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query sets, which is not only dependent on the quantity of the 
redundancy. Note that the BMS exhibits an elastic condition and 
the property of the BMS is not included in that of the CBS from 
a viewpoint of QA systems, though the system redundancy of the 
former is lower than that of the latter.

IV. Discussion

Especially in the information retrieval system, the BMS and its 
conjunctive system are simple but flexible, since these conditions 
are analogous to those of the indexed sequential access method 
(ISAM) and basic sequential access method (BSAM) system [8], 
where the query set consists of queries that specify all collections 
of k  records out of m, i.e., a record-collection combinatorial 
query set of order k .  This suggests the possibility of designing the 
information retrieval system in elastic condition.
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M KS: A M ultisensor Kernel System

THOMAS C. HENDERSON, WU SO FAI, and 
CHARLES HANSEN

Abstract—The multisensor kernel system (MKS) is presented as a 
means (or multisensor integration and data acquisition. This system has 
been developed in the context of a robot work station equipped with 
various types of sensors utilizing three-dimensional laser range finder data 
and two-dimensional camera data. Specific goals that have been achieved 
include 1) Developing a suitable low-level representation of raw data 
a n d /o r  features extracted from the raw data of the various sensors: 2) 
Providing a method for efficient reconfiguration of the sensor system in 
terms of “ logical” sensors which map onto physical sensors and computa­
tion; and 3) Providing a basis for high-level object modeling techniques.

I. Introduction

Current pattern recognition systems tend to operate on a single 
sensor, e.g., a camera, however, the need is now evident for 
pattern recognition systems which can operate in multisensor 
environments. For example, a robotics workstation may use 
range finders, cameras, tactile pads, etc. The multisensor kernel
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system (MKS) provides an efficient and coherent approach to tl̂  
specification, recovery, and analysis of patterns in the data sensed 
by such a diverse set of sensors. We demonstrate how such a 
system can be used to support both feature-based object model* 
as well as structural models. Moreover, MKS allows rapid recon­
figuration of the available sensors and the high-level models.

Multiprocessor and multisensor systems are being proposed lo 
solve a wide range of problems. In particular, distributed sensing 
systems and general robot workstations require real-time proc­
essing of information from visual, auditory, tactile, and oiber 
types of sensors. Three major issues must be addressed:

1) low-level representation of the sensory data;
2) high-level specification and organization of the sensor sys­

tems; and
3) high-level control of processors and sensors.
The first major goal is to provide a mechanism for the integra­

tion of data available from different sensors into a coherent 
low-level representation of the three-dimensional world. Such a 
representation is crucial to the successful application of multi­
sensor systems, and in particular, robot technology. Shneier el al. 
[21] argue

. .. the use of easily acquired information from a number of sources
can lead more easily to understanding a scene than can exhaustive
analysis of an image from a single source.

Although their work dealt only with visual information, wc 
heartily concur in principle and propose the spatial proximity 
graph (see Section II-A) as a structuring mechanism for the 
integration of data from different sensors. We propose the spatial 
proxim ity graph as a low-level representation of sensory data 
from diverse sources and use this as the basis for high-level 
organization and control over the acquisition of data.

The second major goal is to provide a simple, yet complete 
method for reconfiguring a multisensor system. We propose the 
“logical” sensor as a key notion toward this end. A logical sensor 
maps either directly onto a physical sensor, or provides a descrip­
tion of how data from one or more logical sensors is combined to 
produce the desired data. (See Foley and Van Dam [4], Pfaff 
et al. [18], or Rosenthal et al. [20] for a similar approach to the 
specification of computer graphics systems’ interactive interfaces.) 
Ultimately such logical sensors could be implemented in special 
hardware (a “sensor engine”). The notion of “logical” (or ab­
stract) sensor allows for flexible hardware/software mix in terms 
of a multisensor system and permits a simple method of reconfig­
uration whenever logical or physical sensors are added to or 
removed from the system.

