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Conventional resonance enables one to study motion of atoms by measurement of linewidth when the 
mean time r between jumps is less than 1/Aco, where Aco is the rigid lattice linewidth, or by measurement of 
the spin-lattice relaxation time, Ti, when 1/coo, where coo is the Larmor frequency. We describe a new 
technique applicable when r < T i .  It is therefore applicable to the study of very slow motion. The method is 
analogous to measuring T i with coo = 0. However, we are able to keep co0 in the megacycle region by perform­
ing the experiments in the reference frame rotating at the Larmor frequency. Analysis of the technique re­
quires solution of the problem of the effect of infrequent motion on the nuclear relaxation time when the ap­
plied static field is comparable to the local field. The relaxation time is then comparable to r, indicating that 
jumps are strong “collisions” for the spins. The case of strong “collisions’’ is not treated in the conventional 
treatment of Bloembergen, Purcell, and Pound. We solve the problem by use of the concept of spin tempera­
ture and the sudden approximation. Explicit formulas are given for the nuclear relaxation in the laboratory 
for weak static fields, and in the rotating frame for alternating fields of the order of or less than the local field. 
We treat both diffusional motion and molecular reorientation.

I. INTRODUCTION

S OME of the most striking phenomena of nuclear 
magnetic resonance are related to the bodily motion 

of the nuclei themselves. It is this motion which gives 
rise to the characteristic narrow lines of liquids as con­
trasted to the broad lines of solids.1 In many instances 
this motion provides one of the most important mecha­
nisms for the nuclear spin system to reach thermal 
equilibrium with the lattice. This time, called the spin- 
lattice relaxation time T i, m ay become hours in length 
in insulating materials when all motion is frozen out. 
The direct connection between atomic motions on the 
one hand, and the linewidth and relaxation time on the 
other, have made magnetic resonance one of the most 
important techniques for studying atomic motion.

Ordinarily, we m ay characterize motions by the mean 
time r an atom sits between jumps. Conventional 
theory shows that we can observe the motional narrow­
ing of the resonance when r is less than ( r 2)R.L. where 
( r 2)R.L., the spin-spin relaxation time, is the inverse of 
the rigid lattice line breadth. The spin-lattice relaxa­
tion is most effective when r is of the order of the 
Larmor period. Since (T ^ r .l. is of the order of 100 /xsec 
and the Larmor period is typically 10“ 8 sec, we can use 
conventional resonance techniques to observe motions 
when r is less than about 100 /xsec.

In this paper2 we describe a new technique which 
enables us to use resonance to observe motion when 
t < T i . Since this technique enables us to
observe slower motions than were previously possible 
by resonance. In some instances T \  m ay be hours in 
length. In such a case, this technique m ay enable one to

* Supported in part by the U. S. Atomic Energy Commission.
1 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 

73, 679 (1948), hereafter referred to as BPP.
2 A preliminary account of this research together with the experi­

mental verification for the case of diffusion in lithium metal has ap­
peared in Phys. Rev. Letters 12, 168 (1964).

observe jump rates of the order of one lattice distance 
an hour. In a succeeding paper we describe the experi­
mental verification of the theory for the case of self­
diffusion in lithium m etal.2 For that case we measure as 
our longest r one of several tenths of a second. Com­
bining our data with those of Holcomb and Norberg, 
whose shortest measured r was about 2X 10-9 sec, we 
have measurements of r covering a range of 108. Our 
measurements, in fact, extend the data of Holcomb and 
Norberg by about 104.

As we shall show, the technique is very similar to 
adiabatic demagnetization.3 It is performed, however, 
in a rotating reference frame4 bringing about the im ­
portant experimental simplifications that the “adiabatic 
demagnetization” is actually done in a strong applied 
field of the order of 10 000 G.

One of the principal problems involved in the theoreti­
cal interpretation is associated with the fact that in an 
ordinary experiment on adiabatic demagnetization, the 
final applied field H 0 is comparable to or less than the 
local field arising from neighboring nuclei. As a result, 
one cannot make the usual approximation that the 
Zeeman energy (coupling to H 0) is large compared to the 
dipolar energy. If the atomic motion is very rapid 
(r short), the effect of the dipolar coupling is greatly 
diminished, and it can be treated as a weak perturba­
tion. The relaxation theory has been worked out for this 
case by Bloembergen, Purcell, and Pound, and the fact 
that their theory works even for low fields has been 
verified by Brown.5 However, if the motion is very slow 
(r long), the full effectiveness of the dipolar coupling is 
felt. Then, when Ho is comparable to or less than the

3 For an excellent review of the concepts of spin temperature and 
adiabatic demagnetization, both in the laboratory and rotating 
frames, see the article by L. C. Hebei, in Solid State Physics, edited 
by F. Seitz and D. C. Turnbull (Academic Press Inc., New York, 
1963), Vol. 15.

4 C. P. Slichter and W. C. Holton, Phys. Rev. 122, 1701 (1961); 
A. G. Anderson and S. R. Hartmann, ibid. 128, 2023 (1962).

5 R. M. Brown, Phys. Rev. 78, 530 (1950).
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dipolar coupling, one has no good knowledge of the 
energy eigenvalues, nor the eigenfunctions of the sys­
tem. The assumption of strong-field eigenstates under­
lying the Bloembergen, Purcell, and Pound theory of 
relaxation, as, for example, employed by Torrey,6 is no 
longer valid. An additional problem is that the BPP  
theory, depending as it does on the use of perturbation 
theory, is based on “weak collisions.75 It takes many 
“collisions” for a spin to relax. That it takes many 
jumps to relax a spin is evidenced by the fact that the 
relaxation time is much longer than r. In our case, the 
relaxation time is comparable to r. Since only about one 
jump is needed to relax a spin, the “collisions” are 
strong. A perturbation theory approach will therefore 
not be applicable. Fortunately, however, two circum­
stances are present which enable us to treat the problem.

The first circumstance is that a low H q enables the 
Zeeman and dipolar systems to couple strongly, es­
tablishing a common spin temperature. B y assuming 
that the relaxation processes disturb the system slowly 
compared to this internal coupling, we can characterize 
the spin system by a temperature. The second cir­
cumstance is that the actual duration of a jump is so 
short that we can assume all spins have the same orien­
tation just after a jump that they did before. That is, the 
sudden approximation applies. As we shall see, these 
two circumstances enable us to put the relaxation time 
in the form of a diagonal sum, so that we can evaluate it 
using any complete set of eigenfunctions, and do not 
therefore need to solve the weak-field Hamiltonian. The 
technique of diagonal sums in magnetism is due to 
Waller and to Van Vleck, who has exploited it in a 
notable sequence of papers.7 They were the first people 
to apply the technique to a relaxation time calculation. 
Our considerations are most directly based on the work 
of Redfield8 and of Hebei and Slichter.9 They were, 
however, still concerned with a weak-collision case 
(relaxation of nuclei by conduction electrons).

