io 3
mega- M 106

g'ga- G 109
tera- T 1012

Rules for the Use o f  S I  Units -  W hen writing SI units, some generally accepted rules apply. These rules 
are intended to improve the consistency of SI unit usage and reduce the chance of misinterpretation.
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A good summary of these rules can be found at the National Institute of Standards and Technology 
(NIST) website ( h t tp :  / / p h y s ic s  . n i s t . g o v /c u u /U n i t s /c h e c k l i s t  .h tm l).

1.3.2 K E E P IN G  T R A C K  O F  U N IT S  IN  E Q U A T IO N S
It is very helpful, whenever possible, to carry units along in the numerical solution of equations. 
For example, consider the problem of finding the force needed to accelerate a 5.0 kg mass to an 
acceleration of 1.6 cm/s2. The physical law that applies here is Newton’s second law:

F= ma (1-1)

where F  is the value of the force, m is the value of the mass,5 and a is the value of the acceleration. 
To solve for F, of course, you put values for m and a into (1.1). If possible, you should also put in 
their respective units. Re careful not to mix units. That is, make sure you consistently use the same 
unit system throughout the entire equation. In SI units, (1.1) gives

F =  (5.0 kg)(1.6 cm/s2) =  8.0 kg-cm/s2. (1-2)

You may need to convert prefixed units (such as cm here) to the root unit (m) in order to get 
understandable equivalent units in the final answer. In this case (1.2) becomes

F =  8.0 kg-cm/s2 =  8.0 x 10-2 kg-m/s2 =  8.0 x 10-2 N =  0.080 N, (1-3)

where the equivalence between the units kg-m/s2 and N has been used (see Table 1.1) to put the final 
answer in the usual SI unit for force, the newton N. [In fact, fundamental equations such as (1.1) 
are the means for determining the equivalency between derived units and their base-unit form.]

1.3.3 E N G L IS H  A N D  O T H E R  U N IT S
Any student living in the United States is familiar with English units. They are commonly used in 
dealing with everyday objects and measurements (a “ten-pound sack,” a “30-inch waist”). In addition, 
health-care practitioners are accustomed to dealing with hybrid units that have been long accepted 
and traditionally used in the medical field (“systolic blood pressure of 120 mmHg,” and “glucose 
concentration of 100 mg/dL”). Table 1.3 lists some commonly used English units and medical units.

1.4 CONVERSION FACTORS
Because of the large variety of units encountered, an engineer must be able to quickly and accurately 
convert any value between different units. Many of the conversion factors needed for this class are 
tabulated in Appendix A.

The only tricky part of doing a units conversion is making sure you don’t use the inverse of the 
correct factor by mistake. For example, let’s say you want to convert the measurement of the length

~SNote that the symbol m is used here for the value of the mass. But m is also the symbol for the SI unit meter. Be careful not to 
confuse these two different uses.
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Table 1.3: Some Common English and Medical Units

Q uan tity U nit Symbol
length foot ft
mass slug slug
time second s
force pound-force lbf
pressure pound-force per square inch psi
power horsepower hp
energy big calorie or food calorie Cal
volume liter L
cardiac output liters per minute L/min
mass concentration milligrams per liter mg/L
blood pressure millimeters of mercury mmHg
bladder pressure centimeters of water cm EbO

/ o f the tibia from centimeters to inches. A typical measurement gives

/ =  42.1 cm. (1.4)

You know that the required conversion factor, from Appendix A, relating the length of one inch to 
its equivalent length in centimeters is:

1 in =  2.54 cm. (1-5)

Dividing both sides of (1.5) by 2.54 cm gives 6

1 in \  .
' 1. (1.6)

„ 2.54 cm,

The left-hand side o f (1.6)— in the parenthesis— is now equal to unity, so it is a conversion factor 
you can use to multiply the right-hand side of (1.4) without changing the equality o f (1.4):

/  1 in \  . .
/ =  42.1 cm ( ----------  I =  16.6 in. (1-7)

V 2.54 cm J
The key to knowing that you have multiplied by the correct factor in this case is to notice hozu the original 
centimeter units cancel in the numerator and denominator o f (1.7), leaving the answer in the desired inch 
units.
b In H .5), the 1 on the left-hand side is an exact num ber so it can be considered to contain an infinite number o f  significant figures. 
As a consequence the right-hand side o f (1.5) sets the significant figure limit o f  the conversion factor. Now to avoid unduly letting 
the conversion factor determine the significant figures in the final answer rather than the value being converted, make sure the 
conversion factor is specified to at least as many significant figures as the number being converted. [Note that in (1.10), the value 
being converted— not the conversion factor— sets the precision o f  the final answer, as is proper.]



If the opposite direction of conversion is desired, the procedure is similar but now the manipu­
lation of the conversion factor (1.5) must be inverted. Say you wanted to convert

s =  6.1 in (1.8)

into centimeter units. Divide both sides of the conversion factor (1.5) by 1 in to get

(  2.54 cm \
1 =  — —  • (1.9)

V > 111 /
The right-hand side of (1.9) is a new unity conversion factor you can use to multiply (1.8):

/  2.54 cm \
s =  6.1 in I ----- ;----  1 =  15 cm. (1.10)

V 1 ' n /
Again note that the original inch units cancel, leaving the answer in the desired centimeter units. By 
keeping careful track of the units in all equations, important verification is provided that the con­
version factors— (1.6) and (1.9)— are in the correct order, respectively, to accomplish their intended 
direction of conversion.
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1.4.1 T H E  U SE  O F  W E IG H T  T O  D E S C R IB E  M A SS
In the English system, it is common to describe the mass of some object, say a person, bywords such 
as “a one-hundred-and-seventy-pound man.” But this description is actually based on weight (the 
same as force— 175 lbf in this case) not mass, so it is only an indirect measure of the man’s mass. 
In fact, weight is a somewhat untrustworthy way to describe mass since the same mass will have 
different weights depending upon the local constant of gravitational acceleration. For example, on 
the moon the man will weigh only 29 lbf.

To convert from weight to mass, one needs to specify the assumed acceleration of gravity. At 
the earth’s sea level, the acceleration of gravity is

g  =  32.174 ft/s" =  9.8067 m/s". (1-11)

(These values are normally the constants assumed for gravitational acceleration if no explicit value 
o tg  is given.) Newton’s second law, (1.1) w ithg  replacing a, can be used to find the mass of the man 
in question in English units:

m =  F/g  =  (175 lbf)/(32.174 ft/s2) =  5.44 1bfs2/ft =  5.44 slug. (1.12)

1.5 CONSISTENCY CHECKS
Mistakes in calculations happen. Of course, careful students and engineers try to keep errors to a 
minimum, but when they do happen it is very useful to have a set of quick checking tools that alert 
that something is amiss in the answer. Consistency checks are one class of such error-catching
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tools. These procedures will not necessarily tell you the correct answer, but once you become familiar 
with their use they will flag mistakes in calculations and equations. Three consistency checks are 
described below.

1.5.1 R E A L IT Y  C H E C K
Some students call this the “duh” test. It is very quick and easy to perform. You simply think about 
the value of the answer you just derived, and based on commonsense you make a judgement about 
whether the answer could possibly be right or not. For example, let’s say you calculate the blood 
pressure in your capillary bed based upon realistic physiological values of capillary compliance and 
blood volume. After converting to English units, you get the answer

P  =  475 psi. (1.13)

If  you think about this value for a moment, it is way out-of-line physiologically. The air pressure 
in your car tires is about 30 psi, so a blood pressure of 475 psi would undoubtedly blow out all 
your capillaries. You probably made a conversion factor error (incorrectly inverting the conversion 
factor?).

O f course, the more familiar you are with the units being used, the more errors this method 
will pick up. SI units, especially newtons and pascals, are still not a part of everyday life. Also, the 
utility of this method will improve as you gain more experience with values normally encountered 
for the case being studied.

1.5.2 U N IT S  C H E C K
W hen you carry units throughout a calculation, the units of the final answer must be consistent with 
those expected for the dimension of the solved quantity. This is a powerful check. For example, let’s 
say you’ve solved for the length increase A / of a 10-cm long bone when a pressure of 18 Pa is applied 
longitudinally to one end. You come up with an answer of

A l  =  0.016 N. (1.14)

Obviously something is wrong, because newton is not an appropriate unit for a length (or a length 
change); it must be given in units of meter, or millimeter, or inch, or similar. You need to go back 
and recheck the steps leading to this answer.

Care must be taken when applying this check, though, to make sure you aren’t fooled by 
equivalent units. For example, in another calculation of a length, you may get an answer of

/ =  2.32N -s2/k g . (1.15)

The units here are actually okay for length, because when the base-unit equivalent to a newton, 
namely kg-m/s2 (see Table 1.1), is substituted into the units above, the result is

N-s2/k g  =  kg-m-s2/(s2-kg) = m, (1.16)
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which is appropriate for a unit of length.
Units checking is especially helpful in keeping track of which conversion factor to use. You 

must make sure that the original units cancel, leaving the desired units as discussed in Section 1.4 
above. [A units check might have caught the mistake leading to the wrong answer of (1.13).]

1.5.3 R A N G IN G  C H E C K
This check is most useful for finding errors in derived equations. I t involves letting one of the variables 
on the right-hand side of the equations (an independent variable) take on increasing or decreasing 
values, even to the limit of infinity or zero, and noting whether the effect on the variable on the 
left-hand side (the dependent variable) is in the right direction and, in the case of a limit, converges 
to the correct value. Usually there are several independent variables; any one can be selected for 
“ranging” in this manner and checked for the expected effect on the dependent variable.

For example, let’s say you have solved for the pressure drop A P  across a blood vessel whose 
diameter is D  and whose length is / by using Poiseuille’s Law (to be discussed in Chapter 3) and 
you get

Z) t i l  , . , .
A P  =  ---- —---- , (error) (1-17)

where Q is the volumetric blood flow and fx is the blood viscosity. To quickly check for a major error, 
do a ranging check on (1.17) by imagining that the independent variable for diameter D  takes on 
larger and larger values. From (1.17), pressure drop A P  will increase for this case. Rut it doesn’t make 
sense that a larger vessel diameter will produce a larger pressure drop (all other parameters staying 
constant); instead, the pressure drop should get smaller. This is a strong indication that a mistake 
involving D  was made in the derivation of the equation.

Doing more with this example, let the value of the vessel length / go to the limit of zero, and 
by examining (1.17) find the resulting limit of AP:

lim A P  =  0. (1.18)
1-rO

This result does make sense: I f  the length of a blood vessel gets vanishly short, the pressure needed 
to force blood flow through it should also vanish. You can conclude, at least, that the location of the 
variable / in the numerator of (1.17) is correct. [Going further, ranging checks done on the other 
independent variables shows that the behavior of A P  upon the ranging of the viscosity variable fx 
seems reasonable, but the position of the flow variable Q in the equation is questionable. A  units 
check on (1.17) would also have shown that there is an error in the equation.]

1.6 ORGANIZATION O FT H E  REMAINING CHAPTERS
The remainder of this book is organized in chapters. Each chapter covers an important law or prin­
ciple relating to biomechanics (fluids and solids), cardiovascular mechanics, electricity, or biosignals. 
Each chapter has a homework set that will be assigned. Many, but not all, of the chapters relate
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to the Major Project, and the skills learned in doing the homework will be essential in solving the 
Major Project.

1.7 PROBLEMS
1.1. As team leader of an engineering group that has developed a new replacement aortic valve, 

one of your tasks is to calculate the manufacturing cost (parts and labor) of each valve. The 
cost of each valve has three components:

a. Outside ring: cost = $134.31.

b. Leaflets, made in Italy: 3 needed per valve. Each leaflet costs 88,221 Italian lira. (Exchange 
rate $1 = 2131.05 Italian lira)

c. Labor: 0.40 hrs at a rate of $ 132/hr. Keeping the appropriate number of significant figures in 
each step, calculate the cost of each valve.

fans: $312]

1.2. In a physics class, you have derived the following equation that gives the time t  that a body 
takes, starting from rest, to fall a distance d  under the influence of gravity:

t =

where g  is the acceleration of gravity (9.8067 m/s").

a. Perform a units check on the above equation.

b. Perform one ranging check on the above equation.
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is

2.1 INTRODUCTION -  BIOLOGICAL AND MAN-MADE 
MEMBRANES

Cells are the building blocks of all living things, including plants and animals. Cells contain the 
components and perform the functions that allow life, such as energy conversion, chemical regulation, 
reproduction and repair. They occur in numerous varieties in different tissues of the human body 
depending upon the function performed by that tissue. During embryonic development, cells start 
undifferentiated, and then develop into specific differentiated types appropriate for the various roles 
they play in the tissues. Thus, the shapes and sizes of cells in the human body vary widely from 
very small (as thin as 0.2 jim  across for the plate-like endothelial cells lining blood capillaries) to 
moderate (250 jim  diameter for a spherical ovum) to very long (nearly 1 m for the threadlike axon 
projections of some central nervous system cells).

The contents of the cells are packaged inside by the cell wall. A  very simplified view of 
this compartmentalization is shown in Fig. 2.1. In human cells this wall is known as the plasma 
mem brane and is composed of a sandwich of two layers of phospholipid molecules facing each 
other (a “bilayer”). The molecules in the phospholipid bilayer are arranged such that the “water- 
avoiding” (hydrophobic) ends of the molecules all face inward into the membrane center, while the 
“water-loving” (hydrophilic) ends all face toward the surface of the membrane. This means that both 
exposed sides of the plasma membrane are hydrophilic, consistent with the fact that both the fluid 
surrounding the outside of the cell and the material inside the cell (the cytoplasm) are composed 
mostly of water. Almost all cells in the human body (except for red blood cells) have a nucleus inside 
containing the D N A  for cell replication; these cells are known as eukaryotic cells. More primitive 
cells such as bacteria do not have nuclei and are termed prokaryotic cells.

The plasma membrane of the cell serves several purposes. It is foremost a mechanical barrier 
that compartmentalizes and protects the contents of the cell, separating it from its neighbors. But 
this barrier cannot be absolute and impenetrable. Otherwise nutrients (e.g., oxygen and glucose) 
needed to meet the energy requirements of the cell and keep it alive could not enter the cell, and the 
waste products (C O j, urea) could not leave. Moreover, specific free ions (sodium, chloride, calcium 
and potassium to name a few, depending upon the cell function) must be able to travel through 
the membrane between the cytoplasm and the extracellular space in order to maintain electrical 
and chemical balance and to carry out the functioning of the cell. Water also passes through the
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extracellular fluid
(mainly water) cytoplasm

Figure 2.1: A simplified drawing of a generic human cell showing cell contents packaged inside a 
selectively permeable cell wall—the plasma membrane.

membrane, either from inside to outside or visa versa, depending upon the direction of net force 
driving the flow.

Therefore, the cell membrane does indeed selectively allow certain molecules (which are 
specific to the role of the cell) to pass through, thereby regulating cell contents. The cell membrane 
is said to be selectively permeable, or semipermeable. The ease with which each species can 
pass through varies depending upon the size, shape and electrical charge of the species, and upon 
the characteristics of the membrane. The presence o f small channels (pores) through the plasma 
membrane— some of which are gated— accounts for some of the ability of substances to pass through. 
Proteins spanning across the membrane can also facilitate transport of selected molecules.

There are three main ways that substances can be transported through a plasma membrane:

1. By fluid (or hydrostatic) pressure (the topic of this chapter)-This mechanism is relevant to 
liquid molecules such as water, and to gases.

2. By electro-chemical diffusion (covered in Chapter 14, Part II)-T his mechanism applies to 
ions, small molecules and some macromolecules as well as to water. W hen water is driven 
across a semipermeable membrane due to a difference in water concentration on each side
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(in turn due to a difference in solute concentrations), the water is said to be driven across by 
osmotic pressure.

3. By active transport by membrane-spanning proteins (also covered in Chapter 14, Part II)— 
This mechanism facilitates the transport of ions, small molecules and macromolecules.

All three mechanisms are in play with cells, but some are more pronounced than others 
depending upon the cell type. For example, nerve cells rely upon the cooperation between electro­
chemical diffusion and active transport of ions to maintain their nerve cell function and produce 
action potentials (Chapter 14, Part II). W ater transport by hydrostatic pressure is minimal in these

On the other hand, the cells that line the blood capillaries in the glomerulus of the kidney 
allow water to pass through their walls relatively easily by the action of hydrostatic pressure from the 
blood volume into urine-collecting spaces of the kidney. (Some water also leaks out through small 
gaps in the junctions between the cells.) Osmotic pressure opposes this water movement, but the 
hydrostatic pressure is greater here, so there is a net flow of water out of the blood in this part of 
the kidney (most is reabsorbed later in the kidney). The glomerulus thus plays a major role in the 
regulation of water in the body.

Similarly, the endothelial cells that line the capillaries in the circulatory system also allow 
some water to pass outward from the blood into the interstitial space outside the vessels, again 
driven by hydrostatic pressure. The volume of water that leaks out depends upon how much greater 
the hydrostatic pressure is than the osmotic pressure opposing it. If  water secretion is normal, only 
a small amount of water filters out; the lymphatic system collects it and returns it back into the 
veins. Rut if the hydrostatic pressure in the capillaries is abnormally high, caused for example by a 
weak left heart that doesn’t empty the veins readily, the amount of water driven out of the capillaries 
can overwhelm the lymphatic system, leading to a pooling of water and swelling (edema) of the 
surrounding soft tissue. W hen this happens in the capillaries of the legs, water swells the leg’s 
tissues, an early sign of a weak heart. In the lung capillaries, it leads to the collection of water in 
the lung alveoli (a symptom of “congestive heart failure”), with serious consequences on breathing 
ability.

2.1.1 M A N -M A D E  M E M B R A N E S
In addition to naturally occurring membranes, there are several examples of man-made semiperme- 
able membranes. These can be as simple as the cellulose-fiber paper filters common in chemistry 
labs. O f more complexity, the first successful artificial kidney, or dialysis machine, was assembled by 
Dr. Willem K olff1 in 1944 using long tubes made with thin cellophane walls. Blood drawn from 
the veins of a patient was passed through the inside of the tubes, which were immersed in a bath of 
fresh electrolyte solution. Water, ions and waste products were exchanged across the tubing, clearing

1 1 )r. Kolff (1911-2009) had a distinguished career in artificial organs, and joined the faculty of the University of U tah in 1967.
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the blood as it was continuously returned to the patient. Figure 2.2(a) is a picture of an early dialysis 
machine.

a. b.

