Isolation and structural determination of octacyanobutanediide, $[C_4(CN)_8]^{2-}$; precursors to $M(TCNE)_x$ magnets‡

Jie Zhang,^a Louise M. Liable-Sands,^b Arnold L. Rheingold,*^b Rico E. Del Sesto,^a Douglas C. Gordon,^a Brian M. Burkhart^c and Joel S. Miller*^a†

- a Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA
- ^b Department of Chemistry, University of Delaware, Newark, DE 19716, USA
- c Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, USA

The reaction of $MI_2 \cdot xMe_3CN$ (M = Mn, Fe) and TCNE (tetracyanoethylene) leads to unprecedented $[C_4(CN)_8]^{2-}$ μ_4 -metal complexes which have been crystallographically characterized and are precursors to $M(TCNE)_x \cdot yS$ magnets

The study of cyanocarbons has led to the discovery of both molecule-based conductors1 and magnets2 as well as several new classes of compounds based upon reduction of the nitrile triple bond.^{3,4} While generalizing the room-temperature molecule-based magnet V(TCNE)x·yCH2Cl25 to magnetic systems based upon other metals, we discovered several new magnets in this class: $M(TCNE)_2 xS$ (M = Mn, Fe, Co, Ni; S = MeCN, CH₂Cl₂).⁶ In contrast to the V magnet, the Fe and Mn magnets exhibit X-ray powder diffraction. Therefore, we attempted to grow single crystals of these magnets via slow diffusion of MI_2 :xMeCN (M = Mn, Fe) and TCNE in a H-tube using either $MeCN-CH_2Cl_2$ (M = Mn) or pure MeCN (M = Fe). Crystals of new compounds (light yellow for M = Mn; dark brown for M = Fe) were isolated with $v_{\rm CN}$ IR absorptions at 2304m, 2275m, 2212s, 2205s, 2153s, and 2096m (sh) cm⁻¹ for M =Mn and 2307m, 2280m, 2213s, 2154s, and 2108w cm⁻¹ for M = Fe. These v_{CN} absorptions are similar to, but distinguishable from, those observed for the M(TCNE)₂·xCH₂Cl₂.6 magnets. The absorptions above 2230 cm⁻¹ are assigned to coordinated MeCN, while the latter are assigned to reduced nitriles and were initially thought to be associated with a metal-bound reduced form of TCNE.

Single crystal X-ray diffraction studies‡ of $Mn[C_4(CN)_8](NCMe)_2 \cdot CH_2Cl_2$ 1 and $Fe[C_4(CN)_8](NCMe)_2 \cdot MeCN$ 2 each revealed the unprecedented octacyanobutane-diide dianion, $[C_4(CN)_8]^{2-}$ 3. This dianion is bound to four

octahedral M^{II} centres (M = Mn, Fe) in a plane with the MeCN molecules filling the axial coordination sites, and the non-coordinated CH_2Cl_2 (1) and MeCN (2) lying in diamond-shaped holes in the structure, Figs. 1 and 2. Adjacent planes are eclipsed. The interlayer M···M separaions are 7.626(2) and 9.356(4) Å, respectively, for 1, and 2, while the intralayer M···M separations are 7.581(2) and 9.344(2) Å for 1, 7.562(4) and 9.368(4) for 2.

Compound 3 is disordered about the midpoint of the C(5)–C(5') bond for M = Mn and ordered for M = Fe. The chemically equivalent M–N, C=N, NC–C and $(MNC)_2C$ –C distances average 2.218(4), 1.151(6), 1.389(7) and 1.615(10) Å, respectively, for Me = Mn, and average 2.221(7), 1.151(10),

1.398(11) and 1.508(9) Å, respectively, for M = Fe. The central C–C bond is 1.59(2) (M = Mn) and 1.627(14) Å (M = Fe). The terminal C_4 -backbone carbon atoms are sp^2 hybridized as indicated by the average angle of 119.0° (M = Mn) and 119.8° (M = Fe) while the central carbon atoms are sp^3 hybridized [average angles are 109.5° (M = Mn) and 109.4° (M = Fe)].

This is the first example of a σ -dimer of [TCNE]., however, several examples of a structurally related σ -dimer of [TCNQ]. (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane) have been reported. The backbone C–C bonds are significantly longer than the conventionally accepted value of 1.54 Å for an sp³–sp³ C–C bond length and are comparable to the central C–C bond for the σ -dimers of [TCNQ]. (1.630–1.659 Å).