Lowe has independently recognized that ultraslow 
atomic motions can be observed by virtually the same 
experimental technique as we employ. He and Look10 
have observed the effect in glycerine and gypsum. Since 
Lowe has applied a BPP type of theory to analyze the 
data, his theoretical expressions apply when the re­
laxation time is much longer than r, which ordinarily 
occurs when the alternating field H i  is large compared 
to the local field.

In Sec. II we outline the physical basis for the tech­

6 H. C. Torrey, Phys. Rev. 92, 962 (1953); 96, 690 (1954). See 
also H. A. Resing and H. C. Torrey, ibid. 131, 1102 (1963).

7 See, for example, J. H. Van Vleck, J. Chem. Phys. 5, 320 
(1937), and I. Waller, Z. Physik 79, 370 (1932).

8 A. G. Redfield, IBM J. Res. Develop. 1, 19 (1957); A. G. 
Anderson and A. G. Redfield, Phys. Rev. 116, 583 (1959).

9 L. C. Hebei and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
10 A preliminary account of experiments on glycerine and gyp­

sum was presented by D. C. Look and I. J. Lowe at the Fourth 
Omnibus Conference on the Experimental Aspects of Nuclear 
Magnetic Resonance Spectroscopy in March 1963 (unpublished).

nique. In Sec. I l l  we show how to treat relaxation in 
low applied fields, extending the theory of Torrey and 
BPP to applied fields comparable to the local field. In  
Sec. IV  we give the general theory of the relaxation time 
in the presence of an alternating field which is com­
parable to the linewidth. The theory of Sec. IV is 
applied to treat diffusion in Sec. V and to treat molecular 
reorientation in Sec. VI.

II. THE BASIC THEORY

Consider a system of nuclei interacting with an 
applied static field H 0 and with one another.3 We have 
then a Hamiltonian

3 C z = - y f i H o  Y L j h j ,

I  - Ix i *-3

3 (r ij • 1̂ ) (r ij • Iy)

(1 )

(2 )

(3)

where r# is the internuclear vector from nucleus i  to j ,  
7  is the gyromagnetic ratio, H 0 the applied field (taken 
to be in the 2  direction).

The energy E , entropy a, and the magnetization 
(M)av can all be computed from the density matrix p ,  

assuming that the spin system has a temperature 6. In 
particular

p = e x p (—3C /k d ) /Z ,

(M )av= T r PM ,
- (4)

#  =  Tr3Cp, v '

a = ( E + k d l n Z ) / 6 ,  

where the partition function Z  is

Z = T r  exp(—3C/kd) . (5)

In the high-temperature approximation, one finds 
readily

<M)av= C H 0/6>,

—C ( H 02-\-H l 2) /S  , (6) 

<r=kN  l n ( 2 /+ 1) -  [C (tf o2+ # l /2)/2 0 2]  ,

where C  is the Curie constant, N y 2fi2I ( I + l ) / 3 k , N  the 
number of nuclei/unit volume, I  their spin, and where 
H l 2 is a quantity we call the “local field,” defined by  
the equation

C H L'2 =  ( lA ) [ T r 5 C / / ( 2 /+ l ) ^ ] . (7)

Explicit expressions for H L'2 can be worked out since 
the trace can easily be evaluated [see Eq. (30) below]].

Let us now consider an adiabatic demagnetization. 
We start at a large field H Q0, much larger than the local 
field, with a sample magnetized in thermal equilibrium 
at the lattice temperature 6i. If we turn H 0 slowly to 
zero, and may neglect any coupling to the lattice, the 
entropy a remains constant. Using Eq. (6), we find that
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we reach a temperature 6 given by:

d = H L,d i / H 00. (8)

According to Curie’s law, the magnetization in zero 
field is zero. If we slowly turn H 0 back up to H 0q, we 
recover the full magnetization without need for con­
tact with the lattice. In this process the order (entropy) 
has remained the same at all parts of the cycle. In the 
strong field, the order manifests itself as an alignment of 
spins along H 0. In  zero applied field, the order consists 
of the alignment of spins along the direction of their 
local fields. Since the local fields are, in general, random  
in direction, no bulk magnetization results. (Of course 
if yf iHoo~kdi,  there might be a ferromagnetic or anti­
ferromagnetic arrangement when H 0 is zero, so the 
local fields would not be random. Since we always work 
in the region yfiHo0<Kk6i, we can consider the local fields 
as random.) Since the dipolar interaction falls off 
rapidly with distance, the local field arises from near 
neighbors. We m ay say that the order is short range 
when # o = 0 ,  and that the process of demagnetization 
has changed the order from long range to short range.

As long as the system  is isolated from the lattice, the 
order remains the same. Thus we would recover the full 
magnetization in raising H 0 to its initial value H 00. The 
process of spin-lattice relaxation, representing as it does 
a heat flow from the lattice to the spins, will destroy 
the order in low field, since it will heat the cold spins 
toward the lattice temperature. We may say that the 
order can be maintained for a time of order TY

Let us now consider what would happen if, when 
H 0= 0 , the atoms began jumping to new positions as is 
the case with self-diffusion. The actual time an atom is 
moving is of the order of 10“ 12 sec, much shorter than 
any precession periods of the nuclei. During this time, 
the spins do not change their spatial orientation. A 
nucleus which was lined up parallel to its local field 
before jumping finds itself in a different local field after 
the jump. If the new local field were completely random 
relative to the old one, a jump would produce a com­
plete loss of order. There is some maintenance of order 
of course, since a nucleus jumps only one lattice distance 
ordinarily, but it is still a good approximation to say 
that we can maintain the dipolar order only for a time r.

We have the circumstance, then, that when r <  T h we 
can observe the effects of atomic motion since they limit 
the time for which order can be maintained in the de­
magnetized state. The loss of order could be studied by  
observing the amplitude of (M z) av following remagnetiza­
tion as a function of the time spent in zero applied field.

The technique we have described is actually feasible 
for sufficiently long TVs. However, since the simplest 
method to observe the magnetization is by means of 
magnetic resonance, we have a conflict between the 
need for zero field, to produce a motional destruction of 
order, and the need for a strong field to observe a reso­
nance. B y  means of a trick, we produce an important

experimental simplification. We apply an alternating 
field Hi.  In this case, provided H i  is sufficiently strong 
so that

y ^ H ^ T ^ y y  1 , (9)

we can leave H 0 on and do the adiabatic demagnetiza­
tion in the rotating reference system 4— that is, in the 
reference system rotating with H i  in the same sense as 
the nuclear precession. The experimental details are 
explained in a subsequent paper.2

The analysis of relaxation in the rotating frame in­
volves considerations similar to that of relaxation in the 
laboratory in the absence of Hi.  We begin by discussing 
the latter.

III. RELAXATION IN WEAK FIELDS

Nuclear relaxation in weak applied fields was first 
treated by Redfield8 and by Hebei and Slichter,9 using 
the idea of spin temperature. Since they were concerned 
with weak collisions, they employed conventional time- 
dependent perturbation theory. We must therefore 
generalize their ideas. Our method of generalization is 
closely related to the method used by Slichter and 
H olton4 an by Lurie and Slichter11 to discuss sudden 
switching of the alternating field.