The third major goal is to provide a context in which con­
straints, both physical and logical, can be brought to bear It' 
reduce the amount of computation required to solve problems. A 
prominent example of a multisensor system is the distributed 
sensing system  for situation assessment [23]. Distributed sensing 
systems consist of several independent stations interacting W 
produce an assessment of the activity being monitored collec­
tively by the stations. Most research in this area is directed 
toward organizing the information flow between stations so as to 
achieve an efficient and successful interpretation of the sensed 
data (see also Smith [22]). Usually the stations transmit reports oj 
evaluations of their own data rather than the raw data its®*- 
Thus, there is a need for a high-level model to provide an 
interpretation of the various patterns of information provided 
the sensors, and a mechanism for controlling the acquisition 01 
data.

Many methods exist for modeling three-dimensional object 
and the multisensor kernel system supports a wide range ® 
three-dimensional object modeling techniques. Feature-base* 
models are supported directly by MKS, whereas structural typ® 
of descriptions, e.g., those requiring the derivation of surfat* 
patches and their spatial relations, can use MKS as a first step
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Fig. 1. MKS: Multi sensor kernel system.

M1ize three-dimensional data from several sources. Several 
JSTjjvel modeling methods have been investigated, including 
Jfodard feature models and the Hough shape transform [11], 

The use of high-level models provides a mechanism to limit 
amount of sensor data acquired, and thus reduces the amount 

^computation necessary to identify objects. Although the meth- 
■j proposed here arc developed in the context of a robot 

workstation, the result will be applicable to any multisensor 
fljtem, including distributed sensing systems, situation assess­
ment systems, etc.

II. Acquisition and Organization of 
Three-Dimensional Data

The multisensor kernel system (MKS) must coordinate the 
jctjve control of several sensors, e.g., turn a sensor off or on, aim 
i  camera, etc., and integrate the data from the various sensors 
inio a coherent and useful description of the world. Fig. 1 shows 
Ibe flow of data and control in such a system, where C, to C„ are 
ibe controllers or actuators for the sensor systems S, to S„, 
fopectively. In this section, we describe the organization of 
incoming data into the low-level representation.

Each sensor system, S,, in Fig. 1 has an associated controller, 
C', for example, a camera may be aimed, focused, or have the 
ibutter speed changed. A sensor system may have several compo­
nents:

a camera system', 
a laser range finder:

a camera and a light source;
a laser, mirror system, diode arrays, and
optics.

Fig. 2. Points on the surface of a synthetic cube.

That is, a sensor system consists of all the sensor components and 
Ibe associated controller.

The prototype system consists of two sensors: a camera and a 
laser range finder; these provide visual and range data, respec­
tively. Visual information arrives as digital images which must be 
processed, whereas the range data was acquired by presenting the 
object to the laser range finder from several different orienta­
tions.

In general, any set of sensors can be used, and the system is 
organized such that each sensor contributes information indepen­
dently of the other sensors. However, as will be described later, a 
high-level model is used to control the acquisition of data so that 

lime goes on, less data is demanded from the sensors. Con­
straints from the already processed data control the sensors’ 
acquisition of new data.

Spatial Proximity Graphs

In the context of digital image analysis, various schemes have 
"ecn proposed for organizing properties or features recovered 
from two-dimensional images, e.g., Marr’s primal sketch [15], the 
®trinsic images of Barrow and Tennenbaum [1], and in a more 
“tnited context, the region adjacency graph of Pavlidis [17]. 
However, all of these representations were developed with the 
10tent of mapping from two-dimensional images, and we propose
* more general three-dimensional organization called the spatial 
Proximity graph as the initial data organizational tool. From this 

can then proceed to derive other levels, e.g., the hierarchical 
^^■dimensional models proposed by Marr. However, if one has 
*°*y two-dimensional camera data, then MKS should not be used 
^organize the intensity data directly, but we will show how 

can be efficiently used to organize feature vectors extracted 
Pom the camera data.