For 1 thermogravimetric analysis—mass spectrometry (TGA–MS) reveals a one-step mass loss between 100 and 120 °C, during which both MeCN and CH₂Cl₂ are simultaneously observed in the effluent gas. The 34.3% mass loss is in good agreement with the formula Mn[C₄(CN)₈](NCME)₂·CH₂Cl₂ (34.9%). At *ca.* 250 °C a second mass loss occurs which is accompanied by the generation of C₂N₂ and HCN. An exothermic event is also observed in the DSC data at this temperature. This mass loss is only 4%, corresponding to *ca.* 0.7 CN per Mn. The observation of C₂N₂ and HCN is consistent with the formation of CN radicals which either combine or

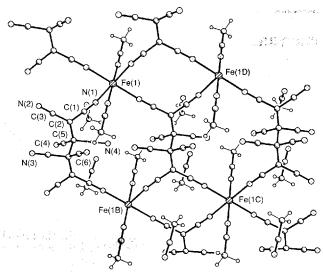


Fig. 2 Structure and labeling diagram of Fe[C₄(CN)₈](NCMe)₂-MeCN. Selected bond lengths (Å) and angles (°): Fe(1)–N(1) 2.218(7), N(1)–C(1) 1.147(10), C(1)–C(2) 1.395(12), C(2)–C(3) 1.401(11), C(3)–N(2) 1.144(9), N(2)–Fe(1°) 2.224(6), C(2)–C(5) 1.508(9), C(2^b)–C(5^b) 1.508(9), C(5^b)–C(5^a) 1.627(14); N(1)–Fe(1)–N(2^d) 86.4(2), C(1^d)–N(1^d)–Fe(1°) 163.0(6), Fe(1°)–N(2)–C(3) 165.3(6), N(2)–C(3)–C(2) 177.4(7), C(3)–C(2)–C(1) 118.2(6), N(2^a)–Fe(1)–N(1) 93.6(2), Fe(1)–N(1)–C(1) 163.0(6), N(1)–C(1)–C(2) 177.9(7), C(1)–C(2)–C(5) 120.3(6), C(2^b)–(C5^b)–C(5^a) 113.2(7), C(5^a)–C(2^a)–C(3^a) 120.9(6). a x − 1, y, z; b −x + 1, -y + 1, -z + 1; c x + 1, y, z; d −x + 1, -y + 1, -z + 2.

abstract hydrogen. Despite the lower volatility of MeCN as compared to CH_2Cl_2 , **2** loses solvent very rapidly when removed from the mother-liquor and cannot be isolated with all three MeCN molecules present. A sample with 1.7 MeCN per Fe was obtained after drying *in vacuo* at room temperature. TGA–MS on this material shows that it loses the remaining solvent at 100 °C and formation of C_2N_2 begins at ca. 150 °C and peaks at 320 °C. We have observed similar thermal decomposition processes in other compounds containing $[TCNE]^-$ such as $[NBu_4][TCNE]$ and K[TCNE]. Thus, we believed that desolvation leads to cleavage of the long central C–C bond of $[C_4(CN)_8]^{2-}$ to reform $[TCNE]^-$ which subsequently decomposes to form the observed byproducts, HCN and C_2N_2 .

Compound 1 is a paramagnet with a room temperature effective moment of 6.7 μ_B and obeys the Curie–Weiss law above 5 K. This is consistent with a diamagnetic $[C_4(CN)_8]^{2-}$ which weakly couples the metal spin sites $(S=5/2 \text{ Mn}^{11})$, albeit with a larger than expected room temperature moment. The magnetic properties of 2 are as yet undetermined since it cannot be isolated without loss of solvent.

Upon desolvation of 1 at 100 °C the $v_{\rm CN}$ absorptions disappear and new $v_{\rm CN}$ bands characteristic of the Mn(TCNE)₂·xCH₂Cl₂ magnet (2225, 2182, and 2170 cm⁻¹)⁶ appear. In addition the room temperature moment increases. The desolvated sample magnetically orders at a $T_{\rm c}$ of 95 K, in reasonable agreement with the value previously reported (107 K) for Mn(TCNE)₂·xCH₂Cl₂ prepared directly in CH₂Cl₂.⁶ 2 behaves in a similar fashion upon desolvation. The desolvated material has $v_{\rm CN}$ IR absorptions characteristic of the Fe(TC-

NE)₂·xMeCN (x = 1.7) magnet (2280, 2220, 2164 and 2117 cm⁻¹) and orders magnetically at ca. 6 K [Fe(TCNE)₂·xMeCN orders at ca. 8 K].⁶ These observations are consistent with the TGA–MS data and indicate that desolvation leads to formation of S = 1/2 [TCNE]·- which can bind to additional metal centers and provide strong spin coupling leading to the observed magnetic ordering. Evidence for this bond breaking has been reported for σ-dimers of [TCNQ]·-.⁷a

The authors gratefully acknowledge discussions with D. K. Rittenberg and the support of the Department of Energy (Grant Nos. DE-FG03-93ER45504 and DEFG-0296ER12198).