We consider that our Hamiltonian is just that of 
Eq. (1) consisting of a Zeeman and a dipolar part. 
These parts couple together strongly compared to the 
coupling to the lattice. The individual atomic jumps 
cause changes in the dipolar energy, disturbing the spin 
system  from internal thermal equilibrium. We assume 
that the time between jumps is sufficiently long that the 
spin system has time to re-equilibrate between jumps. 
Thus, at the time of each jump, the spin system is 
characterized by a temperature. This means approxi­
m ately that r >  T 2, and places us in the range of r  s for 
which the linewidth of a resonance would be at its 
rigid lattice value.

The actual time a spin takes to carry out a jump is 
very short compared to all precession periods of the 
nuclei. Therefore, in each jump the dipole energy 
changes, but the Zeeman energy does not. The jump 
therefore disturbs the equilibrium in the spin system. 
As the system comes to a new equilibrium, the Zeeman 
and dipolar systems exchange energy until a new spin 
temperature is reached. That is, the Zeeman energy 
does not change during the jump, but it does change 
subsequently.

Let us therefore work out a general expression, using 
these ideas, for the rate of change of the dipolar energy 
due directly to the jumping. We shall consider that 
there are No jumping units, and that there is a mean 
time r0 between jumps. For example, if we are dealing 
with diffusion via vacancies, No might be taken as the 
number of vacancies N v, and r0 as the mean time be­
tween vacancy jumps r v. Since an atom must jump 
whenever a vacancy jumps, these quantities are related

11 F. M. Lurie and C. P. Slichter, Phys. Rev. 133, A1108 (1964).
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to the number of atoms N a and the mean time between 
atomic jumps r a by the equation

N  a/  r a—N v/ tv . (10)

If, on the other hand, we are dealing with molecular re­
orientation, No could be taken as the number of mole­
cules and ro the mean time between reorientational 
jumps.

In general there is more than one kind of jump. For 
example, a vacancy m ay possess G neighboring posi­
tions into which it might jump with equal probability. 
Or a molecule may have several orientations which it 
might be in initially, and from each initial position a 
smaller number into which it might go finally. Let us 
therefore consider that there are, in general, G distinct 
types of such jumps. In each jump the dipolar Ham il­
tonian changes from an initial value 3C<u to a final value 
3Cdf since it depends on the relative coordinates of the 
nuclei. To distinguish between the G types of jumps, we 
write ZQdig and 3Cdfg where g runs from 1 to G.

On the assumption that the system is described by a 
temperature, we know that the density matrix before 
the jump is

p =  e x p [ -  (Waig+ W . ) / k O y Z . (11)

The assumption that the spins jump so rapidly that the 
spin orientation does not change during the jump tells 
us that p just after the jump is given by Eq. (11) also. 
We have, therefore, that the average change in dipolar 
energy in jump g is

( A E ) g= T Y ( W dfg- 3 C dig)p

1
= -----------T r [ ( 5 C ^ ) 2 - ( 5 C ^ J C d / , ) ] ,  ( 1 2 )

k e z „

in the high-temperature approximation, where Z is 
the partition function at infinite temperature. The aver­
age energy change (AE)av for the jump of a single unit 
is then

1
<A£)av= - £ ( A £ ) , .  (13)

G Q

Since there are N 0 jumping units, the average rate of 
change of the dipolar energy due to jumping is

d(W d) / d t =  (N o/ro ) (A E)&v. (14)

Since both (A £ )av and the dipolar energy (3Cd) are in­
versely proportional to the dipolar temperature 0, we 
can write Eq. (14) as

d ( K d) / d t = - ( W d) / T d , (15)

where the minus sign is introduced since <AE)av is posi­
tive but (5fC<*) negative for positive 0, and where

1 / T d=  -  ( i \ y  To) (<AEW<3C<*)). (16)

The traces of Eq. (12) can be evaluated, enabling us to 
compute <AE)av and therefore T d.

Equation (15) implies that <3Cd) relaxes towards zero, 
whereas we know in fact it should relax towards a value 
<3Cd)i corresponding to 6 = d i y the lattice temperature. 
This discrepancy arises because we have neglected the 
Boltzmann factor for lattice corodinates. I t  is easily 
taken into account by modifying Eq. (15) to read

d(W d) / d t =  «3C d) i -  ( X d) ) / T d. (17)

Equations (12)—(17) are the basic ones to interpret our 
experiments. They can be applied both in the labora­
tory and in the rotating frame, and to a wide variety of 
motions.

We now wish to include the cross-relaxation between 
the dipolar and Zeeman systems, and the relaxation of 
the Zeeman system. We therefore distinguish between 
the dipolar and Zeeman temperatures 6d and 0Z.

We can express these results most simply by saying 
that both the dipolar energy (3Cd) and the Zeeman 
energy (3QZ) obey simple relaxation equations.

d(3Cd) (Wd) i - ( 3 C d)
------------ — ------------------------------ |~ ^ ( # £ Z — # 2)  ,

dt T d
(18)

d ( 3 C s )  ( 3 C z ) i — ( 3 C z )
------------ = ------------------------------- F ( # d — # * ) ,

dt T z

where F(6d—6Z) is some function expressing cross­
relaxation between the dipolar and Zeeman systems 
which vanishes when the dipolar temperature 6d is equal 
to the Zeeman temperature 6Z. The quantities (3Cd)i and 
<3Cz)i are simply values of <3Cd) and (3£z) when Qd and 
dz equal 6i, the lattice temperature.

(3Ci ) i = - C H L’*/8l ,

Of course, if there are mechanisms other than atomic 
motion which cause relaxation of <3Cj), T d will not be 
given simply by Eq. (16). Using Eq. (18), we then get 
an expression for the rate of change of the total en­
ergy <5C),

3{3C) d
--------- = —  < X + 3 C d >

dt dt

(3Cd)i <3C,), <3Cd) <3C,>
= ----------- + ------------------------------------------ . ( 2 0 )

Ta T z Td T z

Assuming and writing (M 2) av=  ( C H (s/d ) ,  we
obtain from Eq. (20)

1 / / /o 2 H l ' \
■---------- = ---------------  — + ------ - ) ( M o - ( M z> „),

dt H < ? + H l ' A  T z T a J
(21)

1 ( Ho H l \ [ 1 lN\ 
d t \ e /  h 02+ h l ' \ t z r d ) \ 0 i o ) ’

where Mo  is the thermal equilibrium magnetization.
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The magnetization and (1/6) thus relax exponentially 
to Mo and (1 /Oi) with a relaxation time T  given by

1 1 \ / W  H l'2 

T \Ho2+ H Lf2) \ T z T
(22)

d

If, for the moment, we consider a metal with a rigid 
lattice (i.e., no jumping) and take the relaxation to be 
due to conduction electrons, the relaxation time in 
strong field Ho is seen to be T z. If the electrons flip the 
nuclei independently, Ta—\ T Z since the dipolar energy 
is relaxed if either of the pair flips.3,8*9 More generally 
there are correlation effects in the interactions of an 
electron with several nuclei, giving

and
Td= ( l / a ) T ,

1 1 / H 02+ a H L'2'