Fig. 3. Spatial proximity graph for points in Fig. 2.

The spatial proximity graph provides a means for organizing 
information about the three-dimensional world. In particular, the 
approach is as follows:

1) to obtain raw sensory data;
2) to extract features from the data and the three-dimensional 

locations of these features; and
3) to determine the spatial relationships between the features.

The nodes of the spatial proximity graph correspond to the 
positions in three-space of the features extracted from the raw 
sensory data. Nodes are linked by an edge if they are within some 
prespecified distance. This then provides a means for organizing 
information from different sources. Moreover, analysis can be 
performed on this graph, e.g., fitting planar faces which can in 
turn be used to derive high-level models [6],

Thus, given a set of sensors, we assume that each sensor 
provides raw data in the form of two pieces of information. 
Namely, each datum from a sensor consists of a feature and a 
location (in three-space) of that feature. In this manner, data 
from various sensors can be treated uniformly. This data protocol 
places an additional burden on some types of sensors, e.g., 
cameras, but for most sensors, techniques are available to de­
termine the required information, and for many sensors, e.g, laser 
range finders, tactile sensors, etc., the information is directly 
available.

The spatial proximity graph has been studied in the context of 
three-dimensional range data [8], For example, consider the 
surface points of the synthetic cube shown in Fig. 2. The spatial 
proximity graph (SPG) for those points is given in Fig. 3. Figs. 4 
and 5 show two sets of points obtained with a laser range finder 
used to scan an industrial object. There are about 2000 point 
samples. Two views of the SPG for the merged data are shown in 
Figs. 6 and 7. The original object is shown in Fig. 8.

The spatial proxim ity graph is a graph G, having a distinct 
node for each distinct feature location. An edge exists between 
two nodes if either of the two nodes has the other as one of its 
m-nearest neighbors, for some small m. Note that the SPG works 
equally well when the sensors sample data at the same resolution 
or if different sensors provide information with different spatial 
resolutions, so long as the largest sampling distance is used to set
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Fig. 5. Opposite view of points on the industrial piccc.

Fig. 8. Original object.

Fig. 6. Side view of spatial proximity grapb.
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Fig. 9. Feature based matching.

the nearest neighbors distance threshold. The nearest m neigh­
bors will not change just because the neighborhood within which 
they are sought is enlarged.

There are two ways of using the SPG. One takes as input a set 
of three-space points and outputs a description of the spatial 
neighborhood relations between those points. The SPG is just a 
list giving the m nearest neighbors for each point. (Note that the 
actual vectors output by the sensors are never stored “in” the k-d  
tree or the SPG—only indexes into the data are stored.) For 
example, the data in Figs. 4 and 5 was obtained from two logical 
range finder sensors located on opposite sides of the object. The 
SPG shown in Figs. 6 and 7 was produced by MKS and repre­
sents the starting point for further structural analysis. Such a 
graph can be used to efficiently recover planar faces approximat­
ing the data points (see [6] for examples). The other way of using 
the SPG is to input a set of feature vectors which characterize the 
objects in a scene. For example, the model reference vector 
(8,1,700) might represent (number of vertices, number of holes, 
volume elements). If logical sensors provide a description vector 
of this kind for each detected object, then in the SPG produced 
from the set of description vectors combined with the model 
vector, any node connected to the model vector’s node indicates a 
detected object whose features match the model (see Fig. 9). An 
edge between a model node and an object node indicates a 
match, i.e., the object is an instance of the model. In Fig. 9,

model m t , matches objects jct, x2, and x i , while no match was 
found for model m 2 or object x A.

The combinatorics of any matching technique must always be 
closely controlled. Otherwise, inefficient matching makes the 
analysis too slow. MKS offers the tools by which efficient match­
ing can be accomplished. First, feature-based models are matched 
to the data directly by building the SPG; if faster processing»s 
required, then the models are organized in a k-d  tree and the 
detected objects queried directly on the model tree for the nearest 
match. On the other hand, when organizing three-dimensional 
surface data, the kind of matching which is performed is usually 
some form of surface approximation, and as has been shown 
elsewhere (see [6]), this is done very efficiently in terms of tbe 
SPG.