Notes and References

† E-mail: jsmiller@chemistry.utah.edu

‡ Dedicated to Professor Roald Hoffmann on the occasion of his 60th birthday.

§ Crystal data: Mn[C₄(CN)₈](NCMe)₂·CH₂Cl₂, 1: C₁₇H₈C₁₂MnN₁₀, triclinic, space group P1, a=7.5805(6), b=7.6259(6), c=9.3443(7) Å, $\alpha=89.1436(12)$, $\beta=88.8320(20)$, $\gamma=87.2979(14)^\circ$, V=538.85(7) Å³, Z=1, T=223(2) K, $D_c=1.472$ g cm⁻¹, R(F)=0.0501, $R(wF^2)=0.1512$ for 1103 independent observed reflections (3 $\leq 2\theta \leq 58^\circ$).

Fe[C₄(CN)₈](NCMe)₂·MeCN, 2: C₂₀H₁₂FeN₁₂, monoclinic, space group $P2_1/c$, a=7.5623(5), b=16.1971(11), c=9.3682(6) Å, $\beta=90.8167(9)^\circ$, V=1147.37(13) Å³, Z=2, T=233(2) K, $D_c=1.379$ g cm⁻¹, R(F)=0.0796, $R(wF^2)=0.2149$ for 1324 independent observed reflections (3 $\leq 2\theta \leq 58^\circ$). Further details of either crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting depository number CSD-407730 and 407731, respectively. CCDC 182/887.

- 1 Recent reviews: P. Cassoux and J. S. Miller, Chemistry of Advanced Materials: A New Discipline, ed. L. V. Interrante and M. Hampton-Smith, VCH Publishers, New York, 1998, 19; M. R. Bryce, Chem. Soc. Rev., 1991, 20, 355.
- Recent reviews: J. S. Miller and A. J. Epstein, Angew. Chem., Int. Ed. Engl., 1994, 33, 385, Angew. Chem., 1994, 106, 399; Adv. Chem. Ser., 1995, 245, 161.
 D. Gatteschi, Adv. Mater., 1994, 6, 635; O. Kahn, Molecular Magnetism, VCH Publishers, Inc., New York, 1993.
- 3 O. W. Webster, Kirk-Othmer Encyclo. Chem. Tech., 1993, 7, 809; R. P. Suprayan and P. G. Rasmussen, Trend. Polym. Sci., 1995, 3, 165.
- 4 W. E. Buschmann, A. M. Arif and J. S. Miller, J. Chem. Soc., Chem. Commun., 1995, 2343.
- 5 J. M. Manriquez, G. T. Yee, R. S. McLean, A. J. Epstein and J. S. Miller, Science, 1991, 252, 1415; J. S. Miller, G. T. Yee, J. M., Manriquez and A. J. Epstein, in Proceedings of Nobel Symposium #NS-81, Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure, Oxford University Press, 1993, 461; La Chim., 1992, 74, 845; A. J. Epstein and J. S. Miller, in Proceedings of Nobel Symposium #NS-81, Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure, Oxford University Press, 1992, 475; La Chim., 1993, 75, 185.
- 6 J. Zhang, J. Ensling, V. Ksenofontov, P. Gütlich, A. J. Epstein and J. S. Miller, Angew. Chem., Int. Ed. Engl., 1998, 37, 656.
- 7 (a) R. H. Harms, H. J. Keller, D. Nöthe, M. Werner, D. Grundel, H. Sixl, Z. G. Soos and R. M. Metzger, Mol. Cryst., Liq. Cryst., 1981, 65, 179; S. K. Hoffman, P. J. Corvan, P. Singh, C. N. Sethuklekshmi, R. M. Metzer and W. E. Hatfield, J. Am. Chem. Soc., 1983, 105, 4608; (b) V. Dong, H. Endres, H. J. Keller, W. Moroni and D. Nöthe, Acta Crystallogr., Sect. B, 1977, 33, 2428; H. Zhao, R. A. Heintz, K. R. Dunbar and R. D. Rogers, J. Am. Chem. Soc., 1996, 118, 12844; B. Morosin, H. J. Plastas, L. B. Coleman and J. M. Stewart, Acta Crystallogr., Sect. B, 1978, 34, 540.
- 8 G. Kaupp and J. Boy, Angew. Chem., Int. Ed. Engl., 1997, 36, 48.

爱讲的 医乳性乳头 化氯化 医环门氏病 医多克氏性畸形

Received in Bloomington, IN, USA, 23rd March 1998; 8/02273I

14 No. 24