T Tz\  H Q2+ H L'2

(23)

(24)

The most thorough experimental study of this expres­
sion is that of Anderson and Redfield.8

To obtain the diffusion contribution to Td, we need 
to evaluate the expressions of Eq. (16). A rough idea of 
the size predicted is obtained as follows. If we assumed 
the local field after a jump to be completely random with 
respect to its value before a jump, the dipolar energy of 
a spin immediately after it jumped would be zero. 
Therefore, the average rate at which (3Cd) changes is 
given by

d(3Cd) / d t =  ( ( W d) i -  <3C d»/Jr, (25)

where we have used \ r  since the dipolar interaction in­
volves pairs of spins, and changes therefore if either one 
jumps. Actually, the final local field is not completely 
random, so we introduce a quantity p  such that

d (Wd)/dt  =  (1 - p )  (2/ r )  [<3Cc*>, -  <3ed>] • (26)

p  can be calculated from Eqs. (12)—(14), and we, in 
fact, evaluate it and thereby justify Eq. (26) for a num­
ber of cases later in this paper. From Eq. (26) we get

1 /T d— ( l —p)2/r . (27)

Actually, if there is a vacancy involved in the motion, 
the atom which jumps has a missing neighbor. Its aver­
age dipolar energy before the jump is not that of a 
typical nucleus, which is not near a vacancy. We can, 
however, include this effect formally by properly de­
fining p.

For nuclear relaxation in a metal in weak field, we 
should then have

1 l / H < ? + a H L'*\ 2(1 —p) (  H L'2 \
■=— I -------------- U ---------- f -------------) .  (28)

T T z\ H o 2+ H l '2 ) . # o2+ # l ' 2

I t is of interest to compare this result with that of 
Torrey,6 using the BPP formalism. In that theory, one 
divides the dipolar interaction into two parts, one of

which commutes with the Zeeman energy, the other of 
which does not. Both parts fluctuate in time as a result 
of atomic motion. The time variation of the noncom­
muting part induces transitions of the Zeeman system 
among its energy levels. In the limit of slow motion and 
rigid lattices, we can express Torrey’s answer for the 
contribution of diffusion as

l / T = l 2 ( l - p ) / r j H Ly H 0*)A, (29)

where A is a dimensionless function of the orientation 
of the static magnetic field with respect to the crystal 
axes.

Utilizing the fact that3

H L' * = y * m ( I + l ) Z
0 rjkQ

(30)

one can identify A from Torrey’s equations. To com­
pare Eq. (29) with the dipolar contribution to Eq. (28), 
it is most convenient to average A over all orientations 
of field. “A ” then becomes

A — (Tr(3Cdn)2)/Tr3Cd2 =  £ , (31)

where 3Cdn is that part of the dipolar energy which does 
not commute with the Zeeman energy (the “nonsecular” 
part12), and where the brackets indicate an angular 
average.

Thus
1 2(1—p) Hl 2 4

- = --------- -------- . (32)
T r flo2 5

We note two differences with our result

1 _ 2(1- * )  Hz/ 2

T r W + H l '2
(33)

The first is that ours predicts a rate which does not go 
to infinity as H q goes to zero. This clearly expresses the 
fact that as H 0 goes to zero, individual nuclei still ex­
perience a field due to the neighbors. We should there­
fore expect that the H 0 in Torrey’s expression should be 
replaced by H o2-{-BHl 2, where B is a constant of order 
unity. (Our theory enables us to calculate B.)

The second difference is the coefficient f  which multi­
plies Torrey’s result. We have assumed that the changes 
in dipolar temperature are communicated to the Zeeman 
system. This is true in low H 0, where cross-relaxation 
between the dipolar and Zeeman systems proceeds 
rapidly. Once H o5>Hl , however, the energy levels of 
the two systems no longer match, and a change in the 
dipolar temperature can no longer be communicated. 
Since atomic motion changes the dipolar energy, but 
not the Zeeman energy, the Zeeman system is sluggish 
in following the dipolar relaxation. On this basis we 
would be inclined to suppose that the atomic motion

12 See, for example, C. P. Slichter, Principles oj Magnetic 
Resonance (Harper and Row, Publishers, New York, 1963), 
Chap. 3.
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would need a time equal to the cross-relaxation time to 
communicate the dipolar temperature. Actually, for 

this time becomes exceedingly long—infinite 
for all practical purposes.

This view is only partially correct. To discuss the 
cross-relaxation, we must first define two systems. Let 
us take the Zeeman energy 3CZ as one and 3C/ ,  that 
part of the dipolar Hamiltonian which commutes with 
3C*, as the other. These two systems alone would be per­
fectly isolated from one another since they have com­
muting Hamiltonians. We still have a further part, 
3Cdn, the rest of the dipolar Hamiltonian. When 

3Cdn has only a minor effect on the energy 
levels of the system. I t does, however, bring about cross­
relaxation between the Zeeman and dipolar systems.13 
When the dipolar and Zeeman energy level spacings are 
quite different, as when 77l <£Ho, this transfer of energy 
is very slow.

When there is motion, both 3Cd° and JCan change in 
time. The energy changes of (5C/ )  are well isolated from 
the Zeeman system, requiring cross-relaxation. The pro­
cess of a jump also brings about a momentary change in 
(3Cdn). This energy, however, is rapidly (within about 
a r 2) transferred to the Zeeman system, since and 
3£z do not commute. Therefore, jumping brings about 
a change in (3QZ). Customarily we say that 3Can becomes 
time-dependent, and is thus able to induce transitions 
among the Zeeman levels,1 the energy transfer being 
then between the lattice and the Zeeman system. But 
this transfer may actually be thought of as a mo­
mentary fluctuation of (3Cdw). I t  is only the changes in 
(3Cdn) and not in (3Cd°) which are able to produce re­
laxation when H q̂ H l , so the relaxation is reduced 
by the factor 4/5.