Figure 2.2: Examples of the use of man-made membranes, (a) Dr. W. Kolff shown with an early artificial 
kidney machine, (b) Cross-sectional view of a small porous tube for encapsulating cells or drugs in host 
tissue. (Photos courtesy of the Dept, of Bioengineering, University of Utah.)

More recently, tissue bioengineers have fabricated semipermeable membranes for encapsulat­
ing collections o f cultured cells or drugs. W hen implanted into body tissue, these membranes form 
a container keeping the cells together while selectively allowing exchange of nutrients and desirable 
products from the cells. W hen the membrane package contains drugs, it allows slow release o f the 
drug in a measured fashion for predicable delivery to the patient. Figure 2.2(b) shows an example 
o f a man-made semiporous membrane.

2 .2  DARCY’S LAW
The mathematical relationship between the flow of fluid through a porous obstruction and the 
pressure driving the flow was first derived by French hydraulic engineer Henry Darcy in 1856. Darcy 
was engaged in designing a water treatmen t system for the city o f Dijon when he experimented with 
various flo w rates o f water through different lengths o f tubing filled with sand. The water was driven 
through the sand by gravity. H e found a linear relationship between the flow rates and the driving
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pressure, and an inverse relationship with the length of the column of sand. Although Darcy’s original 
work was done with water and sand, his findings can be applied to more general porous materials 
such as membranes.

Darcy’s relationships can be illustrated by the arrangement shown in Fig. 2.3. Here a membrane 
of thickness h (SI units: m) and a re a ^  (m2) is inserted in a fluid-filled tube. A  pressure P  (Pa) is 
imposed on the fluid, causing it to flow with flow rate Q (m3/s) through the membrane.

pressure P/

\  pressure P2

volume pi "► a
cd

volume
flow rate —► X ) flow rate

Q
G
<D
s face area A

h ■*— thickness
X x 2

Figure 2.3: Arrangement in which the flow rate Q_through the porous membrane is measured as a 
function of the pressure drop AP = P\ — P2 across the membrane.

Hydraulic pressure is defined as force per unit area:

P  =  F /A . (2.1)

where P  (Pa) is the pressure, F  (N) is the total force acting on the membrane face, a n d ^  (m2) is 
the area of the membrane’s face. It can be shown easily from (2.1) that the SI unit Pa is equivalent 
to N /m 2.

The fluid pressure on the left side of the membrane in Fig. 2.3 (the “entrance” side) has a 
value of Pi .The pressure drops linearly across the membrane (the distribution is shown by the upper 
solid line in the figure) to a lower pressure P2 on the right (“exit”) side. The pressure drop across the 
membrane is defined as the difference between the entrance and exit pressures:

A P = P \ - P 2. (2.2)

If  we now measure the relationship between flow rate Q and the variables in the setup, 
particularly the pressure drop, we get a plot similar to that shown in Fig. 2.4. The solid line, which
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volume flow 
rate Q  

(m3/s)

0

ideal
membrane

slope=
I /R

deformable
material

0 pressure difference A P  (Pa)

Figure 2.4: Relationship between fluid flow rate and applied pressure difference for two different porous 
materials. The solid curve shows an ideal porous membrane following Darcy’s Law; the dashed curve 
shows a deformable (nonideal) material.

is representative of the behavior of an ideal membrane, shows a linear relationship between the flow 
rate and the pressure difference, and can be expressed by Darcy’s Law:

M A P
Q =  — r .H h

Darcy’s Law (2.3)

The natural resistance of the fluid to flow is specified by the value of its fluid viscosity ji (SI units: 
kg/m-s). The ease or difficulty with which a particular membrane allows the fluid to pass is given 
by the permeability constant k (m2) of the membrane. The viscosities of various fluids and the 
permeability constants of certain materials, including biological materials and filters, are listed in 
tables in Appendix B.

Note from (2.3) that the membrane properties k, A ,  and h along with the fluid viscosity \x 
determine the resistance of the membrane to allow fluid flow. It is reasonable, then, to think of the 
membrane as opposing the flow of the fluid with a hydraulic (fluid) resistance R,  which we define
as

R =  —  
k A '

Inserting (2.4) in (2.3) gives an alternate and more compact form of Darcy’s Law:

A P
2 =  I f

Alternate Form of Darcy’s Law

(2.4)

(2.5)
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Note from (2.5) that the higher the membrane’s resistance is (for example, if the membrane thickness 
increases), the lower the flow rate is for a given pressure difference.

2.2.1 IDEAL AND NONIDEAL MATERIALS
Darcy’s linear relationship applies to many biological and man-made porous materials of interest, 
especially at low flow rates and pressures. In such ideal materials, the permeability / l i s a  constant 
and is independent of fluid flow rate, as shown by the solid curve of Fig. 2.4. This applies to many 
materials, but not all. For example, the dashed curve in Fig. 2.4 shows the relationship between 
the applied pressure difference and flow rate of a saline solution through articular cartilage in the 
knee. Although this material obeys a linear law for low flow rates, it is deformable such that as the 
pressure increases, the material compresses, narrowing or closing off some of the fluid microchannels. 
This causes its permeability constant k  to decrease in the upper portion of the curve, consequently 
increasing its fluid resistance R  to flow. It therefore exhibits a nonideal, nonlinear behavior as opposed 
to the linear behavior of an ideal material.

Example 2.1. F low T hrough  a M em brane
A  round membrane 2.00 mm thick has a permeability constant of k =  3.50 x 10_12/n2. Find the 
diameter that would allow water to flow at a volume flow rate of 17.5 cnrVmin with a pressure drop 
of 0.100 psi.

Solution
First convert the volume flow rate of 17.5 cnrVmin to SI units of nrVs:

cm3 / 1  x  10-6  m3\  /  1 m in \ 7 m3
Q =  17.5-----  ----------- r----- --------  =  2.92 x 10-7 — .

min y 1 cm3 J  \  60 s /  s

Also convert the pressure drop to units of Pa:

/6895  Pa \
A P  =  0.100 psi — -— ;— J  =  6.90 x 102 Pa.

From (2.5) the resistance of the membrane needs to be

„  A P  6.90 x 102Pa „ ^  ,^ P a -s
R = ---- = ---------------- =  2.36 x 10}̂ - .

Q 2.92 x 10 7m3/s  m3
Putting this value in (2.4) and solving fo r^ , using the value for /x of water from Appendix B, gives

,ih  (0.0010 P a - s ) ( 2 .0 0 x l0 -3m) _ 4 2
A  — —— — — ~ r- - -p: — — 2 .4x10  rn .

R k  (2.36x 10 Pa • s/m 3) (3.50x 10^12m2)
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Since A  = j iD 2/4, the diameter o f the membrane is

/ (4)(2.4 x lC P4m2) \ ‘ „
D =  I ---------- ------------1 =  0.017 m =  1.7 cm.

2 .3  M E C H A N I C A L  F I L T R A T I O N  ( S I E V I N G )

In addition to partially resisting the flow o f fluid through them, membranes also act as blocking filters,
i.e., cutoff filters. This is where the filter completely excludes the passage o f particles larger than a 
certain size regardless o f the pressure applied.The maximum particle size allowed to pass corresponds 
roughly to the size o f the channels or pores extending through the membrane, specified as the cutoff 
size or “effective” pore size o f the filter. This mechanical filtration capability, also known as sieving, 
is perhaps the most common use o f man-made membranes in the medical and bioengineering lab. 
Figure 2.5 is a photomicrograph o f a typical man-made cellulose-fiber filter showing the intertwined 
fibers that provide the sieving action. The effective pore size is largely determined by the spacing 
between the fibers. Other filters can be made from glass fibers or polymer membranes such as nylon 
or Teflon.

As an example, i f  the effective pore size o f a certain filter is 0.1 /xm, no spherical particle with a 
diameter greater than 0.1 /im can pass through, regardless o f the pressure applied— at least until the 
pressure is so great that it ruptures the membrane. However, for more realistically shaped biological 
particles that come in a variety' o f three-dimensional shapes, the situation is more complicated. A  
long, cylindrical!}' shaped bacterium oriented with its long axis parallel to the channel axis might slip 
through i f  its narrowest diameter is below the filter’s cutoff size, even though its length may exceed 
this size. (Nevertheless, for simplicity' in calculation, biological particles are sometimes modeled as 
though they were spherical in shape, specified by a single diameter.) Biological particles are often 
electrically charged as well, further affecting their ability' to pass through the tortuous channels o f a 
filter.

Bioengineers usually characterize the “size” o f biological particles or molecules by their mass 
in terms o f molecular weight M W . The traditional (non-SI) units o f molecular weight are Dal­
tons (abbreviated Da) in honor o f English chemist John Dalton. One proton or one neutron have 
essentially the same weight; that sets the size o f one Dalton 2:

lD a =  1.661 x 10 24 (2.6)

Thus, a neutron or proton has a mass o f ~  1 Da while an electron is much lighter (9.1 x 10_2S g) 
and thus has a mass only about 1/2000 Da. Proteins are much larger. For example, the blood protein 
serum albumin has a molecular weight o f 68 kDa, and the blood protein Immunoglobulin M  has a 
molecular weight o f 1000 kDa.

’The Dalton was initially defined as 1/16 the weight of an oxygen atom (nominally 8 protons, 8 neutrons and 8 electrons) in a 
mixture of isotopes of oxygen. The more recent atomic mass unit (amu or u) is only very slightly different in weight from a Dalton.
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Figure 2.5: View under a microscope of the intertwined cellulose fibers in man-made filter paper. The 
pore size is roughly determined by the opening between fibers; for this filter, the effective pore size is 11

Proteins— biological particles commonly found in body fluids— come in a variety o f sizes and 
shapes. Still, since the subunits that make up proteins take up about the same space independent of 
the particular protein they belong to, the mass density o f all proteins is about the same, 1.37 g/cm3. 
In a similar fashion, the mass density o f D N A  is reasonably uniform among different D N A  strands, 
about 1.6-1.7 g/cm3. Viruses, which are composed mostly o f a D N A  core enclosed in a thin protein 
coating, have about the same density as D NA. In summary, to a good approximation, the density of 
each o f these particles is:

Pprotein ^  1-37 g/cm 

PDNA, virus ^  1-6 — 1.7 g/cm . (2.7)

Once the density and molecular weight o f the particle are known (and assuming a spherical 
shape for simplicity), the radius r o f the molecule can be estimated by the following steps. The total 
mass M  o f the particle is given by its molecular weight in Dalton units times the equivalent weight 
o f one Dalton:

The density p is total mass divided by volume V :

M  =  MW • (1.661 x 1CF24 g / Da). (2.8)

p =  M / V , (2.9)
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and the volume of a sphere is

1/ =  ^ jrr3. (2.10)

Using (2.7), (2.8), (2.9), and (2.10) together, the radius of a particular particle can be estimated 
(see the example below, which estimates the diameter of serum albumin, a protein, to be 5.4 nm). 
Viruses can be as small as 10 nm in diameter, but are generally on the order of 100 nm in diameter; 
some forms of the human influenza virus are about 80-120 nm in diameter. Bacteria (which are 
prokaryotic cells) are usually much larger than viruses, with a diameter range of about 1-10 f im. 
Eukaryotic (plant and animal) cells are larger still, with typical diameters in the 10-100 f im range. 
A  red blood cell is a biconcave disk with a disk diameter of about 8 fim  and a thickness of about
2 fi m.

As mentioned above, porous membranes are often used to filter out particles larger than a 
certain size. Thus, a backpacking water filter can be used to eliminate bacteria and spores from 
drinking water while still allowing the small water molecules (which are about 0.3 nm in diameter) 
to pass. A  cutoff pore size of 0.4 fim  (400 nm) will filter out bacteria such as E. coli, typhoid, and 
cholera. Similarly, the eggs and larvae of parasites are about 20-100 fim  in size, giardia cysts are 
about 14 fim, and Cryptosporidium is about 4 fim  in size, so these pathogens would be filtered out 
as well. Viruses and proteins, on the other hand, are so small it is difficult to make a practical water 
filter for them; the pore size would be so small that the filter’s permeability to water molecules would 
be very low, making water passage difficult at reasonable pressures. For viruses, alternative treatment 
methods such as iodine or boiling the water are often used.

Example 2.2. Diameter o f  a Protein
Find the diameter of the protein serum albumin, given that its molecular weight is 68 kDa. 

Solution
Since the density of all proteins is approximately 1.37 g/cm3, (2.8) and (2.9) together give the protein 
volume as

/ 6 . S x ^ D a \ M ,

\l.37g/cm  3 / \  1 Da j  

Then using (2.10) the radius r is found to be

-20 \ '/3(3 )(8 .2x l0  cm )  ̂ ^  in _ 7 ^  
-------------------------- I =  2.7x10 cm =  2.7 nm.r :

\ An

Thus, the diameter 3 is about 5.4 nm.

R̂emember, diameter is twice the radius. Also, this calculation assumes a spherical shape for the protein. Actually, serum albumin 
is more cylindrical in shape.
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2 .4  P R O B L E M S

2.1. a. Using Equation (2.4), find the SI units for fluid resistance.

fans: kg/(s-m4) or Pa-s/nr’ ]

b. Using Newton’s second law, Equation (1.1), show that kg/(s-m4) is equivalent to Pa-s/nr’ .

c. Using the above results, do a units check on Equation (2.5) to show that the units on the 
left-hand side are consistent with the units on the right-hand side.

d. A  common non-SI unit of viscosity is the poise (P), which is equivalent to g/(cm-s). Using 
conversion factors and the results of part b, show that 1 P = 1 x IO-1 Pa-s.

2.2. A  certain blood plasma filter has a permeability constant of 1.0 x 1CP1 J m". Its area is 1.0 cm" 
and its thickness is 1.0 mm. When a net pressure of 10.00 psi is applied across the filter, what 
is the volume flow rate of blood plasma through the filter? If spherical drops of blood plasma, 
each of diameter 4.0 mm, come out of the filter, how many drops per second will flow?

fans: Q_= 5.7 x 10-7 m'Vs; 17 drops/s]

2.3. Estimate the molecular weight of a blood protein that is approximately spherical in shape with 
a diameter of 20.0 nm.

fans: M W  % 3460 kDa or 3.46 x 106 Dal

2.4. A  certain backpacking water filter has an “effective” pore size (i.e., a pore diameter) of 2.0 fxm.

a. W ill this filter trap the hepatitis A  virus, which has a total molecular weight (including 
protein envelope) of about 32,000 kDa? (Calculate the virus diameter assuming it is 
spherical and using a reasonable estimate of its density.) If it is not trapped, how could 
you kill the virus in the water when backpacking?

fans: Diam % 40 nm, so it is not trapped.]

b. W ill this filter trap the giardia cyst? If not, how could you kill giardia in the water when 
backpacking? (Note: you may find it useful to search the internet or reference books for 
the answers to parts b and c of this problem.)

c. Is the E. coli 0157:117 bacterium a “good” bacterium, or a “bad” bacterium? What effects 
does it have on the body? W ill this filter trap the E. coli 0157:117 bacteria? If not, how 
could you kill these bacteria in the water when backpacking?
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2.5. a. Estimate the total number o f hepatitis A  viruses that could fit (in one layer) inside the period 
at the end o f this sentence. Use the virus diameter found in Prob. 2.4a.

fans: Approx. 130,000,000. Your answer may vary depending 
upon your measurement o f the size o f the period.]

b. Repeat this estimate for red blood cells. Assume they all lie flat in the plane o f the paper.

fans: Approx. 3100.]
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P o i s e u i l l e ’s  L a w :  

P r e s s u r e - D r i v e n  

T u b e s
3.1  I N T R O D U C T I O N  -  B I O L O G I C A L  T R A N S P O R T

Diffusion is a major mechanism for transporting vital molecules into and away from cells (as men­
tioned in Chapter 2 and to be covered in more detail in Chapter 14, Part II). For single cell organisms, 
such as bacteria, or for multi-cell organisms with only a few cells, the distances from inside the cell 
to the outside environment are short enough that diffusion times for these organisms are suffi­
ciently rapid to sustain life. For example, an oxygen molecule will travel across 100 jim  (the size o f 
a moderately large cell) in a water environment in only about 1 second.

But for larger organisms, certainly for animals including humans, diffusion times are much 
too long to rely on diffusion alone to transport life-supporting molecules throughout the entire body. 
Einstein derived the following relationship describing the average time needed for a molecule to 
diffuse a distance d driven by a planar concentration gradient:

t =  d\/a d - (3-1)

where t is the average time (s) for a molecule to diffuse a distance d (m), and D  (mVs) is a diffusion 
constant that depends upon the molecular size, shape and charge, the viscosity o f the surrounding 
medium and the temperature. Note that the diffusion time varies as the square o f the distance 
traveled. Thus, for an oxygen molecule to travel from the human lung (where indeed it is rapidly 
absorbed into the blood across the thin alveolar walls by diffusion) to a far-reaching part o f the 
body, say the foot, would take about 6 years to travel by diffusion alone! Therefore, some means o f 
augmenting diffusion by a bulk fluid flow— i.e., blood flow— is necessary. This is a major role o f the 
circulator}' system in larger organisms: to expeditiously carry oxygen and other nutrients from the 
outside world to the remote tissues o f the organism, and then to transport waste products back out. 
(Blood flow also facilitates heat exchange and immunological defenses in the body.)

But oxygen by itself is not readily dissolved in pure blood plasma (mostly water), so some 
molecular carrier is needed. This task falls to hemoglobin, which effectively binds oxygen in the 
lungs (becoming oxyhemoglobin), then releases it where needed in tissues at lower oxygen pressure. 
Hemoglobin molecules are packaged inside small biconcave disk-shaped red blood cells (erythro­
cytes) about 8 jim  in diameter; together the red blood cells and the blood plasma comprise whole
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blood. The percentage of whole blood volume taken up by the red blood cells gives the hematocrit 
of the blood— normally between 40-45% for humans, a little higher in males than in females.

Figure 3.1: Open circulation in insects. After it leaves the heart, the blood empties into the entire body 
volume. It is then collected through openings in the heart to be re-pumped. (After Withers, 1992.)

To pump the blood throughout the body of the organism, some pressure source is needed (a 
heart), and some arrangement for directing outward flow and collecting the spent blood is required 
(a circulatory system). Different levels of insects and animals have developed various strategies for 
their heart and circulation. Figure 3.1 shows the circulatory arrangement common in insects.This is 
an open circulation, meaning that the blood pumped by the single tubular heart (which periodically 
expands and contracts its diameter by muscles attached to its circumference) is released into the open 
field of tissue filling the insect’s body rather than being contained in arteries, capillaries or veins. 
It perfuses the open tissue and picks up new oxygen before reentering the heart through openings 
in its walls to be re-pumped. This system works well for small organisms, but in larger animals the 
open field of tissue would present an uneven and inefficient distribution for flow.