This method of representation is well-suited to organizing 
multisensor data. Intuitively the spatial proximity graph 
explicit the neighborhood relations of selected features extracted 
from the data.

B. Feature Selection

Feature extraction plays a prominent role in image analys* 
and there is every indication that it will do so for tactile sensoft 
also. Features range from the intrinsic characteristics found JS 
images (edges, reflectance, depth, etc.) to physical characterise® 
of a surface (temperature, smoothness, compressibility).
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Fig. 10. Sccnc 1, a two-dimensional scene.

Features are often used to characterize objects, and as time 
efficiency is of utmost importance, features are usually chosen so 
js io provide an adequate description and which can be obtained 
cheaply and reliably. Discovering useful features will no doubt be 
an outcome of further research, but such features as edges, 
surface texture, and surfacc shape are used currently. We view 
feature extraction as a distinct step performed on the raw sensor 
data, but obviously a “smart” sensor might provide such features 
directly.

C Feature Organization

The cost is prohibitive to try and form the spatial proximity 
graph directly from the sensor data. Therefore, as a first step, the 
fcature-location pairs are organized into a special tree structure 
(called the k-d  tree) that can be built in Order( nlogn) time for n 
keys, and that allows the m-nearest neighbors of any given key to 
be found in Order(logn) time complexity. See [5] for a detailed 
explanation of k-d  trees. Basically a k-d  tree is a binary tree of 
f:-dimensional keys that is organized such that at each subdivi­
sion step, the data is split at the median along the axis having 
greatest spread in vector element values along that axis. In our 
application the feature-location pairs are used as the keys of the 
tree, and the spatial proximity graph is built by finding for each 
node, the m-nearest neighbors. This approach has already been 
studied in the context of feature encoiding for satellite imagery
W. [10]. '

0- Feature Models

Within the multisensor framework, we define each feature 
model directly in terms of a logical sensor. Every logical sensor 
has a characteristic output vector that contains all the features 
detected by the sensor. However, sometimes only a subset of the 
Possible features is used for matching. The k-d  tree builder only 
organizes sets of these k features on the k-d  tree. For matching, 
We incorporate the model reference vectors into the detected data 
to build the spatial proximity graph. In the spatial proximity 
&raph, if a detected vector matches a certain reference vector, 
“'ey will be neighbors. Therefore, in building the spatial proxim- 
jty graph, it is merely necessary to specify the threshold dissimi- 

associated with the model, and a large number of neighbors 
tuus is due to the lack of advance knowledge of the number of 
detected objects that match the model).

•he following three examples illustrate the feature-based object 
Modeling technique.

Circle Model: We use the logical sensor called “circle detector” 
0 ^alyze scene 1 (see Fig. 10). The output of “circle'detector” 

yectors of the form ( x , , y , , r t ) where x ,, y t are the coordinates

TABLE I
Vectors Produced by “Circle Detector”

SEPTEMBER/OCTOBER 1984 737

Object # | x-location. v-locatiQni radius )
0 "don't care- “don't care' 2
1 256 86 0
2 371 137 0
3 269 171 0
4 397 223 1
5 320 224 2
6 128 240 3
7 230 257 5
B 358 309 05
9 333 343 05
10 256 429 0
11 384 429 05

TABLED
Spatial Proximity Graph for the Circle Radii

Object # Neighbors

0 5
1 2 3
2 1 3
3 1 2
4 -

5 0
6 -
7 -

8 9 10
9 8 10
10 8 9
11 -

TABLE III
Vectors Produced by “Corners Holes Detector”

Object £ ( x-location. v-location. corners, holes )