An analogous situation arises when one asks what 
happens to the magnetization when a magnetic field H 0 
is suddenly applied to an unmagnetized sample sitting 
in zero field. We can analyze this problem by defining 
three quantities 77/, H l o and H lu as follows:

CHL'2 =  [1/4(27+1)*] T r( ^ ) 2, 
C(Hlo')2= [1/4(27+1)*] Tr(3C/)2, 
C(H

(34a)
l , 0 2= [ 1/£ (2+ 1)*] Tr(3Cdn):

They satisfy the equation

H Lf* = (H L0y + ( H Ln'y . (34b)

The energy of the spin system Eb, before Ho is ap­
plied, is

C(HL oO2 C(HLn ) 2'
E h=

CHL'2

e e e
(35)

where 6 is the spin temperature. Since the magnetization 
is zero before application of H 0 (as dictated by Curie’s 
law), the Zeeman energy immediately after H Q is applied

13 N. Bloembergen, S. Shapiro, P. S. Pershan, and J. O. Artman, 
Phys. Rev. 114, 445 (1959); P. S. Pershan, ibid. 117, 109 (1960).

is zero, so the total energy is also E&. Part of this energy 
resides in the secular dipolar system. I t is

C(HLQ')2/d. (36)

The rest, — [C(H Ln)2/0~], lies in the nonsecular part. 
This latter part is communicated to the Zeeman system 
within a time of the order to T2, establishing a Zeeman 
temperature 6Z given approximately by

- { C H , y e z ) = - [ c ( H L n y / d - ]

and a magnetization

CH0 CHq (HLnf)2

(37)

M--
0 i7o2

(38)

The energy in the secular dipolar system only couples to 
the Zeeman system by cross-relaxation. When it even­
tually mixes, a new temperature of the total system df is 
reached given by

-  (CHLy e ) = -  tc(Ho2+ H L/2)/df-], 

so that eventually we get

(39)

M-
CH0 (HLy

(40)

The change in Zeeman energy, —M H q, in the first 
process is

- ( CHo2/d)(HLny H Q2), (41)

whereas in the second case it is

(CHq2/ 0) [H l 2 /  T?o2+ (7 / l ) 2] . (42)

If one averages (H Ln')2 for a powder, it is exactly f  of 
(Hi!)2. We note that this change is of exactly the same 
sort as we encounter due to relaxation by sudden 
changes in the dipolar energy. I t is in fact just the dis­
tinction between {Hl )2 and (H lh)2 which distinguishes 
the low field relaxation from the BPP case, giving rise to 
the extra f  found in Eq. (32) but not in Eq. (33). We 
see, therefore, that our zero-field calculation goes over 
to the BPP result in a natural way. Of course, their cal­
culation looks quite different at first sight since they 
consider 5Cdn as being a time-dependent perturbation 
which induces transitions between the Zeeman levels. 
That is, they divide the Hamiltonian into a time- 
independent part which has a set of energy levels, 
and a time-dependent part which induces transi­
tions among these levels. The difficulty when H 0 is 
zero is that the entire Hamiltonian is time-dependent. 
We can no longer make such a division. However, the 
“sudden approximation” viewpoint is valid for both 
strong and weak collisions, and the spin-temperature 
concept applies as long as there is no motional narrow­
ing. Thus we can apply these ideas in either low fields 
(by considering the cross-relaxation time between the 
dipolar and Zeeman systems to be zero) or high fields
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(by considering the cross-relaxation time between 
Zeeman and the secular dipolar systems to be finite). 
We could presumably even treat the intermediate field 
region if we included corrections for the cross-relaxation 
by writing a set of coupled equations for both Zeeman 
and secular dipolar temperatures.

IV. MOTIONAL EFFECTS IN THE 
ROTATING FRAME

In the previous sections we have shown how the effect 
of motion can be introduced into relaxation at low 
applied fields. Now we turn to a similar discussion in the 
rotating reference frame. The discussion is based on the 
original idea of Redfield3’14 that in the presence of an 
alternating field sufficiently strong to produce satura­
tion, the spin system can be described by a temperature 
in a reference system rotating in the sense of the pre­
cession at the angular frequency co of the alternating 
field.

The rotating coordinate transformation is quite 
standard. Using it, Redfield shows that in the rotating 
frame we have an effective Hamiltonian 3C

where

where

3C = 3e*+3Cd°,

3C* =  -  7 * [ ( # o -  (co/7 ) ) / , + / / i / J

ZJ

(43)

(44)

(45)

is the total z component of magnetization. I z is similarly 
defined. 3Cd° is that part of the dipolar Hamiltonian 
which commutes with I z. Frequently 5C/ is called the 
secular part of the dipolar energy.

Redfield’s spin temperature idea means that there is 
a density matrix p ,  given as

where
P = e x p ( — 3Q,/k6)/Z,

Z = T r e ~ ^ / k \

(46)

(47)

and where 6 is the spin temperature in the rotating 
frame.

One can again calculate the magnetization (M)av, en­
ergy E , and entropy <r as

(M )av=C H eff/0 ,
a = N k  ln(21 + 1) -  [C(tf eff2+ t f  L2)/26>2] , (48) 

E = ~  [C(#eff2 +  #L 2) /0] , 
where C is the Curie constant

and

H eff —k [ # 0— 
skA o+iffi,

C H f }

1 Tr(0Cd0)2 

k (21 + 1 ) N

(49)

(50)

14 A. G. Redfield, Phys. Rev. 98, 1787 (1955).

The relaxation in the rotating frame was first dis­
cussed by Redfield.14 Solomon and Ezratty15 have re­
expressed Redfield’s results. _

We consider that the energy, E,  is given as

E = ( W M) + ( W d°)
(51)

We assume that at all times there is rapid transfer of 
energy between the parts of the spin system. We postu­
late certain elemental relaxation processes, however, 
which change (Mg), (Mx), and (3Cd°). They obey the 
equations

d(M,) /d t=  ( M o - ( M z) ) / T a , (52a)

and

where

d(Mx) / d t = - { M x) / T b, 

a(5Cd°) /dt=  « 3 C A -  (Wd°))/Tc, 

Mo=CHo/e l 

{ K j > ) i = - C H L*/ely

(52b)

(52c)

(53)

where di is the lattice temperature. Consider Eq. (52a). 
This gives the rate of change of (Mz) due to an elemental 
relaxation process with the lattice. There will be addi­
tional contributions due to the fact that M z does not 
commute with either the Zeeman or the dipolar parts 
of the Hamiltonian. These latter effects are what is re­
sponsible for the exchange of energy between the dipolar 
and Zeeman reservoirs in the process of bringing about 
a uniform spin temperature in the rotating frame. We 
may say that Eq. (52a) is analogous to one of the terms 
in the Boltzmann equation in which we write the rate 
of change of the distribution function due to one type 
of collision. Equations (52b) and (52c) have similar 
meanings.

Then, using Eqs. (48), (51), and (52) and neglecting 
(3Cd°)i, one can show that M , the magnitude of the 
magnetization, relaxes exponentially towards the equili­
brium value M eq given as

M
MoHeu[ho/Ta~]

eq‘
(ho2/ T a) + ( H ly r h) + ( h l2/ t c)

(54)

with a time constant T  given by

1 1

T h02+ H ^ + H L2 Ta T b T c J
(55)

We will describe an experimental technique for measur­
ing T  in a later paper.2 Exactly at resonance, M Qq= 0  
and

1 1

LTh Ta J
(56)

This result was obtained by Redfield and by Solomon 
and Ezratty who point out that for a metal the con-

151. Solomon and J. Ezratty, Phys. Rev. 127, 78 (1962).
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duction electron contributions to Ta and Tb are equal. 
T a is in this instance the spin-lattice relaxation time, 
Ti. They remark that

1 / T e= a / T u (57)

where a = 2  when nuclei are flipped independently by 
electrons. Thus the conduction electrons contribute

1 1 H x2+ a H L2

T Ti H } + H L2
(58)