In fish (see Fig. 3.2) the system is closed such that the blood is contained in a continuous 
network of vessels passing through the body. The fish heart is two-chambered (an atrium preceding 
the stronger ventricle) but the heart is one-sided. This means that blood expelled out of the fish 
heart passes first through the gills to pick up oxygen, then directly to the rest of the tissues without 
any intervening pressure boost, before returning back to the heart via the veins.

In mammals, including man, the circulatory system is similarly closed but the circulation is 
divided into two segments connected in series. Thus, the heart is two-sided, each side being the 
pump for its respective segment of the system. As shown in Fig. 3.3, the right side of the heart 
(comprised of two chambers, the right atrium and right ventricle) sends blood through the lung 
capillaries at relatively low pressure where the red blood cells pick up oxygen; this part of the system 
is called the pulmonary circulation. The oxygenated blood then returns back to the left side of the 
heart (also comprised of two chambers) where it is pumped with much higher pressure (about five



3.1. INTRODUCTION-BIOLOGICALTRANSPORT 29

Figure 3.2: Closed circulation of fish, in which the blood remains inside tubes. The fish heart has only 
one side.

times higher than in the pulmonary circuit) through the remaining tissues of the body; this portion 
is the systemic circulation. Since the circulatory system contains both a heart and vessels, it is called 
the cardiovascular (C V ) system.

The network of tubing making up the human circulation is complex. After passing out of 
the outflow valves of the respective ventricles, the blood is initially directed through a large vessel 
(the aorta in the systemic circulation) before splitting progressively into smaller and more numerous 
arterial vessels.The arteries in turn split into arterioles (called the “gatekeepers” due to their smooth- 
muscle walls that can contract or expand in diameter), then into a vast number of thin-walled 
capillaries (as small as 6-7 /xm in diameter) where molecular exchange takes place by diffusion. 
Although it is not evident from the drawings, capillaries are ubiquitous throughout the body, passing 
to within about 100 /xm (the width of a human hair) of every living cell in the body. After the 
capillaries, the vascular tree begins to recollect the blood into progressively larger and fewer vessels, 
first the venules, then the veins, and finally into one or two large return ducts (the vena cava in the 
systemic circulation) that empty into the atrium on the other side of the heart.

All of these vessels have some elasticity or compliance, especially in the venous portion of the 
systemic circulation where a good percentage (approximately two-thirds) of the body’s total blood 
volume resides. This elasticity is especially beneficial in smoothing out the pulsing nature of the 
blood flow from the beating heart, as will be seen in the next chapter, as well as in helping propel the 
blood along. The volume of blood pumped around the system per minute is known as the cardiac 
output, or CO, with traditional clinical units of L/min.

Thus, it can be seen that the vascular network is composed of tubes of various lengths, diameters 
and connections, and that blood is driven through the network by the pressure produced by the 
respective ventricles of the heart. To quantify the amount of flow for a given pressure, we need to 
study the flow of fluids through tubes, next.
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Figure 3.3: A  schematic diagram of the human circulation, a closed system. There are two sides o f the 
heart: the right side delivers blood to the lungs for oxygenation (the pulmonary circulation); the left side 
receives this blood and pumps it at higher pressure through the remainder o f the body (the systemic 
circulation). (After Guyton and Hall, 2000.)

3 .2  P O I S E U I L L E ’S L A W

Between 1838 and 1840, G. Hagen and J. L. Poiseuille independently obtained the relationship 
between fluid flow in a tube and the pressure required to produce this flow. This relationship is called 
the Hagen-Poiseuille law, or simply Poiseuille’s Law. Figure 3.4 shows the arrangement analyzed.
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radius volume 

flo w  rate Q

pressure Pj length =  / *  pressure P

Figure 3.4: Tube for illustrating Poiscuillc’s Law.

In Fig. 3.4, a volume flow rate Q o f fluid passes through a tube o f length / under a pressure 
difference A P  =  P\ — P i- Hagen and Poiseuille found the following relationship:

na4 A P
Poiseuille’s Law (3.2)Q

8/u- /

where Q = volume flow rate (m3/s)
A P  =  P] — Pz =  pressure difference (PaorN/m " orkg/m-s")

P i =  fluid pressure at entrance to tube (Pa)
Pz =  fluid pressure at exit from tube (Pa)
a =  tube radius (m)
ix = fluid viscosity (kg/m-s or Pa-s), and
/ =  length over which the pressure drop is measured (m).

The existence o f the various terms in (3.2) can be qualitatively explained by a ranging check 
using each o f the variables in turn (except for the factor 8, which is only found by a mathematical 
derivation beyond the scope o f this chapter). That A P  appears in the numerator seems reasonable, 
since for a given length o f tube, the higher the driving pressure, the higher the flow should be. The 
location o f / in the denominator also makes sense, since the longer the tube, the less the flow for a 
given pressure drop (as anyone who has used a very, very long garden hose knows).

The terms n tf4 and ix in (3.2) need a little more explanation. One portion o f the n <74 term 
(namely n a 2) can be seen simply from the fact that the tube’s cross-sectional area is given by n a 2 
and volume flow is proportional to cross-sectional area for a given pressure drop. The remaining a2 
dependence requires a look at the fluid flow velocity inside the tube. For Poiseuille’s Law to hold, the 
flow profile is assumed to be laminar (or “layered”), as diagrammed in Fig. 3.5. A  laminar profile 
is characterized by a “no-slip” condition at the walls; that is, the fluid velocity is zero where the 
fluid touches the walls, and then the velocity increases parabolically toward the peak velocity at the 
centerline o f the tube. Note that the velocity must build in a parabolic manner from zero (at the walls) 
to a peak value (at the center). So the smaller the radius o f the tube, the less distance the velocity 
has to build to a peak value, thus reducing this peak value and the volumetric flow rate. When the
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two-dimensional nature o f the cross-section is considered, the additional a2 term is found, leading 
to the overall na4 dependence.

fluid ve locity

Figure 3.5: Velocity profile for laminar flow in a tube.

This fourth power dependence on radius a is dramatic. It means that i f the radius o f a tube is 
reduced by 1/2, the flow rate will be reduced to l/16th o f its original flow! This would severely limit 
the amount o f blood flowing through the tiny capillaries were it not for the fact that there are many, 
many capillaries in parallel in the vascular network.

The presence o f the viscosity term jx in the denominator o f (3.2) also needs some discussion. 
Viscosity is a measure o f the resistance o f the layers o f the fluid to flowing past one another— “sliding 
friction” as it were. We first saw the term in Chapter 2 relating to flow through membranes. The 
laminar flow profile in Fig. 3.5 requires that neighboring layers o f fluid must slide past each other 
going from the walls to the centerline, imposing a shearing nature to the flow, as shown for a local 
region o f the fluid in Fig. 3.6.

A  u 
U--- ►

velocity u -  
force F ----------------►

Figure 3.6: Layers of fluid sliding past each other, giving a shear rate Ah/A y, which requires a force F . 

The extent o f the shear is expressed in terms o f the shear rate:

shear rate =  Aw/Ay. (3.3)

It takes a force F  to overcome the friction o f the layers sliding past one another. The force is described 
locally in terms o f the shear stress r:

where A  is the area over which the force F  acts.

r = F  / A, (3.4)
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a)

shear
stress

X

Newtonian b) Non-Newtonian

blood plasma 

water

shear rate Au/Ay

Figure 3.7: (a) Plot o f the shear stress vs. shear rate for three fluids that exhibit a linear relationship 
(Newtonian). The slope gives the fluid’s viscosity fi, which is a constant, (b) Plot o f whole blood. The red 
blood cells cause the fluid to be Non-Newtonian, where the viscosity varies with the flow rate.

When the shear stress o f a fluid is plotted as a function o f the shear rate, a graph similar to 
Fig. 3.7(a) is obtained for many well-behaved fluids. It shows a linear relationship between shear 
stress and shear rate, such that the force required to drive the laminar flow is proportional to the 
velocity o f the flow. When put in terms o f shear stress r and shear rate, the fluid obeys the following 
equation:

r =  fi ■ (A u/A y), (3.5)

where the proportionality constant fi is the viscosity o f the fluid.
Now the presence o f the viscosity term fi in the denominator o f (3.2) seems reasonable: the 

more the fluid resists shear flow (i.e., the higher its viscosity), the more pressure A P  it takes to 
cause a certain flow rate Q. Molasses takes more force to flow through a tube than water. When the 
viscosity value is a constant that is not dependent upon the flow rate, as in Fig. 3.7(a), the fluid is 
termed Newtonian.

However, some fluids exhibit a viscosity that varies with flow rate. Such fluids are termed 
Non-Newtonian. An example is whole blood, where the addition o f the red blood cells to blood 
plasma causes the viscosity to increase several fold from that o f plasma (so “blood is thicker than 
water”) and also to become variable, as shown in Fig. 3.7(b).

3.2.1 S IM P L IF IE D  V E R S IO N  O F  P O IS E U IL L E ’S L A W
As with Darcy’s Law, we can put Poiseuille’s Law (3.2) in a form that involves the resistance o f the 
tube. For flow through tubes, the fluid resistance (or hydraulic resistance) is given by
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R
8/xI

n cr
(3.6)

With this definition o f fluid resistance, Poiseuille’s Law (3.2) has the following simplified form:

A  P
Q =  —R

P 1 -  P2 

R  '
Alternate Form o f Poiseuille’s Law (3.7)

It is often convenient in diagrams to show flow through pipes or tubes by replacing the physical 
shape o f the tube with a symbol representing the resistance R  o f the tube. The symbol for a fluid 
element that has resistance to flow, such as a tube, is given in Fig. 3.8.

P, -
+

R

A A A
Q  — ►

P2

Figure 3.8: Symbol for a resistive fluid element, such as a tube.

3.2.2 A S S U M P T IO N S  F O R  P O IS E U IL L E ’S L A W
For Poiseuille’s Law to hold, there are a number o f assumptions that must apply to the flow through 
the tube:

* The length o f the tube must be much greater than the radius,

* The flow must be steady in time and laminar in velocity' profile,

* The fluid must be Newtonian, and

* The tube must be rigid.

Actually, in biological circulator}' systems, none o f these assumptions are strictly met for flow through 
the entire organism. However, they hold to some degree under certain conditions. Let’s examine the 
areas o f validity' for each assumption for blood flow in the human circulation.

* Length is much greater than radius -  This approximation is valid in the aorta, in longer arteries 
and in some o f the small-diameter, long capillaries, but it is not very valid in the rapidly 
branching, shorter networks found throughout the system.

* Flow is steady and laminar -  The blood flow in the aorta and arteries is pulsatile, so the 
approximation is not valid in those vessels. But when the flow reaches the capillaries and 
veins, it becomes increasingly steady due to the damping action o f the compliant vessels (to 
be covered in Chapter 4).
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Whether the flow profile is laminar or not can be predicted by the flow’s Reynolds number 
% Re, which is a dimensionless (that is, unitless) number calculated by

puD
Re =  ----- , (3.8)

IX

where p is the fluid density (kg/m3), u is the fluid velocity' (m/s), D  is the diameter o f the 
tube (m), and fx is the dynamic fluid viscosity' (kg/m-s or Pa-s). Reynolds numbers o f 2000­
4000 are often considered to be the approximate dividing values between laminar and turbulent 
flow: when the Reynolds number is below 2000, the flow is likely laminar, while i f  the Reynolds 
number is above 4000, the flow will usually be turbulent. Between 2000 and 4000, the flow 
can be either depending upon other factors such as the time course o f the flow and nearby 
boundary disruptions— e.g., branching— since that will alter the flow profile. Now almost all 
flows in the human body (with the exception o f blood flow in the large aorta during peak 
ejection from the heart) are o f such low flow velocities that the Reynolds number is much 
below 2000 and the flow is laminar, not turbulent.

* Fluid is Newtonian— Without red blood cells, the blood plasma is reasonably Newtonian [see 
Fig. 3.7(a)], but when the red blood cells are added, the whole blood becomes Non-Newtonian, 
except over narrow ranges o f flow rates [see Fig. 3.7(b)].

* Tube is rigid— All blood vessels are not rigid, but rather are distensible and flexible to some 
degree, with veins being more flexible than arteries. This proves beneficial to the circulation 
by smoothing out the flow.

So it is clear that the assumptions inherent in Poiseuille’s Law do not apply at all times and in 
all places in the blood circulation. Nevertheless, Poiseuille’s Law in the form o f (3.2) is still o f value 
when applied to many o f the individual vessels. Furthermore, when an entire ensemble o f vessels is 
analyzed (as in calculating the peripheral resistance o f the systemic circulation— see example below), 
detail about the vast number o f individual vessels is not known so the simplified form (3.7) is used, 
in which case a single combined resistance characterizes the ensemble. On this scale, the validity' 
o f the assumptions is less important and Poiseuille’s Law in the form o f (3.7) becomes even more 
applicable.

Example 3.1. Peripheral Resistance o f the Human Systemic System
In physiology terms, the fluid resistance o f the entire human systemic circulation, from the inlet at 
the aorta to the outlet o f the vena cava, is called the “peripheral resistance.” Given that a typical 
human cardiac output is 5.5 L/min, that the average pressure in the aorta is 100 mmHg, and that the 
average pressure in the right atrium is 7 mmHg, find the peripheral resistance in units o f mmlig-s/L.
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The peripheral resistance can be modeled with the simplified form o f Poiseuille’s Law:
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Q  — ►

P i * ------W ------• p2

R pr

Figure 3.9: M o d e l o f  periphera l resistance used in E xa m p le  3.1

A P  A P
where Q =  -----, so R pr =  ----- . First find Q in units o f L/s:

Rpr Q

L  / I min\ L
Q =  5.5 —  -------  =  9.2 x 10 —.

min \ 60 s / s

Also A P  =  P\ — P i =  100 m m lig — 7 m m lig =  93 mmlig.Then

=  « m m lig ip ; m m lig-s  =  mm

; 9.2 x 10 L/s L  S ;

3 .3  P O W E R  E X P E N D E D  I N  T H E  F L O W

It takes energy to force the fluid through the tube against its resistance, and since power is defined 
as the energy expended per unit time, there is a power requirement for maintaining the flow. This 
power O is given by the product o f the pressure drop and the volume flow rate:

<t> =  A P  Q. (3.9)

Relating pressure drop and flow to resistance by (3.7) gives alternate forms for the expended power:

-> (A P )2
® =  Q -R  =  (3.10)

These power concepts are addressed again in Chapter 7.

3 .4  S E R IE S  A N D  P A R A L L E L  C O M B I N A T I O N S  O F  

R E S I S T I V E  E L E M E N T S

The circulatory network o f vessels contains a great number o f interconnections: some vessels can 
be considered connected in series (where the flow goes through each tube sequentially without 
splitting), others in parallel (where the flow splits into several branches before recombining). Using 
the concept o f fluid resistances, a combination o f several tubes either in series or in parallel can be
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easily handled by defining an equivalent resistance Req that represents the effect o f the resistances 
lumped together. These two situations are considered next.

3.4.1 SERIES
This configuration can be illustrated using three hydraulic resistors in series:

P1 P2 P3 P4 P1 P  

W W V — — M V -  equivalent to H W r - 4 

Rj  R2 Rj  R

Q — -
eq

Figure 3.10: Resistive elements in series can be replaced by an equivalent resistor.

Since the same flow Q must go equally through all elements, (3.7) can be applied to each resistance 
in turn:

Pi - P 2 =  Ri Q
P2 -  P} =  R2 Q (3.11)

and Pj, -  P4 =  Ri Q.

Adding these three equations together and defining an equivalent resistance Req gives

A p  =  p x _  p 4 =  ( R {  +  R l +  =  R eqQ ,  (3.12)

where the equivalent series resistance can be seen to be

Re q — R [ R2 "h R i Series (3.13)

and the total pressure drop is related to the flow rate by (3.12). The general formula for combining 
N  resistors in series is

N
Req =  y  ' R„. (3.14)

n=l
where E is the standard notation for summation.

3.4.2 P A R A L L E L
The parallel case can be illustrated with two resistive elements in a branching configuration in 
Fig. 3.11. Here the flow is split— usually unequally— between the two branches. Flow Qi goes 
through resistor Ri and Q2 goes through R2. By the conservation ofvolume principle for incom­
pressible fluids, the total flow Q entering (and exiting) the entire circuit must be equal to the sum 
o f the flows in the two branches:
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pj

Q

Q ,

R W W -

v w v

P2
equivalent to

I ) P

- ^ w v 2 -
R

eq

Figure 3.11: R es istive  e lem en ts in parallel can be replaced  b y  an equ iva len t resistor.

0 =  01 +  02- 

The pressure drop is the same across each element, given by

Py -  P2 =  A P .

Using (3.7), the branch flows are related to the common pressure drop by

(3.15)

(3.16)

and

A P

0| =  “k T '
A P

R2
Q2

Putting (3.17) and (3.18) into (3.15) and defining an equivalent resistance gives

A P  A P  / I  1 
0 = ------ 1------ =  A P -------1-----
*  P i p 2 U i  r 2

where the equivalent parallel resistance can be seen to be

A P

R,« i

R,«i

1 1 

Y y + ~R '̂
Parallel

The general formula for combining N  resistors in parallel is

N

et) n= 1 Rn

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

A  more complex flow circuit containing both parallel and series combinations can be analyzed 
by combining each segment using the appropriate equivalent resistances, in order, until the entire



circuit is represented by an equivalent resistance. Application of this technique is given in the second 
example below.
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Example 3.2. Adding Tubing to a Membrane Filter
Let the semipermeable membrane analyzed in the example of Chapter 2 (see p. 21) have inlet and 
outlet tubing added to each end of the membrane, as shown in Fig. 3.12.
Assuming that the flow rate of water through the entire assembly is the same as in the example in 
Chapter 2 (Q  =  2.92 x 1CP7rrrVs), and assuming that the inside diameter of the tubing is the same 
as that of the membrane (D  =  1.7 cm), calculate how much additional pressure drop is incurred 
when the tubing is added.

inlet tube
membrane 
from Unit 2 outlet tube

11 = 30 cm l2 = 20 cm

Figure 3.12: Drawing of configuration analyzed in Example 3.2.