0 “don't care- “don't care- 4 1
1 256 86. 6 0
2 371 137 4 0
3 269 171 8 0
4 397 223 0 0
5 320 224 0 0
6 128 240 0 0
7 230 257 0 0
8 358 309 4 1
9 333 343 6 1
10 256 429 8 0
11 384 429 6 1

of the centroid of the i th detected object, and r, is the radius of 
the detected object. The model reference vector is

( “don’t care,” “don’t care,”2).
“ Don’t care” indicates that the field it appears in is not be used 
as part of the model definition. We include the model reference 
vector at the beginning of the file containing the detected vectors. 
Table I gives a set of vectors input to the k-d  tree builder.

Table II gives the resultant spatial proximity graph. The in­
tegers on the 1 th row are the indexes of the neighbors of the i th 
object. The number of nearest neighbors chosen is 12, and the 
distance threshold is 0.1.

Since the 5th detected vector is the only one with radius 2, the 
reference vector and this vector are neighbors.

Nut Model: We use the logical sensor called “corner holes 
detector” to analyze scene 1. The output of “corner holes 
detector” is vectors of the form (x l , y , ,c n h ,) where the x t , y t 

are the coordinates of the centroid of the i th detected object, c.



788 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-14, NO. 5, SEPTEMBER/OCTOBER 19&

TABLE IV 
S p a t ia l  P rox im ity  G ra p h  o f  N u t  D a ta

Object # Neighbors

0 8

2 _

3 10
4 5 6 7
5 4 6 7
6 4 5 7
7 4 5 6
8 0
9 11
10 3
11 9

u se r

Edit Edit —
Physical Logical
S e n so r S e n so r

—

S e n so r
S p ec ifica tio n

C om piled

Program s

Logical
S e n so r
D escrip tion

Physical
S e n so r
D escrip tion

Logical S e n so rs

Fig. 11. Sensor specification.

is the number of comers detected in the object, and hi is the 
number of holes detected. The model reference vector is

( “don’t care,” “don’t care,” 4,1).

Table III gives a set of vectors input to the k-d  tree builder.
Table IV gives the resultant spatial proximity graph. The 

integers on the i th row are the indexes of the neighbors of the i th 
object. The number of nearest neighbors chosen is 12.

Since the 8th detected vector is the only one with four comers 
and one hole, the reference vector and this vector are neighbors.

III. Configuring the Multisensor Kernel System

The multisensor kernel system (MKS) permits the specification 
of: 1) both physical and logical sensors; 2) the meaning of the 
low-level representation in terms of any particular high-level 
representation; and 3) high-level models.

We will consider the requirements of each of these capabilities. 
Fig. 11 shows how physical and logical sensors are specified.

Physical sensors are defined by parameters associated with the 
individual sensor of some known class, e.g, CCD array, TV 
camera, tactile sensor, etc., Moreover, some indication of oper- 
ationality of the sensor should be provided. Logical (or abstract) 
sensors are defined in terms of physical devices and algorithms 
on their data, e.g., an “edge image” sensor or “surface normal” 
sensor. It is possible for logical sensors to be defined in terms of 
other logical sensors. The compilation process involves producing 
a process that carries out the required computation on the data 
from the desired physical sensors.

The low-level model must be specified in that meanings must 
be provided for the elements of the ^-dimensional vectors stored 
in the k-d  tree. This basically amounts to formatting instructions 
(see Fig. 12). Moreover, the number of neighbors and distance 
thresholds in the spatial proximity graph must be defined in 
terms of these meanings. For example, if one sensor returns 
(x , y , z ) location and a measure of the “edgeness” at that loca­
tion, while another sensor gives a measure of surface curvature at 
a point, then position in the vector must be assigned for the 
various features measured. Another use of the k-d  tree data 
structure is simply to organize locations where features are de­
tected, i.e., (x , y ,  z )  positions, and associate features measured at 
those locations with the position vectors. User defined constants 
and functions necessary to build the k-d  tree must be specified, 
too, e.g., bucket size of the terminals.