We are interested in the phenomenon of atomic 
motion. Following the argument of the previous section, 
we can assume that before a jump the dipolar energy of 
a typical spin is proportional to (3Cd), whereas after the 
jump it is zero if the final local field is random. If the 
final local field is not random, then we assume (and 
prove below) that the change in energy is proportional 
to (3C<*). Since the jumping is proportional to (1/r), 
we get

d(3Cd) / d t = - ^ { S C d) / T ,  (59)

where fi is a constant of order unity, and where we have 
neglected the term (3Cd)i on the right. We get therefore

1 / T c= f i / r . (60)

In the later sections we compute fi in several cases. 
Introducing fi, then we find exactly at resonance that

1 1 •tfx2 Hr} fiHL2'

T h 77 T J
(61)

where TY is the contribution to T c due to all mecha­
nisms other than atomic motion. Often TV=TY=T\. 
Equation (61) shows us that measurement of T  can tell 
us about atomic motion when t<T Y

V. DIFFUSION EFFECTS IN THE 
ROTATING FRAME

In this section we apply the general considerations of 
the previous sections to discuss the effects of self­
diffusion in the rotating reference system.

We shall assume the diffusion goes by a vacancy 
mechanism, and that a given vacancy can jump into 
any of G distinct positions in an elemental jump with 
equal probability. The positions are ordinarily crystallo- 
graphically equivalent.

Let us consider that there are N v vacancies, and that 
the mean time a vacancy sits between jumps is r v.

The dipolar Hamiltonian12 30,d° is

y 2fi2 ( l - 3 c o s 2fe)
3C d° = ---------------------------------- ' ( 3 1  z i l z k

4  i . k

— i  23 A ik(MziI zk—li'Ik) , (62) 
i,k

where Oik is the angle between the applied field and the 
internuclear vector r

We can consider two limiting cases. In the first case, 
r v is much longer than the rigid lattice T%. (Actually, it 
is the cross-relaxation time between the dipolar and 
Zeeman systems which must be compared with r v. How­
ever, as long as Hi is comparable to H l, this is nearly 
TV) In this case, the spin system has time to come to 
thermal equilibrium between vacancy jumps. I t is then 
appropriate to say that just before each jump the system 
is described by a spin temperature. Moreover, the sys­
tem has lost all memory of how the vacancy has arrived 
at its position, so that we do not need to ask whether 
subsequent jumps return it to an earlier position.

In the second case, we require only that r, the mean 
time between nuclear jumps, be less than the rigid 
lattice TV The number of nuclei N  is much greater 
than the number of vacancies N v. However, each time 
a vacancy jumps an atom also jumps. Thus

N / t= N v/' (63)

We have then the chance that 7V$CTY In this case, 
the spin system is not able to arrive at a spin tempera­
ture between vacancy jumps. We can think then of a 
trail of hot spins left behind by the vacancy. I t is 
probably an excellent approximation to neglect this 
effect, however, and to say that most  of the atoms near 
a vacancy have spin orientations characteristic of the 
average temperature of the sample. In this connection 
the following theorem is useful.

Consider a nonuniform distribution of spin tempera­
ture. Then the spin temperature 9 becomes a function 
of position 0(r). The total energy of the spins and the 
total magnetization (for simplicity we assume we are 
exactly at resonance) are

C(Hi2+ H l *)
-dh

C ( H } + H l 2)
1

*(r)
d h , (64)

M =
CHidh

e(t)
CH i

1

*(r)
-dzr-

HrE

H x2+ H l 2

Therefore, in any redistribution of 6 which keeps E  con­
stant, as would be involved in the equilibration of the 
spin temperature following a diffusion jump, the total 
magnetization M  also remains constant.

The trail of hot spins left behind a vacancy will 
therefore diffuse the hot temperature throughout the 
sample, but in the process will not affect M.

We then make the assumption that when a vacancy 
jumps, the nuclei near to it are at the average spin tem­
perature of the sample. Since typically one near neigh­
bor just took part in a jump, it is “hot,” and we should 
not include it in computing energy changes. Since
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tv<KT2, however, a vacancy may jump back into a pre­
vious position. The correlations are complicated to 
follow. If we are considering the ith jump of a vacancy, 
we wish to be sure that it does not simply undo jump 
(i— 1), and furthermore that jump ( i+ 1) does not undo 
jump i. Since a fraction 1/G of all jumps undo a pre­
vious one, we have that the jumping rate of distinct 
jumps is (G—2)/(Gtv) instead of (1 / tv). The trail of 
hot spins further reduces the relaxation rate by a frac­
tion 1/G. We have not attempted to give a more rigorous 
discussion of the case tv<^T2 since in practice corrections 
of this magnitude (typically to 20 to 30%) are rather 
unimportant since r v varies over many orders of magni­
tude in typical experiments, and there is little meaning 
to such corrections.16

We shall therefore work out the analysis of the basis 
that tv>T<l, keeping in mind that we can approximate 
the case tv< T 2 by replacing r v by r vG/(G—3).

Our problem is now to calculate T c, the rate at which 
the dipolar energy changes. Of course, we use the general 
theory developed in Sec. III. In any given jump, we 
can say that the dipolar Hamiltonian changes since 
the relative coordinates of the nuclei change. However, 
the spin factors do not change. Thus, characterizing the 
quantum states of the total Hamiltonian by n and call­
ing 3Cd° the dipolar Hamiltonian before the jump, and 
3Cdq° the Hamiltonian after the jump, we have in the 
high-temperature approximation:

E &after -̂ before

1

k d ( 2 I + l ) N
[ T r ( 5 C d 0) 2 — T r ( 5 C d 05 C d g 0) ] .  ( 6 5 )

We note first that in the jump only one nucleus, which 
we label the rth, makes a jump. Therefore, the only 
A i/s  which change are those in which either i or j ~ r .  
Using the definition of H l2, we can write

T r ( 3 C / ) 2 

— —  
ke(2 i + i ) N i j

C H j

e
(66)

where the prime indicates that only occupied lattice 
sites are included and U is a factor given by the trace 
over spin variables. Removing the restriction on the 
lattice sites, we get

CH r 2 — U(.
N

\ N + N
E 0 4 * )2

(67)

16 We have neglected electric quadrupole effects when the 
vacancy is close to an atom. For the case of 5coQrv<<Cl, where 8 c o q  is 
the quadrupole splitting frequency, this will introduce weak 
collisions which can be included in Ta, T and T c. However, this 
will be a small effect compared to the dipole effect which repre­
sents, as we have seen, a “strong” collision.

where the sum over i and j  includes all lattice sites 
(even those occupied by vacancies), and where we have 
used the approximation that N V̂ N .  Then

0e/3<V )
T r -----------------------------

k d ( 2 l + l ) N ii
(68)

where A ijq is the value of A^  after the jump. Sub­
tracting, we get

-Eafter -̂ before U (Aij  ̂ AijA{jq)
ij

=  2 U Z ' ( A i r* ~ A i rAirq) ,  (69) 
i

where we have used the fact that only the r\h nucleus 
jumps, that either i or j  can be r, and that Aij =  Aji. 
Now in sums of Eq. (69), nucleus r has a vacancy next 
to it, so that the sums do not include all lattice sites. 
If we let q stand for the label of the vacant lattice site 
into which the rth. nucleus jumps, we can write Eq.
(57) as