Solution
The tubing can be considered to add additional fluid resistance to the overall assembly.The resistance 
of each tube can be found from (3.6):

„  8^/1 i n  8^ 2i =  ------ — and Ro =
4izaZ

in which =  112 =  D/2 =  8.5 x 10 3m.
Since the resistances of the two tubes are in series, their resistances add, as given by (3.14):

TT

8/ti (/1 +  h )  8(1.0x10 3Pa • s) (5.Ox 10 !m)  ̂ ( in5Pa- 

' * (D / 2)4 =  n  (8.5 x 10-3m )4 = 2 '4 X ^

where the viscosity of water /x =  1.0 x 10 3Pa-s has been used.The additional pressure drop that 
is added to the original pressure drop (0.100 psi) can be found from (3.7):
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A^add =  Q ■ t̂ubing =  (2.92 x 1 (T7 m3/s) • (2.4 x 105 Pa • s/m3)
=  7.0 x 10-2 Pa =  0.000010 psi.

Note that the additional pressure drop due to the tubing is only 1/10,000th o f the original pressure 
drop, so it is negligible compared to the drop across the membrane itself. This is because the tubing 
is relatively short in length and large in diameter.

Example 3.3. Branching Vessels
Whole blood flows through a single vessel before splitting into two identical parallel vessels in 
Fig. 3.13.
The length o f each segment is 2.0 cm. The combined cross-sectional area o f the two parallel vessels 
is the same as that o f the single vessel. Given a blood flow rate o f 1.0 mL/min, what is the pressure 
drop across the entire configuration? (Assume that the viscosity o f whole blood is 4.0 cP.)

radius =1.0 111111 r — 
i - f

Figure 3.13: Branching vessel arrangement analyzed in Example 3.3.

Solution

This arrangement can be analyzed as one resistance in series with a parallel combination o f two 
other resistances in Fig. 3.14.
We can use Poiseuille’s Law to find each o f the resistances, after we first find the radius r i o f each 
o f the identical parallel tubes. Given that the combined area o f the two tubes is equal to that o f the 
single tube, then
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Q

p, VW\r
R .

VWV

VAV

Figure 3.14: Schematic model o f the branching tubes.

2 2 , 2 o 27tj*| =  7rr, +  7rr, =  27rr,,

ri 1.0 mm _ A
so r? =  —— = -----—— =  0.71 mm =  7.1 x 10 m.

“ s fl s/2

Then, using (3.6),

8 i l l  8(4.0 x 10-3 Pa-s) (2 .0 x l0 -2 m) xPa-s
fa  =  fa  =  — ----------------L =  8.Ox 10 —

n ( n )  n (7.1 x 10 -4 m) m_

1 1 1
Now combine these two resistances in parallel using (3.20). See Fig. 3.15 where —  = ----- 1----- .

Rp R 2 R 3

VWVR2 equivalent 

to

Figure 3.15: Two parallel tubes combined into one equivalent resistance.

1 2 fa  8.Ox 108 x Pa • s 
Since R2 =  R i. -  =  — ,o r R p =  - ^  = ---- ----- =  4.0x 108^ .

Rp R i 2 2 mJ
Hence, the entire configuration can be modeled as two resistors in series in Fig. 3.16 where Rê  =  
R\ +  Rp. Again using (3.6),

8/il 8 (4.0 x 10-3 Pa • s) (2.0 x 10-2 m) Pa • s 
R 1 = --------7 = ---------------------------------4------------ =  2.0 x  10 — r—.

7T(n) 7T ( l  X 10-3 m) m_

[Note that even though the combined cross-sectional area o f the two parallel tubes is the same as 
the single tube, their equivalent combined resistance Rp is still twice that o f the single tube R 1. This
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^ / V W A V -  eqt alent - W W -
R , R  R

I p  eq

Figure 3.16: Two series resistances combined into one overall version.

shows the large influence that the r4 term has in determining the resistance of an assembly, and why 
the arterioles can be so effective in controlling blood flow distribution by changing their diameter 
under smooth muscle control.]
Thus, Req =  R{ +  Rp =  2.0 x 10s +  4.0 x 10s =  6.0 x 10s Pa • s/m3. The model is now simpli­
fied to a single resistance. See Fig. 3.17 where

mL 1 L  (\  min\ ( 1.000 x 10-3 m3\ x mJ
Q =  1.0—  =  1.0 x 10-3—  — —  ---------— ---------  =  1.7 x 10-8 — .

mm mm \ 60 s / \ 1 L  / s

Q

PI • --------W --------•  p2
R

2

eq

Figure 3.17: Branching tubes reduced to one overall resistance to find A  P.

Then using (3.7), A P  =  Q ■ Req =  (1.7 x 10_s m3/s) • (6.0 x 10s Pa - s/m3) =  10 Pa.

- tt n (1  m m lig\
Converting to units of mmHg, A P  =  10 Pa ■ I I =  0.075 mmHg.

\ Jr3. /

3 .5  P R O B L E M S

3.1. a. Given that an oxygen molecule in an aqueous environment will diffuse an average distance 
of 100 jim  in 1.0 second, find its diffusion constant D  from (3.1).

[ans: D =  2.5 x 10^y m2/sl

b. Using the value from part a, estimate how long it would take an oxygen molecule to diffuse 
from your lungs to your big toe.

fans: Approx. 1.8 x 10s s, or 5.8 yrs for a typical height!]
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3.2. Three tubes each have the same fluid resistance, R = 6060 Pa-s/m3 (to 4 significant figures).

a. I f  all three are put in series, what is the equivalent overall resistance o f the series combination?

fans: Req =18,180 Pa-s/m3]

b. I f  all three are put in parallel, what is the equivalent overall resistance o f the parallel com­
bination? Hint: Use Equation (3.21).

fans: Req =  2020 Pa-s/m3]

3.3. a. In the human cardiovascular system, the blood pressure measured at the arterial side (input 
side) o f the capillary bed is approximately 6650 Pa, while the blood pressure at the venous 
side (output side) is approximately 3325 Pa. These values are for a typical human volumetric 
blood flow o f 92 mL/s. (Note the use o f mL here, a non-SI unit.) Using the concept o f fluid 
resistance, calculate the total equivalent resistance o f the capillary bed in SI units. Remember 
that IL  =  1.000 x 10-3 m3 =  1.000 x 103 cm3.

fans: R =  3.6 x 107 Pa • s/m3]

b. In the actual clinical environment, SI units are rarely used. In clinical practice, blood pressure 
is almost always measured in units o f millimeters o f mercury (mmHg), and blood flow is given 
in units o f either liters per minute (L/min) or liters per second (L/s). In these units, the blood 
pressure across the capillary bed drops from 50 mmHg on one side to 25 mmHg on the other 
when the flow is 0.092 L/s. Using these clinical units, calculate the equivalent resistance o f the 
capillary bed.

fans: R  = 270 mmHg-s/L]

3.4. a. A  single capillary is about 8.0 fim  in diameter and has a typical length o f about 1.0 mm. Using 
Poiseuille’s Law and values for whole blood from Appendix B, calculate the fluid resistance 
(in SI units) o f a single capillary tube.

fans: R 4.0 x 1016 Pa • s/m3 assuming a whole blood viscosity o f 4.0 cP]

b. O f course, the human capillary bed is composed o f many, many capillaries arranged in 
parallel. Assuming that each one has the resistance value found in part a, calculate how many 
o f them must be in parallel in the human C V  system such that the overall equivalent resistance 
has the value found in Problem 3.3a.

fans: about 1,100,000,000 !]



c. In a sentence each, discuss how well this capillary configuration meets each of the require­
ments found on pp. 34 to 35 for Poiseuille flow to be valid:

1) The length of the tube must be much greater than the radius,

2) The flow must be steady in time and laminar in velocity profile,

3) The fluid must be Newtonian, and

4) The tube must be rigid.
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H o o k e ’s  L a w :  

T i s s u e s

4 .1  I N T R O D U C T I O N

Superman1 M may be the Man of Steel and his chest may stop bullets, but if his body were made 
entirely of steel-like material, it would not function nearly as well as yours or mine. For example, how 
could the skin around his elbow stretch and conform when it is bent, and how could the skin of his 
face show a smile? How could his bladder, if made of rigid material, expand to fill with urine, then 
contract as it is expelled? Without elasticity', his arteries and veins would not cushion and smooth 
out the pulses of blood flow from his heart, leading to punishing, pounding pressure waveforms 
throughout his body. And how could Superwoman1 M accommodate a pregnancy if her skin and 
abdominal organs could not expand or contract?

In fact, all tissues in the body have elasticity', some more so than others depending upon their 
function. Even bones, which are relatively stiff and rigid in order to act as the skeleton framework 
for the body, have some elasticity'; otherwise they would not absorb shock and distribute stress 
appropriately. The soft tissues of the body are obviously more elastic than bone in performing their 
function. Cartilage is somewhere between bone and soft tissue in flexibility'.

4 .2  T H E  A C T I O N  O F  F O R C E S  T O  D E F O R M  T I S S U E

There are three main classes of actions that any given external force can have on a tissue sample, 
depending upon the direction of the force and the direction of the distortion of the sample. These 
are summarized in Fig. 4.1, which considers a small stylized cube of the tissue.

In the first action, the force components F  push perpendicularly inward equally on all faces 
of the sample, causing it to compress its volume. The magnitude of the force is best described in 
terms of the pressure P  =  F/A, where A is the face area upon which the force is acting. We have 
already encountered the concept of pressure in the previous two chapters.

In the second action, the force acts tangentially (sideways) to one or more faces of the sample, 
causing is to twist out of shape, but not changing its volume.The action of the force is best described 
here by the shear stress r =  F/A  , where A is again the area of the face over which the force is 
tangentially applied. We have seen how shear stress is related to fluid flow and viscosity' in Chapter 3.

The third class of deformation is when the forces act only on two opposite ends of the sample, 
tending to pull it apart (or push it together). This puts the material in tension (or compression) and 
can best be related to the applied tensile stress a =  F/A, where again A  is the cross-sectional area
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Pressure Shear Tension

Figure 4.1: Three ways that a force can distort a tissue sample.

o f the face through with the force is applied perpendicularly. This is the deformation described by 
Hooke’s Law below.

Note that the dimensions o f all three stresses in Fig. 4.1— pressure, shear stress and tensile 
stress— are the same (force per area) and therefore their units are the same (Pa in SI units). However, 
how they are applied is different in each case. Pressure and tensile stress are both applied normally 
(i.e., perpendicularly) to the faces, while shear stress is applied tangentially. Pressure acts equally on 
all sides o f the sample, while tensile stress is applied only to opposite faces.

4 .3  H O O K E ’S L A W  A N D  E L A S T I C  T I S S U E S

Biomechanical engineers measure the extent to which tensile stress can distort various tissues by 
employing a testing machine similar to that shown in Fig. 4.2. A  sample o f the material to be tested 
(aligned such that the direction o f stretch will be in a direction o f interest in the sample material) is 
fabricated and clamped between a fixed base and a movable upper bar.The sample is usually fabricated 
in a “dog-bone” shape, the large ends for convenience in clamping and the narrower middle section 
to allow enough stretch for accurate measurement. Bones, ligaments, metals, man-made composites 
and some soft tissues can be tested in this manner.

When the test is started, the upper bar moves slowly upward (or downward for compression) 
in a controlled fashion, exerting a force on the sample. The magnitude o f the force F  is measured 
by a gauge (a load cell) in series with the sample.

Since the cross-sectional area A o f the sample in its narrow region can be measured prior to 
the test (and is often assumed to remain approximately constant throughout the test1), the tensile 
stress a at any time during the test can be calculated from

1 When the cross-sectional area A is assumed to be constant, the stress is defined as “engineering” stress, as used here. “True” stress 
instead puts a changing area, which is more difficult to measure, in the denominator of (4.1).
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Figure 4.2: A  tensile (or compressional) testing machine for determining the elastic constants of various 
materials.

a =  F/A. (stress) (4.1)

The amount o f stretch (or compression) o f the sample during the test is measured by reference 
to two points separated by a distance / along the sample’s axis. The measurement can be done with 
a number o f different length gauges, or extensometers, including optical means and video cameras. 
W ith no applied force the points are a distance /q apart, the original spacing. As the force is gradually 
increased, their spacing changes to a new value /. The resulting strain s o f the material can be 
determined from2

e =  (/ — /())//()■ (strain) (4.2)

Over the course o f the test, values o f both stress and corresponding strain are recorded. Note 
from (4.2) that strain is a dimensionless (therefore unitless) quantity, while from (4.1) stress has 
units appropriate for pressure. When plotted on a stress-strain curve, the results can appear as 
shown in Fig. 4.3 for two different materials.

The solid line in Fig. 4.3 plots the results for a material that behaves in a linear fashion, at 
least up to the point where the material fractures. For a linear elastic material, the strain and stress 
are related by a constant coefficient and obey Hooke’s Law:

’When strain is defined with the original distance /() in the denominator, as in (4.2), it is known as “engineering” strain, as used 
here. “True” strain instead puts the changing distance / in the denominator, but this is a little more difficult to employ in most 
analyses.
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Figure 4.3: Results o f a stress-strain test on two different materials. The material giving the solid line is 
linear with a slope equal to Young’s modulus. The dashed line describes a non-linear material.

E s. Hooke’s Law (4.3)

The constant o f proportionality E  in (4.3) is known as the elastic modulus, or Young’s 
modulus or simply stiffness. It is found from the slope o f the linear portion o f the stress-strain plot. 
Since units o f stress are the same as pressure (namely Pa) and strain is dimensionless, (4.3) shows 
that the units o f E  are also the same as pressure (Pa). Materials that follow the linear Hooke’s Law 
are called Hookean. Bone and some biopolymers as well as biomaterials such as metal and ceramic 
orthopedic implants are approximately Hookean over a wide range o f applied stress. Appendix B 
contains the Young’s modulus for typical materials.

The dashed line in Fig. 4.3 shows a material that is highly non-linear in behavior, being pliable 
at low force, stiffening up for moderate to high force, then again getting pliable just before i f  fractures. 
This response is typical o f many soft tissues in the body, such as bladder walls, skin and the walls 
o f blood vessels. However, every tissue is somewhat unique in its exact response to force, depending 
upon its function. Many materials have a limited range over which their response is approximately 
linear, and they can be specified by a local tangent elastic modulus that is valid when the material is 
within that range.

As the force is applied larger and larger in Fig. 4.3, eventually all materials will fail by fracturing. 
The stress point at which this happens is called the ultimate stress, denoted by an asterisk (*) on the 
plot. It is the highest stress a material can tolerate without failure. Along with Young’s modulus (if 
the material is linear), it characterizes the material. For example, with advancing age bone becomes 
more brittle and susceptible to fracture from falls.This is manifest in alowering o f its ultimate stress. 
The bone structure loses density and becomes osteoporotic. The risk for this condition is especially 
prevalent in post-menopausal women.
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Example 4.1. Bone Splint
When a splint (a bone support plate) is fixed along the side of a broken bone, it is important for the 
splint to be rigid enough to keep the bone at the fracture plane from moving under load, thus allowing 
the bone to stay in place and heal. Consider two different splint materials, polyethylene (a polymer) 
and stainless steel. Each splint has a cross section of 0.500 x 0.250 inches, and is 10.0 inches long. 
When a force of 200 pounds is applied to the top of the bone/splint combination, how much relative 
movement occurs between the two sides of the fracture for each material?

r r
splint

bone

'fractu re

Figure4.4: Sketch ofbone splint configuration analyzed in Example 4.1.

Solution
Since the two faces of the bone at the fracture plane can slide and therefore will not resist any weight, 
all of the force will be absorbed by the splint. From (4.1) the tensile stress placed on the splint is

<7 =  F  j  A =  200 lbf/C0.125 in2) =  1600 psi =  1.10 x 107 Pa. (4.4)

where a conversion factor from Appendix A  was used to get the last value. The resulting strain is, 
from (4.3),

s =  a/E. (4.5)

Since by the definition of (4.2) e =  (I — lo)/lo =  A//lo, solving for A I and using (4.5) gives

A I = l Qe = I q o /E. (4.6)



Now /() =  10.0 inches =  0.254 m, so using (4.4), /q<t =  2.79 x 106 Pa • m.
We will next put this value into (4.6) to solve for A l for the two different materials with different 
Young’s modulus.

Polyethylene'. From Appendix B, Young’s modulus for high-molecular-weight polyethylene is E =
1.00 x 109 Pa. Therefore, the compression o f the splint (which is seen as relative movement between 
the two sides o f the bone at the fracture plane) is, from (4.6),

A l =  (2.79 x 106 Pa - m)/(1.00 x 109 Pa) =  2.79 mm.

This large amount o f movement will certainly be disruptive to the healing process.

Stainless steel'. From Appendix B, Young’s modulus for stainless steel is E  =  180 x 109 Pa. Thus,

A l =  (2.79 x 106 Pa - m)/(180 x 109 Pa) =  15.5 fim .

This movement is much smaller, and can be tolerated by the bone healing process.

4 .4  C O M P L I A N T  V E S S E L S

Tissue elasticity plays a major role in the proper functioning o f the cardiovascular system. The vessels 
that carry blood from and to the heart are not rigid tubes, but rather have flexible walls that stretch 
in response to the blood pressure inside them, to a greater or lesser degree depending upon their 
elasticity and the pressure3. This vessel compliance has at least three important consequences on the 
nature o f the circulation:

• The pulses o f blood discharged by the heart ventricles with each beat are propelled into 
compliant vessels (the aorta and the pulmonary artery) that temporarily store some o f the 
energy o f the ejected blood as potential energy in their stretched walls. After the ventricle 
output valves close— blocking the return o f the blood to the ventricles— the vessel walls recoil 
and the stored potential energy is converted to additional blood velocity (kinetic energy), 
helping push the blood down the arteries. This augments the cardiac output o f the heart 
during the diastolic phase while at the same time keeping the peak systolic pressure lower. The 
actions o f wall recoil are diagramed in Fig. 4.5.

• The pulsating blood pressure, very noticeable in the aorta and major arteries, is damped by 
the compliance o f the arteries, arterioles, and capillaries in conjunction with their resistance, 
so that by the time the blood reaches the capillaries, the pressure waveform is almost flat.

