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Nonlinear Model Predicts Diverse Respiratory Patterns of Birdsong
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A ccntral aspcct of the motor control of birdsong production is the capacity to generate diverse 
respiratory rhythms, which determine the coarse temporal pattern of song. The neural mechanisms that 
underlie this diversity of respiratory gestures and the resulting acoustic syllables arc largely unknown. We 
show that the respiratory patterns of the highly complex and variable temporal organization of song in the 
canary (Scrinus canaria) can be generated as solutions of a simple model describing the integration 
between song control and respiratory centers. This example suggests that subharmonic behavior can play 
an important role in providing a complex variety of responses with minimal neural substrate.
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The characteristic temporal patterns of birdsong, with 
alternating sound and silence, arise primarily from the 
activity of respiratory muscles [11- Sound is typically 
generated during expiration as the elevated air pressure 
drives the airflow that induces phonation. Silent periods in 
between song elements correspond to short inspirations 
(minibreaths) unless the sound pulse rate is very high 
[2,31. A remarkable capacity to rapidly switch between 
expiration and inspiration gives rise to the complex tem ­
poral song structure and at the same time allows birds to 
sing long, uninterrupted songs. Song in the W aterslager ca­
nary is a long sequence o f distinct syllables, each of which 
is repeated a variable num ber o f times (phrase) before a 
switch to a new syllable type occurs. Syllable repetition 
rate varies between phrase types and can be as high as 
30 Hz for syllables that are followed by a minibreath and 
even greater than 60 Hz for phrases which are sung during 
a sustained expiration (pulsatile syllables) [4,51. Song is a 
learned behavior, and it is unknown how the motor gestures 
for different syllable types, with remarkably different 
rhythms, are represented in the central motor program.

A song is built out of a diversity of syllables. Each 
syllable is generated by the vocal organ when activated 
by a specific pressure pattern. The different pressure pat­
terns could be generated when the appropriate muscles are 
activated either by different neural populations, or by a 
unique neural population displaying a variety of activity 
patterns. The latter scenario is possible since neurons 
behave as nonlinear devices. N onlinear systems are known 
to exhibit qualitatively different behaviors (with strict to­
pological restrictions) under different parameters. There­
fore, a variety of temporal patterns can be generated by a 
single system under different operational regimes. Here we 
use a variety o f tools from nonlinear dynamics to show that 
the temporal features of air sac pressure data recorded from 
singing canaries can be reproduced with such a simple 
model.

The sonogram of the song depicted in Fig. 1 presents 
three regimes (A, B, and C) characterized by different 
syllable repetition rates. Simultaneous to the measurement
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of the song we recorded the air sac pressure [see methods 
(a)l. The pressure time series corresponding to the sono­
gram of Fig. 1 is displayed in Fig. 2(a). In this figure, we 
can notice that regimes B and C are different from regime 
A, since the pressure presents large fluctuations. Since each 
regime is generated by an almost periodic pressure pattern, 
we analyzed the pressure time series data with techniques 
developed in the field of nonlinear dynamics to study 
recurrent trajectories. We extracted segments of data cor­
responding to each regime, and embedded them in a three­
dimensional phase space [see methods (b)l [61. Then, we 
studied their topological organization in phase space [61. 
Specifically, we computed the linking numbers between 
the extracted segments ([see methods (c)l. The purpose for 
this calculation is to provide a quantitative way to support a 
model. The linking numbers act as a fingerprint: if the 
orbits generated by a model fail to present the topological 
organization of the experiments, the model has to be 
rejected [61. This procedure is analogous to standard tests 
(e.g., least squares) in linear systems [6,71. The embedded 
segments o f pressure data are displayed in Fig. 2(c). The 
segments extracted from regimes A and B do not link each 
other (they could be separated an arbitrary distance in the
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FIG. 1 (color online). Acoustic identity of song syllables in 
canaries (spectrogram). Three different temporal patterns arc 
identified in terms of the local spectral properties of the air sac 
pressure, denoted by A, B, and C.
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FIG. 2 (color online). The rccordcd air sac pressure time series data contains 3 syllabic types with different spectral characteristics
(a). The entire respiratory pattern can be simulated by a periodically driven model by changing the forcing frequency twice in order to 
generate the three different segments. Equations were integrated with the following parameters: in  =  0.5, t = 1.0, k =  1.0, fi = 5.0, 
E\ =  —1.3, and E2 =  —1.5. (b) Embedded segments (with a time delay of 0.31 sec) can be used to characterize the data. Dotted (in 
online version, blue) segments correspond to type A patterns, dashed (in the online version, green) segments correspond to type B 
patterns, while the solid lines arc used to plot the patterns of type C (in online version, red), (c) The embedding of the synthetic patterns 
allows a comparison between experimental data and model of topological nature. If the topological organization of the model docs not 
match the data, the model is rejected (d). The topological organization can be described through indexes as the linking numbers 
between orbits.