Finally, the high-level models must be specified, along with 
some mechanism for matching the models to descriptions derived 
from the sensor data (see Fig. 13). In principle, many high-level 
modeling methods can be used, but it is reasonable to choose 
methods that can better exploit the low-level representation. For 
example, feature models can be matched to sensor-derived de­
scriptions in a straightforward way. On the other hand, MKS can 
also be used to organize data for the recovery of primitive shape 
elements for use in high-level structural analysis.

L ow -L evel
M odel
S p ec ifica tio n

C om piled

Fig. 12. Low-level model specification.

H igh-L evel
M odel
S p ec ifica tio n

C om piled

Fig. 13. High-level model specification.

T ask M an ip u la to rs

|

S e n so rs O b je c t
M odels

Fig. 14. Relation of task to multisensor kernel system.

Thus, the system is configured by defining the sensors, the 
low-level, and the high-level representations, and the preceedinf? 
paragraphs have given the compile time view of the system. Tbe 
goal, though, is the performance of some task. Our view is th*1 
the task ties the system together as shown in Fig. 14. Thus, tl# 
given task description defines when new sensor data is require 
and how it should be obtained. Matching models to descrip lions 
can take place in the task or can be incorporated directly into tn 
sensor system. Based on the results of the analysis of the data, 
objects (or the environment) can be manipulated. ,

Although the development of task definition languages a® 
high-level model techniques are important research topics> 
main goal of MKS is to provide a coherent and efficient rnetn
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TABLE V
Vectors Produced by “Surface Curvature”

Point # I x-location,. v-location. z-location, curvature )

0 "don't care" "don't care' "don't care" -1 Planar Model
1 ‘don't care" "don't care” "don't care" *1 Curved Model
2 0.0 00 300 ♦ 1
3 -1 76 00 243 ♦ 1
4 2.31 1 68 0 93 ♦ 1 Sphere Points
5 -2 31 -1 68 093 ♦1
6 231 1 68 -0.93 ♦ 1

7 -3.0 -6.0 -3.0 -1
8 -3.0 -6.0 3.0 -1
9 30 -60 00 -1 Cube Points
10 0.0 -60 0.0 -1
11 30 -60 3.0 -1Fig. 15. Sccnc 2, a set of simple three-dimensional objccts.

for obtaining a useful, low-level representation that can serve as 
the basis for a wide variety of such high-level systems.

IV. Hig h -Level Models

A wide range of high-level modeling techniques are available 
for use, and these divide naturally into two classes: feature 
models and structural models. Feature models involve mapping 
sensed data (or perhaps restricted portions of the data) into a 
single number or a vector that then represents the data, while 
structural methods provide a description of the parts of an object 
and the relations (usually spatial) between the parts (see Hender­
son [7]).

Most of the current industrial vision systems model objects in 
terms of global features of objects (or regions), e.g., area, number 
of holes, hole area, etc. An object model is simply a set of feature 
values, and an unknown object is identified by how similar its 
feature measurements are to the reference values. This form of 
object modeling is supported quite easily by the MKS approach, 
namely, a logical sensor returns the location and feature vector of 
any object detected in the image (this generalizes to nonimage-type 
sensors, too). Matching can be performed by standard methods, 
or the reference vectors can be stored as a k-d tree and then 
matching merely requires a query on the tree.

We use the logical sensor called “surface-curvature” to analyze 
the sphere-cube pair in scene 2. (We assume that the cube and the 
sphere atop it have been separated out from the other objects in 
the scene, e.g., by the connectivity of the spatial proximity graph 
based on the three-dimensional surface points.) The output of 
“surface curvature” is vectors of the form: (x ,, y t , z ,, n ,) where 
(■*/,J',,2/) are the coordinates of the / th detected object, and nj 
is the encoded curvature at the /th surface point. For a curved 
surface, n, is encoded as “1.” For a planar surface, ;i, is encoded 
45 “ —1.” The planar surface model reference vector is:

( “don’t care,” “don’t care,” “don’t care.” -  1).
The curved surface reference vector is

( “don’t care.” “don’t care,” “don’t care,” 1).
Table V gives a small sample of the set of vectors input to the k-d  
•fee. The first two entries in the table are the reference vectors, 
•hen the next few lines give some sample points from the sphere, 
an<i finally, the last few lines give some sample points from the 
cube.