• The veins and venules are the most compliant o f all the vessels, being thin-walled and very 
flexible, and they therefore store a good deal o f the total blood volume (about 65%) o f the

J Compliant blood vessels are called “windkessel” vessels, and are discussed in more detail in Chapter 5.
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a. systole

b. diastole

Figure 4.5: Diagram of the recoil action of the compliant walls o f the aorta and arteries. The major 
effects o f wall compliance are to lessen the peak pressure during systole (a), and to add flow down the 
circulation during diastole (b). (After Silverthorne, 1998.)

entire circulation. The size o f this pool o f blood is regulated by the compliance (the “tone”) o f 
the venous vessels, which in turn is under partial control by the nervous system. This forms 
an important contributor in the control o f the blood distribution and pressure in the systemic 
system. In the case o f a major change in the tone o f venous compliance, such as happens 
in anaphylactic shock, there is a large change in the distribution o f blood, leading to severe 
alteration o f the circulation’s effectiveness, and possibly even death.

A  simple diagram o f how the volume in a compliant vessel is related to the net pressure (i.e., 
inside pressure minus outside pressure) is shown in Fig. 4.6. Increasing the net pressure will linearly 
increase the vessel’s volume— up to a point where the limit o f elasticity is reached. In the linear 
region the proportionality constant between pressure P  (Pa) and volume V  (m^) is called the vessel 
compliance C (nrVPa).The larger the vessel’s compliance, the larger the volume for a given pressure. 

Mathematically, the relationship shown in Fig. 4.6(b) can be stated as

V =  v4) + C P  (4.7)

where P  = net pressure in the vessel
V = volume o f the vessel
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Figure 4.6: When the pressure increases in a compliant vessel, its volume increases (a). The graph of the 
volume vs. pressure (b) usually has a linear region, whose slope is the vessel compliance C.

C = compliance 
V$ = residual volume.

Equation (4.7) is a generalized form ofHooke’s law applied to compliant vessels.The residual 
volume V,p is the volume left in the vessel even with zero pressure; that is, it is the volume remaining 
when the vessel is completely relaxed. On the plot above, it is shown by the intercept o f the straight 
line with the vertical axis. Arteries and arterioles have some residual volume (as evidenced by the 
fact that their diameters are still partially open when they are excised from the body), but venules 
and veins have much less residual volume and can collapse completely shut when unloaded.

The pressure P  in (4.7) is the transmural (“across the walls”) pressure, which is the difference 
between the pressures inside and outside o f the vessel. Usually the pressure outside — which is the 
background pressure— is constant, and is often considered zero as the reference pressure.

Compliant vessels are found throughout the human body (blood vessels, bladders, lungs) as 
well as in other non-biological applications (hydraulic reservoirs, vibration dampers, automobile 
tires). Since they have the capacity for the storage o f fluid volume, in diagrams they are given the 
symbol o f a capacitor in Fig. 4.7.

This symbol has certain significance.The two horizontal lines can be thought o f as representing 
the outline o f a storage container (with variable volume). The fact that there is no direct connection 
between the upper line and lower line indicates that there is no net leakage across the walls from 
inside the vessel to the outside. (Leakage would be represented by a resistive element in parallel with 
the capacitor to ground.)
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Figure 4.7: The symbol for a compliant vessel.

4 .5  I N C O M P R E S S I B L E  F L O W  I N T O  A N D  O U T  O F  

C O M P L I A N T  V E S S E L S

To get fluid volume in and out o f the vessels, there must be some fluid flow through one or more 
openings. There is a simple relationship between the volumetric flow rate Q (a variable introduced 
in previous chapters) and the volume V  contained in the vessel. Since the liquids we are interested 
in (water and blood) are essentially incompressible, the volume o f the fluid must be conserved when 
flowing from one region to another; this is the principle o f  conservation ofvolume. It means that 
during any increment o f time At, a net volume flow rate Q into or out o f the vessel will change the 
vessel’s volume by the total amount o f volume A  V that has flowed, so

a v  , s 
£?net =  (4.8)

Rearranging,

A V  =  (2net A?. (4.9)

Assuming that the volume o f the vessel originally had a value o f V0rig before flow was measured and 
time incremented, then (by the definition ofvolume change) the new volume Vnew after accounting 
for the flow Qnet is given by

View — Vorjg +  A V  — Vorig +  QnetAf. (4-10)

I f  more fluid is entering the vessel than is leaving during A t, the net flow is in the direction into 
the vessel and the sign o f (?net is positive. Then (4.9) shows that the vessel volume change A  V has 
a positive sign, and (4.10) shows in turn that the vessel volume increases. On the other hand, if 
more fluid leaves than enters, the net flow Qnet has a negative sign, A  V has a negative sign, and the 
volume decreases.

Now from (4.7), pressure P  and volume V  are related by C, so the new pressure and new 
volume are related by
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Vnew — fy  +  C / W  (4-11)

Rearranging,

Vn

c
(4.12)

where is the residual volume o f the vessel and shouldn’t be confused with Vorjg.The value for Vnev/ 
is obtained from (4.10). These relationships are important in understanding the pressure/volume 
interaction in vessels o f the human cardiovascular system.

Extending (4.7) in another way, since pressure P  and volume V  are related by C, then changes 
in pressure and volume are similarly related. From (4.7), since the residual volume is a constant and

n  - 4assuming L is  a constant ,

A P  =  — . (4.13)

Substituting A V  from (4.9) into (4.13) and rearranging gives

A P  1 ,
—  Onet- (4.14)

For (4.14) to be accurate, Q net and C must be steady during the interval At. I f  At is small enough, 
this is true. In fact, taking A t to a limit approaching zero gives the differential form o f (4.14):

d P  1
—  =  ~ Q n c  f  (4.15) 
dt C

Equations (4.14) and (4.15) state that the more compliant a vessel is (i.e., the larger C is), the slower 
the pressure will change for a given flow rate in or out.

Example 4.2. Capillary Compliance
The human systemic capillary bed has a mean blood pressure o f about 30 m m lig and holds about
6.0% o f the total body blood volume. Its residual volume is about 1.0% o f the total blood volume. 
Estimate its total compliance.

Solution
Since the total blood volume in a human is about 5.0 L, the systemic capillary bed has a residual 
volume Vtf, =  0.010 x 5.0 L  =  0.050 L. Its total volume at a pressure o f 30 m m lig is V =  0.060 x
5.0 L  =  0.30 L. Thus, from (4.7)

4The compliance of most vessels can be considered constant over a short time period, but NOT that of the heart ventricles (see 
Chapter 5).



C =  (V  -  V ^ / P  =  (0.30 L  -  0.050 L)/30 m m lig =  0.0083 L/mmHg.
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Example 4.3. Pressure Increase Caused by Blood Flow
I f  during a period o f 5 seconds, the blood flow into the capillary bed o f the previous example is 
5.6 L/min, but the flow out is 5.2 L/min, how much would the capillary volume and blood pressure 
change during this period?

Solution
The net flow into the capillary bed is given by the inflow minus the outflow, or 
<2net =  (5.6 — 5.2) L/min =  +0.4 L/min =  +0.007 L/s. According to (4.9),

A V =  QnetA? =  (0.007 L/s)(5 s) =  +0.04 L.

From (4.10) and the values o f the previous example,

Vnew =  0.30 L  +  0.04 L  =  0.34 L

and from (4.12),

Pnew =  (0.34 L  — 0.05 L)/0.0083 L/mmHg =  35 mmHg.

So the capillary blood pressure would rise from 30 m m lig to 35 mmlig.

P R O B L E M S

m.5 Suppose that the following lines are typed in the command window o f Matlab. After each 
line is typed, the “return” or “enter” key is hit. First, on a piece o f paper without the aid o f a 
computer, write down what you believe would be printed or plotted on the Matlab screen in 
response to each line. Then check your answers by actually entering these lines, one at a time, 
into the command window o f a computer running Matlab. Correct your initial answers on the 
sheet o f paper. (Notes: For this homework, just turn in your hand-written final answers; you 
don’t need to print out the Matlab screen. Also, i f  you don’t understand why you are getting 
certain responses, try using the help command or the help desk feature o f Matlab.)

A = on es (l,5 ) 
a=[5 6 4 2 1] 
a (3 )

Problems with the suffix “ni” have significant Matlab content.

4 .6

4.1.
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a (3 )=0  
b= [1 :5 ] 
b (4 :5)
c=a + b; % carefu l, th is  one is  t r ic k y  
d=a + A 
pause(4 )

4.2. m. Suppose that the following lines have been stored as an m-file under the name “work2.m.” 
First, on a piece of paper without the aid of a computer, write down what you believe would be 
printed or plotted on the Matlab screen in response to typing work2 in the command window 
of Matlab. Then check your answers by actually storing these lines as an m-file with the name 
“work2.m,” and then typing work2 in the command window. (Make sure yourworking Matlab 
path includes the directory that has this m-file inside so Matlab can find it. You can use a menu 
command to add the directory to Matlab’s path if necessary.) Correct your initial answers on 
the sheet of paper. (Note: Just turn in your hand-written answers along with a rough sketch 
of the plot on your sheet; you don’t need to print out the Matlab screen.)

f= [6  3 2 8; 5 4 2  1;
9 0 0 3] 

f (3 ,1 ) 
f (2 , :  ) 
f  ’
c le a r  f  
f  = [3 :2 :12 ] 
f ( 4 ) = f (3 ) 
g = [ l  2,3 4 5]
p l o t ( f ) ;  hold on; p lo t (g )  
x la b e l ( ’ index number’ ) 
y l a b e l ( ’ f  and g ’ ) 
t e x t ( 3 , 5 , ’ g rea t p l o t ! ’ )

4.3. m. Write a Matlab m-file (called a “script”) that does the following tasks in order:

a. Set up a row vector that has 21 elements ranging linearly in value from 0 to n.

b. Using the vector from part a, produce a rowvector that has the shape of the positive half-cycle 
of a sine wave. It will have values ranging from 0 to 1.

c. Using the vector from part b, produce a rowvector that has the same shape as part b, but 
has values ranging from 0 to 10.
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d. Using a fo r  loop, search each element o f the vector from part c to test whether the element 
has a value less than 7.0. I f  it does, set the element value to 0; i f  it doesn’t, set the value to 12.0. 
(Note: use an if statement inside the fo r  loop).

e. Add up the values o f all the elements in the vector as modified in part d. Write out this 
value to the screen.

Write this Matlab program by hand first. Then type it in as an m-file, store it, and run it with 
Matlab. Print out a copy o f your m-file only and turn it in along with the answer to part e. 
(Note: Do not print out or turn in your element values for the row vector. Also, i f  you don’t 
have access to a printer, turn in a hand-written copy o f the program.)

fans: 132]

4.4. m. On a clean piece o f paper, write down what would be displayed (“printed”) on a computer 
screen in response to each o f the lines below when they are typed one at a time (followed by 
an enter) in the command window o f Matlab. (You don’t need to repeat the commands on the 
paper.) Write down only what would be displayed; do all other calculations you might need 
on another piece o f paper that you do not turn in.

a = ones(1 ,6 ) 
b = [1 :2 :11 ] 
b (3 ) = 0 
c = a+b 
d = 2*c 
fo r  i  = 1:6; 
i f  d ( i )  > 8; d ( i )  = 8; 
e ls e  d ( i )  = 0; 
end; 
end; 
d

4.5. Approximate your tibia as a long cylinder bone. Measure its approximate length and estimate 
its diameter. When you stand on one leg, how much total shortening occurs in the length o f 
your tibia? (See Appendix B for the Young’s modulus o f bone.)

fans for me: about 5.6 /u.m]

4.6. a. The pulmonary artery contains about 52 mL o f blood (averaged over time) at an average 
pressure o f 17 mmHg. Its residual volume is 21 mL. Calculate its compliance.

fans:C 0.0018 L/mmHg]
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b. A t the end o f diastole (thus the beginning o f systole), the pressure in the pulmonary artery 
has dropped to about 10 mmlig. How much blood is in the artery at that point in time?

fans:V % 39 mL]

c. During the first 0.10 s o f systole, the flow rate o f blood from the right ventricle into the 
pulmonary artery is 0.24 L/s, while the flow rate out o f the artery toward the lungs is 0.15 L/s. 
A t the end o f this 0.10 s interval, what is the blood pressure in the artery?

fans:P % 15 mm lig]

4.7. The heart ventricles are compliant vessels, but they have one very important difference from 
ordinary blood vessels: their compliance changes dramatically during each heart cycle, from a 
relatively large value during filling (diastole) to a small value during ejection (systole).

a. The end-diastolic volume o f blood, Vkd, at the very end o f diastole in the left ventricle 
is about 135 mL at a filling pressure o f 8.0 mmlig. What is its end-diastolic compliance? 
(Assume the residual volume o f the left ventricle is negligible.)

fans: C =  0.017 L/mmlig]

b. A t the peak o f systole— which occurs about 175 ms after the end o f diastole— the left 
ventricle compliance has a value o f 0.000800 L/mmlig. The outflow o f blood into the aorta 
averages 200 mL/s during systole. What is the systolic pressure in the ventricle at this moment?

fans: P =  125 mm lig]

4.8. Tissues that are composed o f randomly oriented cross-linked collagen fibers are in some ways 
analogous to rubber. The elasticity' o f these types o f tissues and materials can be measured 
using a standard tension test. Your homework is to perform such a test at home or in the lab. 
A  schematic o f the experimental set-up is shown below in Fig. 4.8.

a. Put two ink spots on a moderately thick rubber band and then tie one end to an empty 
soda can and the other end to a strong horizontal rod (or tree limb...). Slowly fill the soda can 
with water and measure the length between the two ink spots for various amounts o f water. 
Each data point will consist o f two corresponding values: the length between the spots and 
the weight o f the water in the can. Using Matlab, enter the length values as one row vector, 
and the corresponding weight values as another row vector (o f the same length). Then, using 
Matlab, plot the applied force (weight o f water) on the y-axis versus the length on the x-axis. 
Label each axis.

Note: The force due to the weight o f the water is F  =  p g V , where density p =
999 kg/m', the acceleration o f gravity g =  9.8067 m/s", and V =  volume o f water 

■jin m .
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tie or hook rod

Figure 4.8: Experimental set-up for determining Youngs modulus o f a rubber band.

b. Then convert the data to two new row vectors, one representing stress (force divided by 
the initial cross-sectional area o f the rubber band) and the other representing strain ( change in 
length divided by initial length). Plot stress vs. strain (similar to Fig. 4.3), labeling the axes.

c. Finally, calculate in SI units the elastic modulus (Young’s modulus) E  o f the rubber-band 
material. Is the material Hookean, i.e., linear elastic? Please staple your rubber band (or a short 
piece o f it) to your answer sheet, and turn in your printed Matlab plots. I f  you don’t have access 
to a printer, sketch the plots by hand.

[ans: for a typical rubber band: E  % 0.7 MPa, but it may vary considerably depend­
ing upon the particular rubber band and the range selected. The rubber band is not 
strictly Hookean, but can be approximated as linear over some range.]
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W i n d k e s s e l  E l e m e n t s  

C o n s e r v a t i o n  o f  V o l u m e
5.1  I N T R O D U C T I O N  -  C O M P L I A N C E  O F T H E  

V E N T R I C L E S

As discussed in Chapter 4, all blood vessels in the human body have compliance, which means that 
they expand with increasing blood pressure inside. (Actually, all tissues o f the body, not just blood 
vessels, have various degrees o f elasticity, even the relatively stiff bones and teeth.) The blood vessels 
on the venous side o f the circulation have the most compliance, and the arterial vessels have less. As 
mentioned in the previous chapter, this compliance helps smooth out the pulsatile nature o f blood 
flow, keeping the flow steadier while reducing peak pressures, and provides a controllable storage 
volume for the blood, especially in the veins.

The walls o f the chambers o f the heart (the two atria and two ventricles) also exhibit compli­
ant behavior. Indeed, as they are receiving considerable blood inflow each heart cycle during their 
diastolic (relaxing and filling) phase, they must expand easily to accept this volume. Rut, after filling, 
they then must contract forcefully to start the systolic (contraction and ejection) phase o f the heart 
cycle. Thus, the heart wall muscles change from high compliance (low stiffness) during relaxation to 
low compliance (high stiffness) during contraction, then back again, cycle after cycle.

The left ventricle plays an important role in the heart, so let’s focus on its action. A t the very 
beginning o f systole, the volume o f blood that filled the ventricle during diastole has not yet been 
expelled into the aorta through the aortic valve. Therefore, the ventricular volume at the start o f 
systole is the same as at the end o f diastole. Rut the force exerted on this blood by the ventricular walls 
(measured by pressure inside the ventricle) sharply rises, marking the beginning o f the systolic period. 
This phase is termed isovolumic contraction, because the contraction force increases dramatically 
without any change (at least at first) in ventricular volume. A  symmetrical situation occurs at the 
end o f systole, which is the beginning o f diastole, when the ventricle relaxes. This phase is termed 
isovolumic relaxation.

One revealing way to characterize these events is to quantify the changing compliance o f the 
left ventricle. During diastole, when it is filling by accepting blood through the mitral valve, the left 
ventricular walls are relaxed and therefore are characterized by a relatively large compliance C/7(/. 
During systole, when the muscular walls stiffen to force blood out, they are characterized by a much 
smaller compliance C/^.Then, at the end o f systole, the walls relax again and the ventricle returns
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to the more compliant state for the next filling phase. A  good approximation of this alternating 
compliance is shown in the graph of Fig. 5.1.

t
left
vcntriclc 
compliancc

c h

h--------- "H------------------------H t _  ►
systole diastole

Figure 5.1: The approximate variation of left ventricular compliance during a heart cycle.

What happens to blood pressure as a result of this alternating compliance? As Equation (4.7) 
in the Hooke’s Law chapter showed, pressure and volume are related in general by the compliance 
of the vessel:

V =  V,p +  C P , (5.1)

so pressure P  depends upon both the volume V  (which itself is changing during the heart cycle) and 
compliance C of the ventricle. (V^ is the residual volume of the vessel— for dynamic modeling of 
the left ventricle, this is considered to be small.)

Rearranging (5.1) to solve for the pressure in the left ventricle (and specializing the variables 
here by the subscript h, denoting the heart),

Ph =  (Vh-V<p)/Ch. (5.2)

Thus, during systole when the left ventricle compliance C/7 drops rapidly to a low value (C/7S < <  
Cm ), since the compliance value C/7 is in the denominator of (5.2), the blood pressure in the ventricle 
is shown to rapidly rise. This increased pressure is the force that causes ejection of the blood out of 
the ventricle, leading to the pumping action of the heart.

5 .2  P R E S S U R E - V O L U M E  P L O T S :  T H E  P V L O O P

An illustrative way of viewing the changing pressure and volume of the left ventricle is to track its 
pressure as a function of volume throughout one heart cycle; the resulting graph will form a closed 
curve (a PV loop), as shown in Fig. 5.2. (This graph is, unfortunately, not trivial to obtain in humans,

C,hd C,hd
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since it requires an invasive pressure probe placed inside the left ventricle, along with some means 
o f measuring the changing ventricular blood volume, usually done with ultrasound imaging.)