embedding space without the orbits ever intersecting), 
while the segments o f regime C link around the segments 
o f regime B (i.e., they can not be separated an arbitrary 
distance in the embedding space without the orbits inter­
secting at some point).

We com pared these features of the experimental data 
with synthetic pressure data generated by a computational 
model inspired in the known anatomy o f oscinc birds. As 
sketched in Fig. 3, we describe the air sac dynamics by a

FIG. 3. Schematic of the proposed organization for integration 
of central song control and respiratory centers. Inhibitory con­
nections arc indicated by a black circle. Abbreviations: Insp, 
inspiratory motor neurons; Exp., expiratory motor neurons. 
Arrows indicate excitations, circles inhibition. PAm and RAm 
represent the nuclei parambigualis and retroambigualis, respec­
tively. The oscillatory input represents a basic oscillation gen­
erated by tclcnccphalic nuclei.

variable x  measuring the deviation from the volume of the 
sacs at atmospheric pressure. In Eq. ( la ) we model the sacs 
as a damped mass (m), driven by inspiratory and expiratory 
muscles against mechanical restitution (restitution con­
stant k), dissipation (dissipation constant /x). The activities 
o f these muscles should be proportional to the activities of 
brainstem nuclei parambigualis PAm (/',) and rctroambi- 
gualis RAm (/2), respectively [8,91, which arc thought to be 
mutually inhibitory. These nuclei arc the prcm otor nuclei 
for the spinal motor neurons controlling inspiration and 
expiration, respectively. Equations (lb ) and ( lc )  describe 
the activity of these nuclei using one o f the simplest neural 
additive models [101. A harmonic function is used as a 
simple input in our model to emulate the oscillatory tclc­
nccphalic activity triggering birdsong production [11,121.

A mathematical implementation (or computational 
model) o f the integrated neural-mechanical system can 
be written as a dynamical system as this:

d 2x  dx
m — -  +  kx  + /a —  =  2/] — h  ( la )

at" a t
dj

t - t  =  ~  h  +  S[E, “  h  ~  / (* ) ]  (1 b)at 
d i -)

t — -  =  — +  S [£ o  — / \  +  / 4 c o s ( t l t / ) ] ,  ( lc ) 
a t

where Eqs. ( lb ) and ( lc )  describe the way in which the 
activity of each nucleus converges cither to zero (no activ­
ity) or to at most a saturation value, depending on the total 
input on the nucleus [the sigmoidcal function Six) =  
1/(1 +  e~x) provides a frequently used model for saturat­
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ing functions, and is chosen for simplicity!. A monotoni- 
cally increasing function f{ x )  =  9x3/ ( l  +  x 3) represents 
the inhibitory effect of volume [ 131 and C 0 2 sensors on the 
activity of the neurons responsible for inspiration (which 
ceases if  the volume of the sacs increase beyond some 
value). The negative signs with which the activities /] 
and i2 enter in the arguments of the sigmoideal functions 
account for the mutual inhibition of RAm and PAm. The 
right-hand side of Eq. (1a) accounts for the active control 
o f RAm and PAm of expiratory and inspiratory muscles, 
respectively, and the coefficients o f /] and i2 are chosen so 
that the dynamical system (1a)-(1c), before being forced 
(i.e., A =  0), presents excitability. In order to emulate 
regim es A, B, and C we changed the driving frequency 
(&>) w ithout altering the driving amplitude A (notice that 
changes in both parameters can give rise to different pres­
sure patterns, but the change in the frequency of the forcing 
is a necessary condition to synthetize patterns that corre­
spond to the experimental ones). The resulting synthetic 
pressure patterns are obtained by plotting P 0 — x, since the 
air sac pressure w ill be inversely proportional to the vari­
able measuring the air sac volume departure from  rest (x) 
[see Fig. 2(c)l. Beyond the similarity with the measured 
patterns [Figs. 2(a) and 2(b)l, the segments emulating the 
different regimes were embedded like the experimental 
ones, and their topological organization was found to be 
identical [Figs. 2(c) and 2 (d)l.