Table VI shows the corresponding spatial proximity graph for 
** above input vectors. The neighbors lists for objects 0 and 1 
&Ve the planar surface points and the curved surface points, 
f*sPectively. The spatial proximity graph (SPG) actually divides 
^  set of detected vectors into one set with planar surface and 
'*le other set with curved surface. This information is then used to

TABLE VI
Spatial Proximity Graph for Planar and Curved 

Surface Points

Point # Neighbors

0 7,8.9.10.11 Planar Model
1 2.3.4.5.6 Curved Model

2 1.3.4.56
3 1.2.4.5.6
4 1.2.3.5,6 Sphere Points
5 1.2.3.4.6
6 1.2.3.4.5

7 0.8.9.10.11
8 0 7.9.10 11
9 0.7.8.10.11 Cube Points
10 0.7.8.9 11
11 07.8.9 10

build separate spatial proximity graphs from the two distinct sets 
of points. We can then perform a higher level analysis based on 
the surfaces and surface structure (e.g., see Bhanu [2]).

Obviously MKS also provides the basis for structural model­
ing. Features are detected and organized locally; they can then be 
analyzed directly (as suggested by Bolles and Cain [3]), or they 
can be further grouped (say from surface points to faces) and 
then analyzed. We have investigated several high-level modeling 
techniques in terms of the MKS, and in particular, feature 
models and Hough shape models, both with great success [12], 
[24]. We are now exploring the use of constraint mechanisms for 
high-level modeling in the context of the MKS system. Also, we 
hope to use MKS to process tactile data provided by a multi­
fingered dexterous hand currently under development by the 
University of Utah Center for Biomedical Design in conjunction 
with the MIT Al laboratory. This is a four-finger dexterous hand 
that includes touch sensors on palmer and finger surfaces. The 
contact sensors are based on the use of birefringent materials in 
conjunction with optical fibers [14]. However, other contact 
sensors such as that described by Hillis [13] or Raibert and 
Tanner [19] may also be used as they become available.
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The multisensor integration and data acquisition system that is 
of interest to us is configured by defining the sensors, the 
low-level representation, and the high-level modeling techniques. 
The specified task description dictates when new sensor data is 
required and how it should be obtained. Matching models to 
descriptions can take place in the task. Based upon the results of 
the analysis on the data, the objects or the environment can be 
manipulated.

The primary goal of this research was to develop a system 
capable of integrating and analyzing data from several sensors in 
a coherent and efficient way. Along the way we discovered that 
the specification of the sensors played a large role in the useful­
ness and success of the system. Moreover, the low-level represen­
tation must adequately support several radically different types 
and formats of data.

We extended previous researchers’ two-dimensional low-level 
representations, such as the region adjacency graph, to a realistic 
and flexible three-dimensional low-level representation, the spa­
tial proximity graph. We can handle not only three-dimensional 
visual information, but we can also manage three-dimensional 
nonvisual information, such as tactile information from a robot 
hand.

Concerning the issue of object localization, we must take into 
consideration treatment of errors in detected data, strategies that 
are best for acquiring new information for object determination, 
and measures to disambiguate situations such as multiple objects 
that are similar in one view but different in actuality. In matching 
we define a dissimilarity measure between the model and the 
detected object. The distance function for every vector dimen­
sion, and the overall tolerance in the matching function should be 
tailored to take into account errors in the detected data. In 
gathering new information to complete object determination for 
partially recognized objects, the strategy is to activate the ap­
propriate sensors for missing features. In distinguishing objects 
that are similar in one view but different in actuality, information 
should be gathered from more than one view so as to capture 
fully the three dimensionality of the target environment.