Figure 5.2: Pressure-volume graph (PV loop) o f the pressure and volume changes in the left ventricle 
during one heart cycle. The loop progresses counterclockwise from the start o f systole (lower-right corner) 
through the completion o f systole and diastole before returning back to start the next cycle.

During each heart beat, the behavior o f the ventricle progresses around the loop in a coun­
terclockwise fashion. A t the start o f systole (end o f diastole) in the lower-right corner, the ventricle 
rapidly stiffens (lowering its compliance to C/,.v).The resultant increase in pressure causes the inlet 
mitral valve to close so the volume o f blood is temporarily trapped inside the stiffening ventricle 
(the isovolumic contraction phase). When the ventricular pressure rises above the aortic pressure, 
the outflow aortic valve opens, allowing rapid ejection o f blood and partially emptying the ventricle. 
I f  we label the pressure at the end o f systole as Ps, (5.2) gives

PS =  (V E S - V 4,)/Chs. (5.3)

where Ves  is the volume o f the heart at the end o f systole (same as at the start o f diastole). Since 
Chs is low, Ps is high.

Then the ventricle relaxes (increasing its compliance to C/Jt/) marking the end o f systole and the 
start ofdiastole.The falling pressure causes the aortic valve to close, again trapping the (smaller) blood 
volume in the relaxing ventricle (the isovolumic relaxation phase). When the pressure drops below
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the venous pressure, the mitral valve opens, allowing low-pressure filling o f the relaxed ventricle, 
setting the stage for the next contraction. I f  we label the pressure at the end o f diastole as P o , (5.2) 
gives

P d =  (V e d  -  V ^/C m , (5.4)

where Ve d ' s the volume at the end o f diastole (same as at the start o f systole). Since C/,f/ is high, 
Pp  is low

It ’s straightforward to show that the nominal systolic pressure Ps is much higher than the 
nominal diastolic pressure Pp. Assuming the residual volume can be neglected here, the ratio 
o f (5.3) to (5.4) gives

P s/Pd =  (VEs/VED)(C,nl/Chs). (5.5)

While Ves is smaller than Ve d  (by about a factor o f 2), C/,f/ is much greater than C/1S (at least by a 
factor o f 20), so (5.5) shows that

Ps »  P d , (5.6)

which is a requirement for pumping the blood into the higher pressure arteries after being collected 
from the lower pressure veins.

Several other concepts can be gleaned from the PV  loop in Fig. 5.2. The width o f the loop 
between the volume at the right boundary (V e d ) and the volume at the left boundary (V e s ) is exactly 
the amount o f blood pumped out during that heart cycle (equal to Ve d  ~~ Ve s )-This is called the 
stroke volume, or SV, usually given in units o f liters. Also, a consideration o f the energy spent by 
the heart in pumping out this stroke volume o f blood against the aortic pressure (to be covered in 
Sections 7.4 and 7.5) shows that the energy expended (i.e., the work) per heart beat is given by the 
area enclosed inside the loop; the bigger the loop area, the more energy is used.

I f  we now envision the passage o f time during the heart cycle, we can plot the ventricular 
pressure and volume as a function o f time. The graph would be similar to Fig. 5.3, which is close to 
what’s observed in the normal human heart.

5 .3  S T A R L I N G ’S L A W  O F T H E  H E A R T

The human body must be able to adapt to a wide variety o f conditions and still maintain proper 
functioning. This general principle applies to the regulation o f the volume o f blood pumped by the 
heart. There are times when the degree o f filling o f the ventricle with returned blood is markedly 
higher than normal for a short (or even moderate) period. For example, a noticeable increase in filling 
volume often accompanies exercise, when muscular action forces more blood from the venous system 
into the right side (then into the left) o f the heart. Similarly, when a person sneezes or forcefully
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Figure 5.3: Pressure and volume waveforms for the left ventricle.

exhales a deep breath, the pressure inside his/her thorax temporarily increases, squeezing blood out 
o f the veins and vena cava, filling the heart more fully1.

Starling’s Law o f the Heart (also known as the Frank-Starling mechanism) states that the 
heart accounts for this increased filling volume by increasing its strength o f ventricular contraction, 

thereby increasing cardiac output. Otherwise, blood would dam up in the heart and severely hamper 
its functioning. In Ernest Starling’s words (1918):

“I f  a man starts to run, his muscular movements pump more blood into the heart. As a 
result the heart is overfilled. Its volume, both in systole and diastole, enlarge progressively 
until by the lengthening o f the muscle fibres so much more active surfaces are brought 
into play within the fibres that the energy o f the contraction becomes sufficient to drive 
on into the aorta during each systole the largely increased volume o f blood entering 
the heart from the veins during diastole.... The physiological condition o f the heart is 
thereby improved and the heart gradually returns to its normal volume even though it 
is doing increased work.”

In shorter but less elegant words: The heart will pump out all o f the blood that is returned to it, 
within the limits o f the heart.

The physiological mechanisms that underlie the Frank-Starling mechanism are well known, 
and include the fact that cardiac muscle fibers increase their contractility (contraction force) the 
more they are stretched, up to a point, and the fact that increased permeability to calcium ions in 
muscle cells, enhanced by stretching, also increases muscle contractility. We will not pursue these 
factors further here, but are more interested in the following question pertaining to modeling: W ill 
modeling the ventricle as a vessel whose compliance changes between diastole and systole produce 
a behavior that is consistent with Starling’s Law?

1 Doing this exhaling action while purposely closing the glottis to block the air and thus accentuate the increase in intrathoracic 
pressure is called a “Valsalva maneuver.” The heart rate also temporarily increases in response.



To answer that question, consider (5.2), the formula tor systolic pressure in the ventricle. 
Note that as the volume of the ventricle increases, the systolic pressure increases in response. [A l­
though (5.2) is written in terms of end-systolic volume, the concept also holds for increased end- 
diastolic (filling) volume.] Thus, systolic pressure increases as a consequence of increased filling, 
and volumetric flow into the aorta and cardiac output increases, consistent with Starling’s Law. This 
increased cardiac output will continue (slowly declining) until the diastolic volume returns to normal.

An instructive way of viewing Starling’s Law in action is to plot a succession of PV  loops 
starting with a situation in which the left ventricle is overfilled compared to normal, then following 
the loops over the next several cycles as the heart returns to normal volume. Such a sequence is 
shown in Fig. 5.4, where the loop-to-loop progression is right to left in the figure. Note how the 
stroke volume is large for the starting loop to help rid the ventricle of excess volume, then decreases 
with each beat. Also the work done per beat (the area inside each loop) is large at the start, then 
decreases toward a steady-state value.

The line which marks the left edge of the end-systolic point (upper-left corner) of each 
successive loop has a slope inversely proportional to the minimum compliance (maximum stiffness) 
of the ventricle. Therefore, its slope is equal 2 to 1/C/1S.
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Figure 5.4: A  sequence o f PV  loops starting with an abnormally filled ventricle. After several beats, the 
volume inside the ventricle returns to normal, illustrating Starling’s Law of the Heart.

'■This assumes that compliance of the ventricle reaches a value of C/Is at the end of systole, which is approximately true. Also, some 
researchers use a parameter named “elastance” instead of compliance to characterize the ventricle’s stiffness, where elastance = 
1/compliance. Thus, the slope of this upper line is also equal to maximum elastance.
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Example 5.1. Systolic Pressure
The pressure in the left ventricle o f a heart model is about 10 mmHg near the end o f diastole. 
The diastolic compliance o f this particular ventricle is C/„/ =  0.013 L/mmHg. A t the beginning o f 
systole, the compliance drops to C/7.v =  0.00050 L/mmHg. Find the volume in the ventricle (minus 
the residual volume) at the start o f systole, and estimate the systolic pressure assuming a stroke 
volume o f 70 mL.

Solution
The beginning systolic volume is the same as the end-diastolic volume, found from (5.4):

(Ve d  — V(j>) =  Pd Ciui =  (10 mmHg)(0.013 L/mmHg) =  0.13 L.

A t the end o f systole, the ventricular volume has been reduced to 0.13 — 0.07 =0 .06  L, and 
from (5.3) the systolic pressure is

Ps =  (0.06 L)/(0.00050 L/mmHg) =  120 mmHg.

5 .4  W I N D K E S S E L  E L E M E N T S

We have seen from Poiseuille’s Law how fluid tubes have resistance to flow, and from Hooke’s Law 
how blood vessels can be represented as compliant vessels. It is now time to put these two concepts 
together, because a realistic model o f blood vessels should include both effects. Using symbols, a 
distributed model for the vessel will look like Fig. 5.5.

Q l —\AA/V
Qi I ■ M r l/W\r ■VWV-

R

C

Figure 5.5: A  distributed-element model of a blood vessel.

A  blood vessel possessing both distributed resistance and compliance properties is called a 
windkessel element. The name comes from a German word for the compliant bellows attachment 
used with early fire engines to smooth out pulsatile flow o f water from the engine. It is appropriate



here, since as we have seen from the Hooke’s Law unit, the windkessel action o f the aorta and arteries 
tends to smooth out the pulsing nature o f the flow from the ventricle due to the expansion, then 
recoil, o f the walls with the pulsing pressure wave.

An accurate model o f a windkessel element would include numerous resistive and compliant 
elements (perhaps with nonlinear properties) distributed along the length o f the vessel, as in Fig. 5.5, 
whose values vary to represent the changing properties o f the vessel along its length. However, it is 
much more convenient to model the vessel with just a few (even one or two) o f each o f the elements, 
and to approximate these as linear. Thus, a major vessel might be modeled as shown in Fig. 5.6.
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Figure 5.6: Simplified windkessel model o f a blood vessel.

5 .5  C O N S E R V A T I O N  O F  V O L U M E  I N  

I N C O M P R E S S I B L E  F L U I D S

Engineers like to know the value o f quantities. That is, in addition to the important goal o f under­
standing the concepts behind natural effects (a qualitative understanding), they want to be able to 
calculate and measure the magnitudes o f the quantities involved (a quantitative understanding). For 
example, it is vital to keep track o f the mass o f a fluid as it flows from one region to another, such as 
the flow in the three branches in Fig. 5.6 above. Because the total mass o f the fluid is neither being 
created nor destroyed in this situation, just moved, mass must be conserved as it flows. This is the 
principle o f conservation o f mass.

In addition, i f  the fluid is incompressible (or nearly incompressible as with water and blood), 
its density doesn’t change. This in turn means that its total volume doesn’t change under flow. This 
is the principle o f conservation o f volume, first introduced in Section 4.5. I f  the total volume is 
conserved, then any volume that leaves one region must add to the volume in neighboring regions. 
This leads to the conclusion that the rate at which volume leaves one region must be equal to the 
rate at which it enters other regions. Specifically, in Fig. 5.6 at the junction where P j is measured, 
the volumetric flow rate in is Q i while the flow rate out to other regions is Q 2 plus Q$. Therefore, 
conservation o f volume requires that



5.5. CONSERVATION OF VOLUME IN INCOMPRESSIBLE FLUIDS 69

01 =  Q l +  03- (5.7)

In words: A t a junction, flow rate in = flow rate out. This principle can be applied to the general case 
o f several branches converging on a junction by letting the outward flow terms have a negative sign 
and the inward flow terms have a positive sign. Then in general at any junction with N  branches,

N

Q< =  ° ‘ (5‘8)
/=1

Example 5.2. Conservation o f  Volume
In the circuit shown below, let the flow rate Q\ =0.1 L/s and 04 =  —0.5 L/s. Also P i =  
50 mmlig, P t, =  20 mmlig, and R i =  100 m m lig • s/L . Find the flow rate 02-

Figure 5.7: Schematic used to demonstrate conservation o f volume in Example 5.2.

Solution
Since no volume can be stored in a resistance element, the flow rate Q\ is constant through element 
R l, and Qi enters from the left into the junction where P2 is measured. Now from Poiseuille’s Law:

03 =  (P 2 — P i)/ R i =  (50 m m lig — 20 m m lig)/100 m m lig • s/L =  0.3 L/s.

Then, from (5.8),
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01 -  02 -  03 -  04 =  0, 

or 02 =  Ql -  03 -  04 =  [+0.1 -  0.3 -  (-0.5)1 L/s =  +0.3L/s.

5 .6  P R O B L E M S

5.1. I f  you are doing the Matlab portion o f the Major Project, you should start calculating the 
various Rs and C ’s needed for the project following the procedure discussed in class. All 
calculations must be done from the very beginning in ink in your Major Project lab notebook. 
For this problem, copy from your lab notebook onto a separate sheet o f paper (in pencil) the 
particular pressures, volume, and flow rate you used to find CD and Roa (the compliance o f the 
aorta and the resistance between the aorta and arteries/arterioles) along with your calculated 
C0 and Roa values. Turn in this sheet only.

[ my values: Roa =  141 mmHg • s/L and CQ =  0.00065 L/mmHg; your values 
should be within a factor o f about 2 o f these. ]

5.2. m. For the Major Project, you will need to generate a Matlab row vector that contains the 
curve o f the changing compliance o f the left ventricle, C/,. It should look like Fig. 5.1 or Fig. 3 
in the Major Project. The goal o f this problem is to generate a single appropriate row vector 
for Ch - The formulas o f the compliance for the periods o f systole and diastole are given in 
Eqs. (1) and (2) following Fig. 3 in the Major Project.

a. Write a script m-file to generate the proper row vector for C/, following the times shown 
in Fig. 5 in the Major Project. You will first have to use Eqs. (1) and (2) to find the values o f 
Ch during systole and diastole, respectively, then use “cut and paste” to put these values into 
one vector which follows the timing shown in Fig. 5. Break time into 1-ms increments, so the 
vector is 800 elements long (corresponding to 0-799 ms). Have systole last from 100 ms to 
349 ms and have diastole occupy the remaining segments o f the cycle (from 0 to 99 ms, and 
from 350 to 799 ms). Let the time constants be rv =  30 ms and rf/ =  60 ms. Also,fo r this 
problem only, let the limits o f compliance be C/,.v =  0.001 and Chd =  0.01 L/mmHg (these 
limits o f compliance will be different in your actual Major Project). Read in the values o f 
rv, r(i, Chsi and Chd from a parameter file. Print a copy o f both m-files.

b. Plot and print a curve o f your vector C/, versus time. (Save your Matlab code for later use.)

[ Note: all you need to turn in for this problem are printouts o f your two Matlab 
m-files from part a, and your plot from part b, shown in Fig. 5.8 ]
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Figure 5.8: M a tla b  p lo t o f  ch an g in g  com p liance  o f  le ft  ven tricle ,
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E u l e r ’s  M e t h o d  a n d  F i r s t - O r d e r  

C o n s t a n t s
6.1  I N T R O D U C T I O N  -  D I F F E R E N T I A L  E Q U A T I O N S

We saw in Section 4.5 that the change in a vessel’s volume A  V during an interval o f time At is 
related to the net flow o f fluid Q (inflow minus outflow) into the vessel by the following equation:

This relationship assumes that the flow Q is constant during the time interval A?. The assumption 
o f constant Q becomes more accurate as the time interval A t becomes smaller, since Q is less likely 
to change during a shorter interval. Taking the limit o f the left-hand side o f (6.1) as At goes to zero 
gives the differential form o f (6.1):

d V  , s
—  =  Q, (6.2)
dt

where dV/dt is the time rate o f change o f V. This equation is an example o f a first-order (i.e., one 
level o f differentiation) differential equation, which in general can be written in the form

d V  , s 

-JT  =  f ( v >' (6J )

where f ( V ) is some function o f the variable V.
There are two approaches to finding the solution to an equation such as (6.3). I f  f ( V )  belongs 

to one o f a number o f classes o f well-behaved functions, it may be possible to find an explicit closed- 
form solution for the variable V.This is known as an analytic solution to (6.3); an example o f this 
will be seen later in this chapter.

But it is not always possible (in fact, is somewhat unusual in the real world) to find an analytic 
solution to a differential equation which describes a complex problem. In this case, an approach that 
will give an approximate, but arbitrarily accurate, solution to the differential equation is to use a 
digital computer to arrive at the answer. This approach, o f which there are many versions, is called 
the numerical analysis approach, or numerical solution for short. Euler’s method, discussed next, is 
a simple numerical analysis algorithm that works on many problems.
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6 .2  E U L E R ’S M E T H O D

The derivative dV/dt is the limiting form o f the ratio A V  / A t as A t gets infinitesimally small. I f  
we don’t go all the way to the limit o f A t being zero, but rather stop at a small enough value o f At 
that the local change in V, A V , is approximately linear, then we have the finite-difference form 
o f (6.3), which is a good approximation o f (6.3):

A '7 , s
—  =  f ( V )  (6.4)

Figure 6.1 shows A  V and At at one particular segment along the curve o f V  versus t. The 
increment A t must be small enough that the curve o f V  is approximately straight within the neigh­
borhood o f At. (Note that i f  V  varies rapidly with /, At may need to be made smaller to make sure 
that the line segment o f V  is approximately straight within the extent o f A t.)

Figure 6.1: Finite-difference approximation to the derivative dV/dt, showing A V  and At.

The curves o f variables such as the volume V  are often described in sampled form, where the 
values o f V  at uniform intervals are found and stored. This format, called the “vectorized” form o f V, 
is handy for manipulation and storage by a digital computer. Euler’s method is based upon relating 
successive time samples o f V  to each other. Specifically, as seen in Fig. 6.1 at each increment,

A V  =  V (i +  1) -  V (i ) .  (6.5)

So (6.4) can be written

V ( i  +  ] ) - V ( i )  , , 
—  ^  —  =  /  0 70')) • (6.6)
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Rearranging, V (i  +  1) =  V (i )  +  At •/ ( V ( i ) ) .  Euler’s Method (6.7)

Thus, at each sample point with index / , the value of the next sample point V (i +  1) can be obtained 
from the present value V By starting out with some known initial value of V , later values of V can 
be successively calculated from (6.7). The solution for V is therefore obtained by stepping through 
the equations in time, with time increasing by At for each step.

Euler’s algorithm (6.7) predicts the future value of a variable based upon the present value 
of the variable, and is therefore termed a forward-difference method1. In general, using a finite- 
difference numerical approach by stepping through differential equations in time is known as the 

finite-difference time-domain, or FDTD , technique for solving the equations.
Euler’s method can be applied to (6.2), the equation describing the change in the volume in 

a vessel. In finite-difference form, (6.2) becomes

V (i  +  1) =  V(/) +  At • Q (i).  Euler’s Method (6.8)

Remember that Q (i)  will usually be related to V ( i ) through other equations which must be 
considered along with (6.8). An example of this technique is found at the end of this chapter.