The different solutions exhibited by our model are sub­
harmonic solutions, i.e., 7j-periodic solutions that repeat 
themselves after an integral multiple of the forcing period 
(n) [141. For different values of the forcing amplitude and 
frequency, different solutions are found. The regions of the 
parameter space, for which solutions of the same period are 
obtained, are known in the field of nonlinear dynamics as 
Arnold tongues, and their relative organization in the fre­
quency domain is very strict [15,161. For our model, the 
regions of the parameter space where different solutions 
are found is displayed in Fig. 4(a). Notice that for sim­
plicity we use a harmonic function to emulate RA activity, 
but any periodic function driving our system would present 
the same solutions [161.

In order to further test the hypothesis that the pressure 
patterns of different syllables could be the solutions of a 
unique, simple systems driven at different parameter val­
ues, we classified the different pressure patterns recorded 
in different birds, according to their spectral content. In the 
three regimes present in the example (Fig. 1), we find the 
following spectral features [Fig. 4(a)l. The first regime 
presents a peak at about 25 Hz (left panel). The air sac 
pressure in regime B can be characterized by a large peak 
at 20 Hz (center panel), which slowly drifts toward smaller 
frequency values, even if  acoustically, the syllables at the 
beginning and at the end of regime B present different 
features. Regime C presents two large peaks: one at 23 Hz, 
and a second one at 11.5 Hz (right panel). There are two 
competing explanations for this transition. E ither the bird 
changes dramatically the fundamental frequency / 0 from
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FIG. 4 (color). Arnold tongues for the model, displaying the 
regions of parameter spacc where different subharmonic solu­
tions arc found. The parameter values marked as A, B, and C 
were used to generate the synthetic emulating the pressure 
pattern of Fig. 2(a) (a). The spcctral properties of the segments 
A, B, and C (b). A quantitative-qualitative classification schcmc 
for pressure patterns generating different syllables for six birds. 
A, B, and C refer to the patterns in Figs. 1 and 2(a). The colors 
represent spcctral features: red for largc-amplitudc solutions 
loeked to the forcing frcqucncy, green for period 2 solutions of 
large amplitude, blue corresponds to period 3 solutions, and pink 
for high frcqucncy solutions mounted on a dc value (pulsatile 
syllables). The fundamental frcqucncy of the segment is repre­
sented on the horizontal axis [(c), left]. The delicate structure 
shown in the left panel disappears under the hypothesis that the 
lower frcqucncy in the fast Fourier transform of each solution is 
the fundamental one. A enlarged region from (10 to 18 Hz) 
displays a mixing of different pattern types under this assump­
tion [(c), right],

regime B ( / 0 ~  20 Hz) to regime C ( / 0 ~  11-5 Hz) in a 
transition that also involves an im portant change of har­
monics for the pressure pattern, or the bird makes a small 
change of the fundam ental frequency (from f 0 ~  20 Hz to 
/o  ~  23 Hz), and a classical bifurcation (period doubling) 
takes place, as in the model. If different patterns occur as 
the result of bifurcations, their fundamental frequencies 
would be organized in clusters ordered in specific ways, 
and spectral contents mostly concentrated in n peaks, the 
greatest of which would be identified as the fundamental 
frequency.