E after -̂ before 2 UUL (A .V2 -  A irA -  A , (70)
i

where now the sum i goes over all other lattice sites. (We 
here neglect N v compared to N  and use the fact that 
Au=Q  for all i.) If we now define p q as

P q —  ( A q r 2 - \ ~ Y 1  A i r A i ^ / Y L  A i r 2

and make use of Eq. (67) we can say that

(71)

E  afteT ~ E before

2(1 ~ p q) C H L2 2(1 - p q)

N e N
<3Cd°). (72)

This is the change in energy for a jump from site r to q. 
There are in fact G distinct values of q for a given r as 
we have remarked, so that the average energy change per 
jump is

E  after -̂ before

N

2 /  1  \

1-----J l p a J M
G N

(1 -^)(5C /), (73)

where q ranges over the G possible values. This equa­
tion defines the quantity p.

p —--X) D4gr2+X) A i r A i ^ / Z  Air2. (74)
Q  Q i i

Equation (73) gives the average energy change in a 
single vacancy jump. Since there are N v vacancies each
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jumping at a rate 1 / tv, the total rate of change of 
dipolar energy due to jumping is

d(3Cd°

dt

N v 2
;(1 - p ) ( W d°)

N

- ( i  - p ) M , (75)

where we have used Eq. (63). Therefore

1 / T c~  (2/ r)(l p ) . (76)

As a numerical example, we have computed p for the 
case of vacancy diffusion by jumps to nearest-neighbor 
sites for a body-centered cubic lattice. The result, 
averaged for a powder, is p =  0.266.17

The analysis we have given treats the effect of dif­
fusion for the rotating frame. A completely analogous 
procedure gives one the expression for the effect of 
diffusion on Td in the laboratory frame. I t turns out that 
the same expression for p arises in both our case and 
Torrey’s. Actually, he does not make explicit mention 
of the fact that a particular lattice site is vacant when a 
jump occurs, but it is implicit in his equations.18

The calculation we have made applies to the case in 
which so that the dipolar and Zeeman energies
can rapidly exchange. In terms of Eq. (61) we get a 
diffusion contribution to the relaxation time T  of

1 2 H l 2
_ = _ ( ! - p ) ------------
T t H S + H z ?

(77)

It is of interest to consider the expression for the case 
of H{5>Hl, for which the spin temperature approxima­
tion is not valid, but for which a calculation analogous 
to Torrey’s should apply. We then have to consider 
transitions in the Zeeman energy produced by the time 
variation of 3Cd°. Actually, when Hi  is so strong that 
the spins become quantized along Hi  in the rotating 
frame, we are concerned only with that part of 5Cd° 
which does not commute with I  x, since quantization is 
along the x  direction. This nonsecular term $ZdQn is, 
if we are exactly at resonance,

8 £  I r )  , (78)

where the 1 ^  are the raising and lowering operators

17 We have discovered an algebraic error in our calculation of p 
mentioned in Ref. 2. The value given there was  ̂=  0.52. The new 
value of p improves the agreement between our experimental data 
and the value predicted by extrapolating the data of Holcomb and 
Norberg.

18 A. G. Redfield and M. Eisenstadt have discussed correlation 
effects in Phys. Rev. 132, 635 (1963).

relative to the x axis. I t is then a simple matter to use 
the expression of Eq. (78) in which the Ai /s  are time- 
dependent functions and to take over Torrey’s calcu­
lated correlation functions to get

1 2(1 - p ) H L2S 

T t H i2 4
(79)

That is, for H ^ > H j } ,  the relaxation rate is 3/4 of the 
value predicted by Eq. (77). Of course, Eq. (79) is most 
seriously in error if we try to extrapolate it to low values 
of Hi, since it predicts that T  goes to zero as Hi  goes to 
zero.

Lowe, who has independently realized that motional 
effects can be observed in the rotating frame, has made 
a calculation along the lines of Eq. (79). We demonstrate 
the fact that Eq. (77) correctly describes the results for 
self-diffusion in lithium metal in the limit H i^ H l in a 
following paper.2

VI. PAIR ROTATIONS

In the previous section we outlined the effect of 
atomic diffusion on the relaxation time T c. Another im­
portant class of atomic motion is that of molecular rota­
tion. In this instance there are certain nuclei which can 
be thought of as being imbedded in a rigid framework 
which reorients. The internuclear distances within the 
framework then do not change, though the angles d# 
do. However, there is a simultaneous change of both 
distance and angle if the nuclei i and j  are in different 
molecules. One can envisage situations in which only 
one molecule turns at a time, or situations in which cor­
related motions arise. For diffusion there is the possi­
bility that tv« T 2 even though r^>7Y That situation 
led to the possibility that the nuclei which actually jump 
are not in a region properly characterized by a spin 
temperature. For the case of rotation it is probably safe 
to say that rotation typically occurs with little spatial 
correlation to previous rotations. Therefore, as long 
as ry>T2l we can be confident that a typical nucleus 
finds itself in surroundings described by the average 
temperature.

It is perhaps most useful to work out a concrete 
example. We shall do so first for a system consisting of 
pairs of nuclei which can jump between various posi­
tions. For the purpose of this example we neglect inter­
actions between one pair and another. Thus, if we had 
protons in H 2O, we consider the H-H coupling solely 
within a given water molecule. I t  is in fact quite straight­
forward to add the contribution of the H-H coupling 
between different water molecules. This we do at the 
end of this section, but to obtain anything more than a 
completely general formula would require a specific 
assumption about crystal structure, just as would be 
the case for the intermolecular contributions to the 
second moment.
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A. The Intramolecular Contribution

Let us turn now to the intramolecular contribution. 
We consider pair couplings only. However, if one had 
more than pairs, as in a CH3 group, the relaxation time 
is expressible as a sum of pairwise couplings. There­
fore, our calculations of T c for jumping about a threefold 
axis actually give the answer for CH3, although we work 
out the case of one pair only.

Let us, therefore, consider a pair of nuclei with rela­
tive positions r*y. Let us define a set of axes x , y , z  (see 
Fig. 1). We take the z axis along the axis of rotation of 
the pair. We choose the x axis so that the static field 
H q lies in the x-z plane, making angle 6h with the rota­
tion axis. We denote the polar angles of as 0r and (pr. 
Then, the angle 0, between r# and H 0 is given by the 
equation

cosd=cosdn cos0r+ sin0# sin0r cos ip, (80)

We assume that there are G possible positions for the 
vector tij. Thus, for a twofold rotation axis, G =  2. We 
denote each position by a symbol q, where q=  1, 2,* • •, G. 
Then, we can write the dipolar energy as

(3Cd°)
U

G
(81)

where U is a constant for various qys. When q jumps to a 
new position s, we have a change in dipolar energy of

(3Cd°)final“  (3Cd°)initial — U(Aijq2 — A{js) , (82)

where we include just those values of s into which a 
jump is possible. (For example, with a fourfold axis we 
might assume only rotations of =b7r/2 to be possible and 
would, therefore, exclude values of s corresponding to a 
rotation of 7r.)