6 .3  W A V E F O R M S  O F  P R E S S U R E  A N D  V O L U M E

The finite-difference forms of the equations for volume and pressure reveal a concept that will prove 
useful when analyzing the time behavior of these quantities. In particular, how much can the volume
V “jump” between the two samples at (;') and (;' +  1) in Fig. 6.1? As At gets smaller (to achieve finer 
sampling and more accurate curves), (6.8) shows that the difference between V ( i ) and V (i +  1) also 
gets smaller. In fact, as At approaches zero, V (i  +  1) approaches V (i ) .  Therefore, the two samples 
have essentially the same value at that point. This leads to the following conclusion: The curve fo r  
volume versus time must he continuous; there can he no discontinuous jumps at any time. The only way 
there could be a jump in V  is if the flow rate Q was infinite, which is impossible in practice. The 
lower line in Fig. 6.2 shows the continuous nature of the volume V. (It should be noted, however, 
that the flow rate Q itself can have discontinuous jumps without violating any rule.)

The situation for pressure P  is similar but a little more complicated when applied to a compliant 
vessel. The relationship between pressure and flow in a compliant vessel was found in Section 4.5 to

d P  1 , s
—  =  - Q  (6.9
dt C

(This equation assumes the compliance C. is constant.) In Euler’s finite-difference form, (6.9) be­
comes

1 There are several variations of the finite-difference technique, such as the predictor-corrector method and the Runge-Kutta 
method, which can be more efficient and accurate than Euler s method but which are somewhat more complicated. We will leave 
these methods to later courses.
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Figure 6.2: The volume V cannot jump instantaneously; its curve must be continuous.

At ■ Q (i )
P ( i  +  1) =  P ( i )  + -----(6.10)

The previous arguments can again be applied to show that (unless Q is infinite, which is 
impossible): The curve fo r a vessel’s pressure P  versus time must be continuous; there are no discontinuous 
jumps. This behavior is similar to the lower line in Fig. 6.2.

For most vessels, the compliance C is constant. I f  the vessel’s compliance changes, as it does 
in active vessels such as the heart ventricles, an additional term is needed in (6.9), but because the 
compliance will change in a continuous manner, it can be shown that the pressure waveform must 
still be continuous.

6 .4  F I R S T - O R D E R  T I M E  C O N S T A N T S

Fluid systems that contain both resistive and compliant components (such as windkessel elements) 
are called first-order systems because the differential equations that describe any o f their variables 
(pressure, volume or flow) have only first-order derivatives in them2. For example, a very simple fluid 
system composed o f only one compliant element and one resistance element is shown in Fig. 6.3, 
using symbols.

To the right o f the resistive element R  in Fig. 6.3 is the symbol for a switch that closes at time 
t =  0. In fluid systems, this is usually a valve that blocks flow before t =  0, then is changed to let 
flow freely through at t =  0. The purpose o f the valve (switch) is merely to start the flow— and the 
clock— at t =  0. Before the valve is thrown, there is some initial volume o f fluid (it could be zero) 
in the vessel. Since the flow can’t go anywhere before t =  0, this initial volume is trapped until the 
valve is thrown. This volume will result in some initial pressure inside the vessel (it could be zero)

'■It inertial ettects are included by involving the mass ot the moving fluid, the differential equations are second-order, and the 
system is then called a second-order system. These systems can exhibit oscillatory behavior.
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Figure 6.3: S im p le  firs t-o rd er flu id  system .

before and just at the time t =  0. Call this initial constant pressure /’/.After the valve is thrown, P\ 
can then change. In the example o f Fig. 6.3, the pressure P i is constant.

Let’s write some equations relating the flow variables to each other at times after t =  0: 
From Poiseuille’s principle,

From compliance relations [see (6.9)],

Substituting (6.11) into (6.12) then putting this into (6.13) results in the first-order differential 
equation for the system’s pressure:

02 =  (P i -  P i )  / R. (6.11)

From conservation o f volume,

01 = - 0 2 - (6.12)

(6.14)

Remember that Pi is a variable while P i is a constant. A  well-known analytic solution to (6.14) 
which meets the initial condition that P\ =  P\ at t =  0 is found from calculus to be:

(6.15)

The constant r in the denominator o f the exponent in this solution is called the time constant o f 
the system. The name comes from its role in determining how fast the flow variables in this system 
can change from one value to another, r has the dimension o f time.
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Figure 6.4 is a plot o f the pressure waveform found from (6.15). Notice that, as required, the 
pressure has an initial value o f P\ before t =  0. Then when the valve is thrown at t =  0, the pressure 
P\ starts changing in an exponential fashion on its way to the final value o f P i- (As stated earlier, 
since C is constant, the pressure curve is continuous in this example with no discontinuous jumps.)

0 t  t — ►

Figure 6.4: The pressure waveform in a first-order fluid system changes in an exponential manner. It 
reaches 63% of its excursion in one time constant r.

The rate at which the pressure changes can be measured by the time it takes to get to a certain 
percentage, say 63%, o f its total excursion3 toward its final value P j. In the example o f this section, 
the pressure excursion is (P, — P2), and P\ will cover (1 — e^ 1) =  0.63 =  63% o f this excursion in 
a time t =  r, as shown in Fig. 6.4. Thus, the larger r is, the slower Pi will change; the smaller r is, 
the faster Pi will change.

The value o f r for this system can be found by substituting (6.15) back into the differential 
Equation (6.14) and solving for r.The result is

RC  Time Constant (6.16)

This is a very important result: The time response o f a flu id  system is given by the product o f its 
compliance and its resistance (or equivalent resistance if  there are several resistive elements in series 
or parallel with the compliance). The larger the resistance and/or the compliance, the slower the

0 P\ actually never mathematically reaches Piy even for an infinite time. It only approaches Pi asymptotically, getting closer and 
closer as time progresses. Practically, though, it gets as close as you would want by just waiting a long enough time. In five time 
constants (t = 5r), it has gone 99.3% of the way to its final value, so 5r is often used as a practical value for specifying the total 
length of time for the change.
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fluid system will respond to changes and the less faithfully it will follow rapid variations in pressure, 
volume or flow.This is why the pulsatile pressure waveform of the blood entering the aorta is damped 
by the time it reaches the high-compliance venous side of the circulation, becoming essentially steady 
with time.

Although the results in the example above were obtained specifically for the pressure Pi, other 
fluid quantities in the system (the volume and flow rate) also exhibit exponential behavior, with the 
same time constant r =  RC. Also, more complex first-order systems which have more than one 
compliant element will have similar exponential responses for all their fluid variables, but generally 
with several time constants, one for each compliant element.

Example 6.1. Pressure Waveform in a Vein
A  major leg vein has a valve at one end that allows blood to flow from one end toward the heart, but 
blocks flow in the opposite direction in Fig. 6.5. The pressure P3 is constant at 10 mmHg, but the 
pressure Pi changes in the manner (a simplifying approximation) shown in Fig. 6.6. The pressure 
P2 is measured at the middle of the vessel’s length. A t time 1 =  0, P2 is 10 mmHg and the volume 
inside the vessel is 60 mL.The total resistance Rt of the vein is 800 mmlig-s/L.The residual volume 
of this vessel is 10 mL.

Tasks

a. Write equations relating the problem’s variables to each other.

b. Put these equations into sampled or vectorized form, using Eulers method to solve for the 
updated volume in the vessel, V2■

c. Using Matlab, find and plot the waveforms of the volume V? a°d  the pressure P2 from 1 = 0  
to 5 seconds. Also plot Pi on the same graph as P2. Calculate and display on this graph the 
total flow (total volume of flow) through the valve in those 5 seconds.

d. From the plot o f P2, estimate the vein’s time constant.

valve

volum e in vessel =  V2

Figure 6.5: Sketch ofvessel analyzed in Example 6.1.
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^  __________20 m m Hg

p
1 8.0 m m Hg

0 1.0 t (  s) — ►

Figure 6.6: S pec ified  varia tion  o f  pressure P\.

Solution

W e’ll model this vessel as a simple windkessel element with a valve, as shown below in Fig. 6.7.

Qi  u <2?P, V v P1 — >  , 2 — y  r3

Q
R j  21

v w v
V-  R-2

Figure 6.7: Schem atic  m o d e l o f  vessel.

First find the value o f compliance C2- From Equation (4.7) in the Hooke’s Law chapter applied at 

/ = 0 ,

C2 =  {V2 — V<p)fP2 =  (0.050 L)/(10 m m lig) =  0.0050 L/mmHg.

Assume that R\ =  R2 since P2 is near the middle o f the vessel. Since these resistance elements are 
in series, Rt =  Ri +  R2 =  2R\ =  800 m m lig • s/L. Thus, R\ =  R2 =  400 m m lig • s/L.
The pressure P$ will be constant, but Pi jumps from 8.0 m m lig to 20 m m lig at t =  ls.
a. Now write equations relating the variables o f the problem to each other -  

The pressure P2 due to volume V2 in compliant vessel:

P2 =  (V2 - V tp)/C2. (6.17)

The flow rate through Ri, including valve action:

I f  Pi >  P2, Q i =  (P i -  P2)/R i . Otherwise Q i =  0. (6.18)



Flow rate through R2:
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Q3 =  (P 2 -  P3)/R2. (6.19)

Flow rate into the compliant element using conservation ofvolume:

Q l =  Q l ~  Q l- (6.20)

The change in volume V2 due to flow into the vessel:

AV2/At =  Q2. (6.21)

b. Put these equations into sampled or vectorized form -
Equation (6.17) will become:

P2( i )  =  (V2( i )  -  V*)/C2.

Equation (6.18) becomes:

I f  P i ( i )  >  P2(i ) ,  Q i ( i )  =  ( P i ( i )  -  P2(i))/R\. Otherwise Q i( i )  =  0.

Equation (6.19) becomes:

<23(0 =  (/MO -  P3 ) /R i .

Equation (6.20) becomes:

Q id ) =  Q iQ ) -  Q id )-

Equation (6.21) can be reformulated using Euler’s method:

V2(i +  1) =  V2( i )  +  Q2(i)A t .

[Notice that we have vectorized all o f the variable flow rates (Q  [, Q2, and £>3) and the two variable 
pressures (P i and P2), but not the constant pressure P3 or residual volume V^.]
c. We can now use a Matlab script m-file (label it e u le r . m) to calculate the waveform o f the volume 
V2, the pressure P2, and find the total flow V,. Since the total time interval we are interested in 
is 5 seconds, let’s break it into 500 increments, each o f At =  0.01 s. Also, let’s store the problem’s 
constants in a separate m-file, named paramex.m. The paramex.m file will look like this:

7, Parameter f i l e  for the example in Euler’ s Method chapter
Rl=400; R2=400; % units: mmHg-s/L
C2=0.005; 7, units: L/mmHg
V0=0.010; */, residual vol, in L
Pls=8; Pld=20; 7, start and end values of PI, in mmHg
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dt=0.01; N=500; 
P3=10;
V2(l)=0.060;

% time increment, 5 seconds tota l 
% constant pressure at outlet, in mmHg 
% in it ia l value of volume at t=0, in L

The script m-file called eu ler  .m will look something like this:

% Example of Euler’ s method - Program for finding and plotting the 
% volume and pressure in a compliant and res istive vessel connected 
% to a source, and finding the tota l volume flow in 5 seconds.

input(’ What parameter f i l e  do you want to use?’ ) ;  % type paramex, then hit return

% Set up step-function vector for input pressure:
P l ( l : 100) = Pis;
Pl(101:500) = Pld;
% Step through time fo r K increments: 
for i  = 1:N;

% Find pressure from volume using compliance:
P2(i) = (V2(i) - V0) / C2;

% Use Po iseu ille ’ s law to calculate flows:
i f  P l ( i )  > P 2 ( i ) ; Q l(i) = (P l ( i ) - P 2 ( i ) )  / Rl; % flow through Rl 

else Q l(i) = 0; 
end % end of i f
Q3(i) = (P2(i)-P3) / R2; % flow through R2

% Apply conservation of volume:
Q2(i) = Q l(i) - Q3(i);

% Use Euler’ s method to update volume:
V2(i+1) = V2(i) + Q2(i)*dt;
% Mote-because of Euler’ s forward method, V2 has 501 elements 

end % loop back until i=N 

% Plot volume:
tv = [0: d t: N*dt] ; % set up time vector fo r plotting volume (501 values) 
hold o f f; p lot(tv,V2);
xlabel( ’ time ( s ) ’ ) ;  ylabel( ’ V2 (L ) ’ ) ;

% Mow plot two graphs fo r pressure on the same (new) figure: 
t = [0 :d t :(N - l)*d t ]; % set up time vector fo r plotting pressures (500 values) 
figure; p lo t(t,P 1 , ’ -b’ ) ;  hold on; p lo t(t ,P 2 ,’ —r ’ ) ;  
xlabel( ’ time ( s ) ’ ) ;  y label( ’ PI and P2 (mmHg)’ ) ;

% Mow calculate to ta l flow volume:
Vt = sum(Ql)*dt; % to ta l volume of flow through valve in 5 sec
Vstr = num2str(Vt,2); % convert number to a string with 2 sig fig s
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text(3 ,18 ,[ ’ Total flow = ’ Vstr ’ L ’ ] )  % place string inside plot
% (Mote necessary spaces on either side of Vstr in previous line ) 
tex t(1 .2,14,[ ’ P I ’ ] ) ;  tex t (4.1,14,[ ’ P21 ] ) ;  % put labels near each line

The plots will look like those in Fig. 6.8.

Figure 6.8: Plots o f volume and pressures in Example 6.1.

d. In the pressure plot above P2 changed in an exponential manner from 10.0 to 15.0 mmHg, for 
a total excursion o f 15.0 -  10.0 = 5.0 mmHg. Now 63% o f this excursion will be at a pressure o f



10.0 +  0.63(5.0) =  13.2 m m H g. This occurs at the time t =  2.0 s, which is 1.0 s after P\ jum ped. 
So the time constant is r =  1.0 s.

84 CHAPTER 6. EULER’S METHOD AND FIRST-ORDER TIME CONSTANTS

6.5 PROBLEMS
6.1. m . T he vena cava returns blood to the right side of the heart through the tricuspid valve. This 

valve allows blood to go out of the vena cava (i.e., out of end 3) bu t blocks flow in the reverse 
direction. A  simple diagram is shown in Fig. 6.9.

P -  tricuspid valve 
_____________________ i i ___________________

3  right ventricle

Figure 6.9: Sketch ofvessel analyzed in Problem 6.1.

Thepressure Pi is constant at 11 m m H g,bu t the pressure P3 (the pressure in the right ventricle) 
changes. O ver a diastolic/systolic cycle, the pressure P3 has the following approximate form 
as in Fig. 6.10.

25 mmHg

3.0 mmHg

diastole systole
---------------------1---------------------1

0.6 1.0

t (  s) — ►

t

0

Figure 6.10: Specified variation of pressure P3.

Thepressure P2 is m easurednear the middle of the vessel’s length. A ttim e  t =  0 , the total blood 
volume inside the vena cava is 475 m L. L et the residual volume be 60 mL. T he compliance of 
the vena cava for this problem is C v =  0.050 L /m m H g. T he total resistance of this vessel is 
60 m m H g-s/L . (Note: These values are valid for this problem only; they will be different for 
the M ajor Project.)

Tasks:

a. D raw  a tuindkessel model of this vessel (similar to the one on p. 80).

b. W rite equations relating the variables of the problem (all Q s , P ’s and V2 ) to each other.
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c. P u t these equations in sampled or vectorized form, ready for M atlab coding, using Euler’s 
m ethod to update the volume Vz-

d. Use M atlab to find and plot the waveform for the pressure P2 , from t =  0 to 1.0 second.

e. Calculate the average volumetric flow rate in units of L /m in (not the total volume) through 
the tricuspid valve during this 1.0 s period. P rin t out this value inside the plot.

[ All you need to turn in for this problem are printouts of your M atlab m-files, and your plot, 
shown below ]

Figure 6.11: Plot of Matlab calculation of pressure Pj-
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a n d  P o w e r
7.1 INTRODUCTION -  MUSCLE

T he hum an body uses movem ent in numerous ways, such as walking, finding food, moving food 
through the intestines, breathing, looking around, pum ping blood through the circulation, and in 
countless other functions. A lm ost all of the m otion is achieved by muscle. M uscle tissue is found 
throughout the body (as you m ight suspect from the list above), such as the attachm ent of striated 
muscle to bones for lifting, walking, chewing and breathing; the sm ooth muscle in the walls of 
the blood vessels (especially the arterioles) for regulating blood pressure and directing flow to vital 
organs; and, of course, the cardiac muscle of the heart for providing driving pressure in the ventricles 
for circulating blood throughout the body.

T he basic mechanism for muscle contraction can be seen by examining the molecular structure 
of a submicroscopic un it of muscle, the sarcomere, shown in Fig. 7.1. T he sarcomere unit, about
2.2 jim  in length, consists of long molecules that interdigitate: the thin filaments, made of actin, 
which overlap w ith the thick filaments, made of myosin. W h en  the muscle is innervated to contract, 
calcium ions flood the region, causing the thick and thin filaments to attract each other and pull 
themselves into a condition of greater overlap. This forms the “sliding filam ent” basis of muscle 
contraction. Since a very large num ber of sarcomere units act together over the length and cross­
section of the muscle bundle, a large force is produced along the axis of the muscle. If allowed, the 
muscle will shorten and m ovem ent will result.

By its molecular nature, a muscle is capable of producing large forces, bu t the overall extent 
of its shortening, in absolute distance, is no t very great. This characteristic of muscle makes it well 
suited for many of its functions in the body— such as ventricular contraction— but acting alone it 
is not well m atched to the needs of the skeleton for walking and lifting. M any of these actions 
require larger distances of movem ent than the muscle alone can provide, bu t w ith less force. Levers 
provide a way of converting small movem ent at one po in t on the lever to larger movem ent at other 
points. W e will see next how muscles use levers to advantage in the musculoskeletal system— the 
interconnected muscles and bones of the body.

7.2 LEVERS AND MOMENTS

Levers are rigid shafts that pivot around some point, called the fu lcrum . Forces are applied at 
various points on the lever, and if unbalanced, can cause the lever to rotate around its fulcrum. W e
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myofilaments

sarcomere

Figure 7.1: A sarcomere unit o f muscle, showing overlap of the thick and thin filaments.

are interested here in situations where the forces are opposing and balanced so the lever is stationary, 
or almost stationary, such as when the body’s skeleton is being held in a static posture.