In the left panel of Fig. 4(c) we represent each syllable as 
a point, with its color representing the syllable type, lo­
cated at the corresponding fundam ental frequency (accord­
ing to the bifurcation paradigm) of the air sac pressure 
pattern. Remarkably, the different syllable types present a 
clustered nature. For example, for each bird, the period 2 
solutions are always found in between the solutions of
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period 1 corresponding to trills (e.g., A in Fig. 1), and 
solutions of period 1 associated with large oscillations (B 
in Fig. 1). Also, solutions of type A occur, for each bird, at 
higher frequencies than those of type B. The solutions of 
period 3 are located, for each bird, at higher frequencies 
than those of large-amplitude period 1 solutions (e.g., 
regime B) and at lower frequencies than the solutions of 
regime A.

In the right panel o f Fig. 4(c) we classify the pressure 
patterns according to the more parsimonious hypothesis 
that the lowest peak of the spectrum corresponds to the 
fundam ental frequency. The bird would be capable of 
generating pressure patterns with the same fundamental 
frequency but completely different spectra of harmonics. 
M oreover, the delicate structure shown in the left panel 
[i.e., well-defined Arnold tongues, ordered relative to each 
other as predicted the theory of nonlinear dynamical sys­
tems [14,15,1711 disappears as solutions qualitatively dif­
ferent spectrally get mixed.

This work shows that the high diversity and complexity 
of respiratory patterns of canary song can emerge as dif­
ferent solutions of a simple system. It is notable that the 
remarkably different respiratory patterns of phrases in­
volving minibreaths and pulsatile syllables arise from 
this model without a requirem ent for adding complexity. 
According to these findings, generation of diverse pressure 
patterns requires a system driven by different frequencies. 
Direct support for this neural model requires simultaneous 
m easurement of activity in a telencephalic nucleus (as 
RA), and in the respiratory circuit (as in RAm). Because 
in many bird species the principal respiratory mechanisms 
of song production are similar to those of the canary, this 
model should be broadly applicable to singing behavior. 
Furthermore, the model identifies a possible neural m echa­
nism for generating diverse rhythmic behavioral patterns in 
general, despite the differences between systems in their 
specific neural arrangements. Complex physiological 
rhythms in intact animals are poorly understood [171, but 
nonlinear mechanisms are beginning to be recognized as 
an im portant component of neural pattern generation [181. 
The present example suggests that subharmonic behavior 
can play an im portant role in providing a complex variety 
of responses with minimal neural substrate.

M ethods.—(a) The technique for measuring air sac pres­
sure has been described in detail elsewhere [2-51. Briefly, 
air sac pressure was registered by the insertion of a silastic 
cannula through the abdominal wall just posterior to the 
last rib, so that it extended a few millimeters into a thoracic 
air sac. The free end of the cannula was connected to a 
miniature piezoresistive pressure transducer (Fujikura 
model FPM -02PG), which was mounted on the bird’s 
back. From this backpack the signals were transmitted to 
a signal conditioning unit (Hector Engineering) outside the 
cage, and the amplified signal was recorded simulta­
neously with microphone recordings (Audiotechnica 
AT8356) of the song on a multichannel data recorder

(TEAC RD-135T). We recorded several minutes of song 
from 6 male canaries, capturing most of the vocal reper­
toire of each male, (b) The construction of a multivariable 
environment for data (embedding) is performed by choos­
ing the first coordinate of a three-dimensional vector as the 
variable at time /, the second and third as the recorded 
variable at time t-r , and t-2r, i.e., (x(t), x(t-r), x(t-2r)). 
The parameter t  is called delay, and the topology of a 
system is robust under this parameter [61. (c) Gauss defined 
the linking number of two loops A and B, described by two 
vectors x A and x B [61 each of three components, as

U A• B) =  j j  (xA -  x B)(dxA X  dxB) / \x A -  xB|3.

In order to compute the linking number between segments 
of data, we first built a vector of three components for each 
segment as described in (b), using a time delay of 0.31 sec. 
For each pair of segments, we used these vectors to calcu­
late the Gauss integral. If A, B, and C represent loops in 
regimes A, B, and C of Fig. 1, we get L (A, B) =  0, 
L (A ,C ) =  0, L(B ,C ) =  1.
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