Based upon case studies with our framework for a multisensor 
system in a simulated environment, we observe the following in 
relation to computation speeds for real-time hand manipulation. 
Before manipulation can occur, objects must be localized. Object 
localization involves organization of sensor systems through con­
trollers and actuators to achieve a smooth flow of data in a 
multisensor environment, organization of sensor data into their 
corresponding spatial proximity graphs, and matching between 
the world descriptions and the high-level models. Since the spa­
tial proximity graph can be efficiently constructed by an al­
gorithm of order(nlogn) time complexity, the possibility of real­
time hand manipulation is constrained by the efficiency both of 
tbe sensors in supplying features of the detected environment, 
and of the high-level modeling technique used in matching. 
Another way of considering this issue of real-time manipulation 
in connection with the tactile sensors is as follows. The robot 
hand and other sensors, such as a zooming device, which are 
mechanical devices, consume time when being positioned from 
one physical location to another. Consequently the amount of 
sensor data output in a small time interval will most likely be of a 
manageable quantity that can be organized into a coherent low- 
level representation by our system. Some of the most important 
areas for further research are presented in the following para­
graphs.

Of crucial importance to building up-to-date spatial proximity 
graphs to organize a continuous flow of a massive amount of 
sensor data is the ability to dynamically insert and delete data on 
a k-d  tree or any equivalent database storage structure that 
allows efficient query and searching to be performed on the data. 
Overmars and van Leeuwen [16] have presented some initial work

V. Conclusions and Further Research on dynamic multidimensional data structures, and the usefulncsj 
of their results to our application must be investigated.

Another important area for research concerns the logical sensor 
system. Physical sensors are defined by parameters associated 
with the individual sensor of some known class, e.g., TV cameras, 
tactile pads, etc. Logical sensors are defined in terms of physical 
devices, and algorithms on their data, e.g., an “edge finder” can 
be defined in terms of a tactile pad on a robot hand, and a 
pressure analysis program. Associated with each sensor is a 
characteristic output vector that defines exactly the name and tbe 
allowed range of data. With these characteristic output vectors 
we can combine vector elements of same name but different 
allowed range by some appropriate coercion, such as forcing a 
higher precision range to become a lower one. With this mecha­
nism of treating the “same” kind of data from different precision 
sensors, in addition to the uniform sensor output, namely a 
feature and its three-dimensional location, we can integrate sensor 
data from different sensors with the logical sensor system. An 
easily reconfigurable sensor system certainly facilitates the 
acquisition and derivation of appropriate features needed for the 
construction of a low-level world description which is defined in 
terms of a high-level model description.

A third area of further research pertains to the investigation ol 
structural modeling techniques which allow the automatic deriva­
tion and exploitation of constraints that can then be used to 
control the acquisition of data, in terms of limiting the amount of 
data to acquire and specifying the type of data to acquire. It 
would be interesting to know what kinds of constraints can be 
derived from such representation methods as generalized cylin­
ders, shape grammars, and relational networks.

In order to have a versatile and robust pattern recognition 
system, the class of objects to model should include, besides 
polyhedra, objects with curved surfaces. The inclusion of such 
objects with curved surfaces naturally opens up avenues for 
research in determining relevant models that in turn control the 
kind of features appropriate to be acquired through the low-level 
representation for object recognition. This may offer some excit­
ing research in conjunction with current research on representing 
curved surfaces analytically using splines for instance.

Since we hope to operate our multisensor framework in the 
context of a robot workstation, the list of possible research areas 
will be incomplete without including research on manipulation of 
objects. The idea in abstract is that once object recognition and 
localization are achieved, how should manipulation be per­
formed? The current system provides the necessary first step, 
namely object recognition and localization, for performing sucb 
manipulation tasks.
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