T he forces on the lever usually consist o f  a load or weight W  and an applied pulling force 
F. There are three possible configurations for the relative locations o f  these forces in relation to 
the fulcrum; these are classified as Class 1, Class 2, or Class 3 levers, sum m arized in Fig. 7.2. T he 
Class 1 levers are characterized by having the forces W  and F  on opposite sides o f  the fulcrum, bu t 
in the same direction. Class 2 levers have the forces on the same side o f  the fulcrum, bu t in opposing 
directions, w ith the pull F  acting at a point further from the fulcrum than the load W. Class 3 levers 
also have the forces on the same side o f  the fulcrum, bu t the load W  is further from the fulcrum than 
the pull F. Using bones as the levers, the hum an body has examples o f  Class 1 and Class 3 levers at 
different locations, bu t m ost skeletal levers are o f  type Class 3.

t
X  I 1 ' A  I

W  F  +  W

w

Class 1 c la ss  2 C lass 3

Figure 7.2: The three classifications of levers. Most musculoskeletal levers are of Class 3.
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T he capability o f each force to produce rotation o f the lever is not directly equal to the force, 
bu t rather to the m om en t M  o f  the force, which is the product o f the com ponent F„ o f the force 
normal (i.e., perpendicular) to the lever’s axis and the distance d  between the fulcrum and the point 
o f  action o f the force. T he quantity d  is often called the “lever arm .” Thus,

M  = Fnd. M om ent (7.1)

W e will use the sign convention that if  a force com ponent F„ is attem pting to rotate the lever around 
the fulcrum in a clockwise direction, the sign o f its m om ent is positive. I f  it is attem pting to rotate 
the lever in a counterclockwise direction, the sign o f its m om ent is negative.

To balance a lever and keep it stationary, the m om ents o f all the forces on the lever m ust 
balance; that is, their sum m ust be zero:

N N

Y t M ( = Y . F m d i =  o
i= 1 i= 1

In balance (7.2)

As an example, Fig. 7.3 shows the case o f  a simple lever w ith two forces, a lifting force F  
and a weight W, on the same side o f  the fulcrum bu t in opposite directions— a Class 3 lever. I t is 
representative o f the forearm lifting an object held in the hand w ith the biceps muscles providing 
the lifting force. T he biceps muscles attach to the forearm bone through a tendon at a point that is 
closer to the fulcrum w ith the upper arm bone (at the elbow) than is the weight in the hand. D ue to 
the differences in the lever arm lengths, the muscle force F  m ust be greater than the w eight W.

Figure 7.3: A  model of a lever representing the forearm at an angle, with the force produced by the 
biceps muscles (F) opposing a weight (W ) held in the hand.

Figure 7.3 shows the case where the lever is not exactly horizontal; the lever axis forms an 
angle a  w ith respect to the horizontal. This means that the force o f the weight W, directed vertically



downward by the pull of gravity, is no t perfectly normal to the axis of the lever. In  addition, the 
pulling force F  is at an angle fi w ith respect to the lever’s axis. W e m ust first find the components 
of each of these forces in the direction normal to the axis of the lever. By trigonometry,
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F„ =  F  cos fi (7.3)

and
W„ =  W c o s a .  (7.4)

Then  the m om ent due to the w eight is given by M w =  W„dw =  W d w cos a ,  and the m om ent of 
the lifting force is M  f  =  F„df =  F d f  cos fi. Using (7.2) to balance the moments,

— F d f  cos fi +  W d w cos cr =  0. (7.5)

Solving for F,

F =  W (d w cos a ) / ( d f  cos fi). (7.6)

Since a  and fi are small and often close to each other in value, and since dw >  >  d f ,  then F  >  >  W . 
A  numerical example of this relationship for a forearm of the body is given next.

Example 7.1. Leverage o f  Forearm
A book weighing 5.0 pounds is being held steadily in the hand at a slight downward angle as shown 
in the figure below. Using the typical values given for the length of the forearm and the insertion 
point of the biceps muscles onto the forearm, calculate the force F  that the biceps muscles must 
produce to hold the book steady. See Fig. 7.4.

Solution
T he model for this configuration is the same as shown in Fig. 7.3. T he equation for the force F  is 
given by (7.6):

F =  W ( d w c o s a / ( d f cosf i )  =  5.0 (14 cos 15°)/(2 .0  cos 30°) =  39 lb f .

Therefore, it takes a biceps-muscle force of 39 pounds to hold a 5-pound book. Converting this 
force to SI units,

/  4.448 N \
F =  (39 lbf) -----— - ) =  170 N .

\  1 lbf /

As just shown, because the lever arm of the w eight is much longer than the lever arm of the 
force in this Class 3 lever, F  >  >  W . B ut if the lever is now allowed to rotate, the distance traveled by
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Figure 7.4: Sketch of lever arm analyzed in Example 7.1.

the weight will be much greater than  the distance traveled by the point o f  the lever where the force is 
attached, by the ratio d w/ d f .  This is shown in Fig. 7.5. T his is how the relatively small contractions 
o f  muscle can be converted to much larger m otions at the end o f bones acting as Class 3 levers.

Figure 7.5: In a Class 3 lever, the load W moves further than the pulling force F. Since muscle cannot 
contract a long distance, this is a way that muscle can affect a longer movement, but more force is needed.
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7.3 WORK
“W ork” is a word familiar to us all (“T h a t was hard work...”). In  fact, the quantitative definition of 
w ork is consistent w ith our everyday experience, that o f using force to accomplish movement over 
some distance, and o f expending an am ount o f  energy in doing so. M athematically, the quantity of 
w ork is equal to the force F  applied to a body times the distance d  the body is moved in the direction 
o f  the force, or

W ork =  Fd,  (7.7)

where F  is the com ponent o f force in the same direction as the movement d.
T he units o f  w ork are therefore equal to the units o f force (N in SI units) times the units of 

distance (m), or N-m . T he units N-m  are called joules, w ith the symbol J. These are the same as 
the units o f  energy, and since the units are the same, you m ight expect that there is a relationship 
between work and energy. W e will return to this po in t after a discussion o f energy.

7.4 ENERGY
Energy is a quantity that represents the overall excitation state o f a system. T he F irs t Law o f  
T herm odynam ics states that energy can neither be created nor destroyed overall; tha t is, in any 
closed system (no energy crossing its borders), energy must be conserved. I t  can be changed from one 
form to another, bu t the total energy o f the system m ust remain constant. For purposes o f this class, 
we will define three forms o f energy:
1. K inetic E nergy  -  I f  a body o f mass m is moving w ith velocity v, its kinetic energy is given by a 
single formula:

E k =  l / 2 m v 2. (7.8)

In  calculating the kinetic energy, the direction o f the velocity does not m atter (since it is squared), 
just its magnitude.
2. P o ten tia l E nergy  -  Since potential energy represents the energy stored in various components of 
a system and therefore can be found in various formats, there is not a single equation for potential 
energy that covers all cases. Each type o f  potential energy needs to be treated individually. W e will 
look at only three cases:

a. Springs -  W h en  a spring is w ound (or extended or compressed), the energy used to w ind it is 
stored as potential energy. I t  can be converted back to other forms o f energy at a later time. 
There are numerous examples o f springs or spring-like mechanisms in nature and in the body, 
including the compliance behavior o f blood vessels and the action o f elastic tissues (ligaments, 
bladders, and such) in the body.

b. Chem ical -  T he energy that is released from chemical species upon reaction w ith other chem ­
icals is a type o f potential energy. A n extremely im portant example o f this for living organisms
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is the energy available from food when it is metabolized. This food energy is transform ed into 
kinetic energy (movement), other potential energy (A TP molecules, stretched elastic tissue), 
or heat in the body.

c. Gravity' -  W hen  a mass is moved higher against the force o f  gravity', its potential energy E p 
increases by an am ount

A E p =  in g h , (7.9)

where

in is the body’s mass,

g is the acceleration o f gravity' (9.8067 m /s"), and

h is the height that the mass is raised, measured in a vertical direction parallel to g. 

An example o f  this is shown in Fig. 7.6.

heigh t path  a

/ 'p a th  b

Figure 7.6: Potential energy of mass m is increased when the mass m is moved a height h against the 
force of gravity.

Notice tha t the change in potential energy depends only on the height h and not on the 
particular path  taken in reaching that height (i.e., it is the same for both  path a and path  b in 
Fig. 7.6. Thus, gravity is called a conservative field. (If  the quantity being calculated depends 
on the particular path taken, such as the energy needed to overcome friction, the force is called 
non-conservative.)

3. H e a t -  This is the third form o f energy we’ll consider, although strictly speaking, heat is a 
manifestation o f increased vibrational energy (and thus is really kinetic energy) o f the molecules 
making up a system. H eat is sometimes a useful form o f energy (as w ith steam engines or increased 
chemical reaction rates and diffusion), bu t often it is wasted to the outside environment. In many



systems, the other two forms of energy (kinetic and potential) are easily transform ed into heat, bu t 
it is more difficult to  extract useful energy out of heat. This is why we classify it separately.

R eturning now to the concept of work, how  does w ork (which has the units of energy) relate 
to the above forms of energy? W ork is a convenient way of measuring the transfer of energy from 
one form to another. For example, Fig. 7.6 can be used to derive (7.9) by using the measure of work. 
T h e  force needed to raise the mass m against gravity is F  =  m g, in the opposite direction tog . Since 
work =  force x distance, the w ork needed to raise the mass m to a height h is just mgh,  exactly equal 
to the increase in potential energy given by (7.9).

7.5 POWER
W h en  a system transfers an am ount of energy A E  during a time At ,  the rate of energy exchange is 
given by A E j A t .  T his is the power <t> being transferred, or

<t> = A E / A t .  Power (7.10)

In the lim it as At  approaches zero, we get the differential form of (7.10):

O =  d E / d t .  Power (7.11)

From either (7.10) or (7.11), the units of power can be seen to be J/s, or W  (watts). T his is a 
un it we can relate to everyday experience, since incandescent light bulbs for room lighting are usually 
rated from 40-100 W  (electrical input power), while flashlight bulbs are 1-10 W . Also, since 1 hp 
(horsepower) is equivalent to 746 W , a 100 hp automobile engine can pu t out 74,600 W  of power 
at maximum output.

7.5.1 POWER IN FLUID FLOW
As covered in C hapter 3, it takes energy to  force fluid through a tube against its resistance, and since 
power is defined as the energy expended per un it time, there is a power requirem ent for m aintaining 
the flow. T he relationship between power and the fluid parameters can be seen by considering the 
following:

power = e n e r g y /t im e  = work exp en d ed /tim e  = f o r c e  X d is t a n c e / t im e  = 
p r e ssu r e  drop X a r e a  X d is t a n c e /t im e  = p r e s su r e  drop X vo lu m e/tim e  = 
p r e ssu r e  drop X volum e f lo w  r a t e .

T hus, the power <t> is given by the product of the pressure drop and the volume flow rate:

<t> = A P  Q. (7.12)

T h e  units on the right side of (7.12) are (N /m 2)(m 3/s) = N -m /s = J/s = W , which of course are the 
same as the units on the left side of (7.12). Relating the pressure drop and flow rate to resistance 
by (3.7) in the Poiseuille’s Law unit gives alternate forms for the expended power:
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7.6 PROBLEMS
7.1. In  the country o f  Com bria, blood pressure is measured in units o f Pa. Knowing that the density 

o f mercury is 13.6 g /m L, find the conversion factor from Pa to m m H g. (Do not obtain the 
conversion factor from a table; rather, calculate it.)

fans: 1 Pa =  7.50 x  10-3  m m H g]

7.2. In  the Example 7.1 on p. 90, the forearm (radius) is held at an angle o f  15° from the horizontal 
and the biceps muscle forms a 30° angle w ith the forearm (measured to the normal). Suppose 
that the arm holding the book is now extended forward from the body (but still held at 15° 
from horizontal), causing the angle o f the biceps muscle w ith respect to the forearm to change 
to 80.3° (measured to the normal). W h a t force must the muscle now apply to hold the book 
steady?

fans: 890 N]

7.3. T he masseter muscle is the major muscle group attached to the mandible (jaw bone) for 
chewing food, as shown below:

masseter muscle

0
0 =  Q2R = (- ^ ~ .  (7.13)

Figure 7.7: Sketch of lever analyzed in Problem 7.3.

I t takes a force o f about 5.5 Ibf to crack open a peanut w ith the teeth. H ow  m uch force does 
the masseter muscle need in order to crack open the peanut using the typical values given in
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the figure above?

[H int: First draw a static lever (m om ent) diagram like Fig. 7.3. ans: F m =  74 N]

7.4. You take a bicycle trip from the m outh o f  Little C ottonw ood Canyon in U tah (starting at an 
elevation o f  about 5200 feet) up to the lodge at Snowbird resort. T h e  trip takes 2.0 hours.

a. H ow  much mechanical energy has your body provided to increase your potential energy 
during the trip? (Ignore frictional loses in the bicycle— not a very valid assumption. Also look 
up the elevation o f the Snowbird lodge on their website.)

fans for me: 6.1 x  105 J]

b . Your body burns food (chemical energy) as a source o f its mechanical energy. T he maximum 
efficiency o f  this process is about 20%; that is, it takes 5 J  o f chemical energy to produce 1 J 
o f mechanical energy output from the body at a maximum work rate. Considering this, how 
many bags o f  peanut M & M ’s (1.74 oz. bags) would you need to  eat to provide the energy for 
climbing the hill?

fans for me: about 3 bags]

c. Instead ofbicycling to Snowbird, ifyou were to connect your bicycle to a stationary electrical 
generator and peddle at the same rate, could you light up a 100 W  light bulb? (Assume the 
efficiency o f the generator is 100% in converting mechanical energy to electrical energy.)

7.5. a. Calculate the average power expended by the left ventricle in pum ping blood around the 
hum an C V  system. (Use the average cardiac output and average pressure values for the aorta 
and the right atrium found in the M ajor Project figures.)

fans for my values: 1.2 W ]

b . W ould this am ount o f power light up a typical hallway nightlight?
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C o n v e r s i o n  F a c t o r s
1 lbf = 4.448 N  
1 psi = 6895 Pa 
1 slug = 14.59 kg 
1 dyn = 1 x 1 (T 5 N  
1 dyn/cm 2 = 1 x 1CT1 Pa
1 atm  (atmospheric pressure at sea level) = 1.013 x 105 Pa = 1.013 bars 

= 14.70 psi = 760.0 m m lig  = 29.92 in l ig  
1 m m lig  at 0°C  = 133.3 Pa = 1.000 torr 
1 in l i iO  at 4°C  = 249.1 Pa
1 P  (poise) = 1 x K T 1 Pa-s = 1 x 10-1 N -s/m 2 = 1 x 10-1 kg/(m-s)
1 A  (angstrom) = 1 x 1 0 ^ 10 m = 1 x 10-1 nm
1 L  = 1.000 x 10“ 3 m 3
1 gal = 3.785 L
1 D a = 1.661 x 1 0 -27 kg
1 in = 2.540 cm
1 m = 39.37 in = 3.281 ft
1 W  = 1 J/s = 1 (N-m )/s
1 erg = 1 x 10-7  J
1 hp = 0.7457 kW
1 Btu = 1055 J
1 cal (“small” calorie) = 4.184 J
1 Cal (“big” calorie, food calorie, or kilocalorie) = 1 x 103 cal 

Notes:

1. W h en  the num eral “1” appears alone in the above formulas (e.g., 1 x 10-5  N , or 1 L), it is 
considered exact w ith an infinite num ber o f  significant figures.

2. T he food and nutrition industry uses the big calorie, or Cal, as the un it o f  chemical energy
available from food, but often Cal is not capitalized on food labels so don’t confuse it w ith cal, 
the small calorie.
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M a t e r i a l  C o n s t a n t s
B.I VISCOSITY

Dynam ic viscosity /x has SI units o f  kg/(m-s). These units are equivalent to Pa-s o rN -s/m 2. However, 
a non-SI unit is commonly used to report viscosity: the poise (P), nam ed in honor ofPoiseuille. 1 P  is 
equal to  1 x  10-1 Pa-s. Approximate viscosities o f  some common fluids are listed below at standard 
tem perature and pressure in units o f  either P  or cP (centipoise).

V iscosity
(1 P  = 1 x  K T 1 Pa-s)

(1 cP = 1 x  1 (T 2 P  = 1 x  1(T 3 Pa-s)
air 1.8 x  i c r 4 P
glycerine (20° C) 1500 cP
water (20° C) 1.0 cP
blood plasma (Newtonian) 1.2 cP
whole blood (non-N ew tonian) 2.5 - 14 cP
hemoglobin 6 cP
egg protoplasm 1.8 cP

B.2 DENSITY AND SPECIFIC GRAVITY

D ensity p  is mass per un it volume and has SI units o f  kg /m 3. Sometimes the density is reported as 
the specific gravity y ,  w hich is defined as the density o f  the m aterial divided by the density o f  water.

D ensity
air at standard atm 1.22 kg/m 3
water at 15°C 999 kg/m 3
whole blood at 37°C 1060 kg/m 3

Specific G rav ity
red blood cells 1.10
blood plasma 1.03
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B.3 PERMEABILITY
Darcy’s permeability k  has SI units o f  m 2; in this table it is given in units o f  cm2. 
T he permeabilities o f  some example materials are listed below.

Perm eability
sand approx. 1.0 x 10 6 cm"
cellulose filter paper (11 jxm  pore size) 1.2 x 1 CT9 ->cm“
granite approx. 1.0 x 1CT16 cm“
cell m embrane approx. 1.0 x 10-17 cm“
skin approx. 1.0 x IO-18 cm“

B.4 YOUNG’S MODULUS AND ULTIMATE STRESS
Young’s M odulus E  (also known as elastic modulus or stiffness) has SI units o f  Pa; it is given below 
in GPa.
T he U ltim ate Stress is the maximum stress a m aterial will sustain before breaking; it is given below 
in M Pa.

Young’s M od u lu s and  U ltim a te  Stress fo r Various O rth o p ed ic  M ateria ls
U ltim a te  Stress Y oung’s M od u lu s E

M ateria l
r a ;

Stainless steel 850 180
C obalt alloy 700 200
T itanium  alloy 1250 110
P M M A 35 5
Polyethylene (high M W ) 27 1
Bone (cortical) 120 18
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