The average change in dipolar energy, (AZ£)av, is 
obtained by averaging Eq. (82) over the G possible 
values of q and G' possible values of s for a given q.

1
<AE)av= ---- U

GG' Q.a

=  - ( 1  - P ) ( 3 C J > ) ,  

defining p. We have then

P =  H  A ijqA * . / £  (A ijq) ~,

(83)

(84)
q , s q , s

where the summation over s in the denominator means 
that we repeat the value for q for each value of s. [A 
similar comment applies to the first term on the right 
of the top line of Eq. (83).] The relaxation time T c is 
then

l / r . =  ( l - * ) / r ,  (85)

Fig. 1. The relationship between 
the axis of molecular rotation, z, 
the internuclear vector, r a n d  
the static field, Ho, defining the 
angles 0h , Or, and <pr.

where r is the mean time between rotational jumps. 
Using the fact that

Aijcc (1 — 3 cos20ij) , (86)
we get 

/> = £ [ ( !
q , s

defining

3 COS2%g)(l — 3 COS20;ys) /X ( l  — 3 COS20;yg)2] ,
q , s  •

(87)

4̂ = 1 — 3 cos26h cos20r ,
B ——6 sin9h cos0# sin0r cos0r , 
C = —3 sin20# sin20r .

(88)

We find readily that

( A + B  cos<^g+C cos V g) (^4+1? cos^s+ C  cosVs)
i > = £ -

7,8 ^2 ( A + B  cos ipq [ C' cos2(pq)2
q , s (89)

where it is still to be understood that s takes on the 
values allowed in Eq. (82).

We can easily work out values for p for different 
cases. We shall take three cases, the 2-, 3-, and 4-fold 
rotation axes, oil with the internuclear axis perpendicular 
to the rotation axis (dr=ir/2).  A simple check on all our 
formulas is provided by the fact that they must give 
p ~  1 if 6h =  0, since in this case 0# is not changed by a 
jump.

Case I: 2-fold rotation axis. p =  1 (the dipolar energy 
is unchanged by the rotation, since it keeps cos0# the 
same). Then T c~  °© .

Case II: 3-fold rotation axis. Then, we let <pr =  <po,
<£>o+120°, *>o-120°.

P
16—48 sin20//+27 sin40# 

16 — 48 sin20jH-+54 sin40//
(90)

If, for example, 0// = 7r /2, p =  —5/22.
Case I I I : 4~fold rotation axis (jumps of -hnr/2). tp,

< ^ o + 7 r / 2 ,  <£>o“f " 7 r>  ( P o — t t / 2 .

<P o,

2[1 —3 sin20iy+9 sin40# sin2 ipo COS Vo]
P = ---------- -------------------------- -------------- ----------. (91)

2 — 6 sin20//+9 sin40//(cos4<̂ o~i~sin4<£>o)

If ^0 = 0, 0// = 7t/2, p = ~ f.
We see that in general studies of the angular de­

pendence of the relaxation times as one varies the
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orientation of # 0 with respect to the molecular axes 
(Or ) can tell us the type of motion involved. This sort 
of information is quite analogous to the line-narrowing 
studies of molecular rotation done in conventional 
resonance.

B. Intermolecular Contributions

It is a straightforward matter to generalize Eq. (87) 
to take into account the intermolecular contribution. 
The labels i and j  then refer to atoms not necessarily 
in the same molecule. We get a particularly simple 
form when the molecules can only jump about a 2-fold 
axis perpendicular to the internuclear line within the 
molecule, as when the protons of a water molecule ex­
change positions. Let us use the labels i, q, and r to 
label the positions of the nuclei which will be involved 
in the dipole sum. We let q and r stand for the two sites 
within a molecule whose nuclei exchange positions. We 
assume the other nuclei i do not move when nuclei at q

and r interchange. Then we get

1 2
— = -  H i ( A iq—Air)2/Y , i (A iq + A ir2) , (92) 
T c r

where
A i f *  (1AVX3 co sty * -1). (93)

It is important to realize that Eq. (92) holds true as 
long as the various dipolar and Zeeman terms can ex­
change energy in the rotating reference frame. To the 
extent that this holds true, Eq. (92) automatically 
takes care of splittings of the resonance into several 
components, as when one has a Pake doublet in a 
water molecule.
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Pseudopotentials previously calculated for metallic magnesium and semiconductors silicon and germanium 
are used to calculate the electronic energy-band spectra of magnesium silicide and magnesium germanide.
Results are obtained for the energy gap and the positions of the valence-band maximum and conduction-band 
minimum which are in agreement with what is known experimentally about these substances. The use of the 
energy levels determined is discussed in interpreting ultraviolet reflectance spectra of these compounds.
Finally, on the basis of the present calculations, some speculations are made about the nature of the electron 
and hole energy surfaces in the semimetallic region of the alloy system Mg2 (Sn)* (Pb)i_z.

constituent elements, one metallic and one insulating. 
The approximations involved in doing this are dis­
cussed in the text.

Experimental measurements of the electrical proper­
ties have been made on polycrystalline samples of all 
members of the series by Busch and Winkler1,2 and of 
the resistivity and Hall effect on single crystals of 
magnesium silicide and germanide by Danielson and 
co-workers.3—5 Piezoresistance measurements of mag­
nesium silicide6 have been made and the position of 
the bottom of the conduction band determined from

1 G. Busch and U. Winkler, Physica 20, 1067 (1958).
2 U. Winkler,# Helv. Phys. Acta 28, 633 (1955).
3 R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev. 

109, 1909 (1958).
4 R. D. Redin, R. G. Morris, and G. C. Danielson, Phys. Rev. 

109, 1916 (1958). : ^
5 M. W. Heller and G. C. Danielson, in Proceedings of the Inter­

national Conference on Semiconductor Physics, (Czechoslovakian 
Academy of Sciences, Prague, 1961), p. 881.

6 W. B. Whitten and G. C. Danielson (to be published).

I. INTRODUCTION

T HE series of compounds Mg2Si, Mg2Ge, Mg2Sn, 
and Mg2Pb have the interesting property that 

while the first three members of the series are semi­
conductors, Mg2Pb has electrical properties which are 
definitely of a metallic nature. The transition appears 
to be smooth and occurs somewhere in the alloy system 
Mg2(Sn),(Pb)i_*. The present work reports results of 
band-structure calculations on the first two members of 
the series. These have been carried out using pseudo­
potentials which were originally evaluated for the 
elements separately. Although there has been some 
discussion of the usefulness of these pseudopotentials, 
the present calculation is, as far as the author knows, 
the first one for a compound which takes over the 
pseudopotentials determined separately for the various

* Work supported by the National Science Foundation and also 
by a general grant to the Institute for the Study of Metals by the 
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