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On Efficient Assessment of Image-Quality
Metrics Based on Linear Model Observers
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Abstract—This paper is motivated by the problem of
image-quality assessment using model observers for the pur-
pose of development and optimization of medical imaging systems.
Specifically, we present a study regarding the estimation of the
receiver operating characteristic (ROC) curve for the observer
and associated summary measures. This study evaluates the statis-
tical advantage that may be gained in ROC estimates of observer
performance by assuming that the difference of the class means for
the observer ratings is known. Such knowledge is frequently avail-
able in image-quality studies employing known-location lesion
detection tasks together with linear model observers. The study
is carried out by introducing parametric point and confidence
interval estimators that incorporate a known difference of class
means. An evaluation of the new estimators for the area under
the ROC curve establishes that a large reduction in statistical
variability can be achieved through incorporation of knowledge
of the difference of class means. Namely, the mean 95% AUC
confidence interval length can be as much as seven times smaller
in some cases. We also examine how knowledge of the difference
of class means can be advantageously used to compare the areas
under two correlated ROC curves, and observe similar gains.

Index Terms—AUC, image quality, model observer, receiver op-
erating characteristic (ROC), signal-to-noise ratio (SNR).

I. INTRODUCTION

O BJECTIVE, rigorous evaluations of image quality are a
critical component of imaging system development and

optimization. For this purpose, engineers have traditionally re-
lied on image fidelity metrics that quantify resolution and noise,
such as the modulation transfer function (MTF), noise power
spectrum (NPS), pixel signal-to-noise ratio (pSNR), or noise
equivalent quanta (NEQ). However, because such metrics re-
quire the restrictive assumptions of a shift-invariant imaging
system and stationary noise [1], they do not reflect the full com-
plexity of real medical scanners. Furthermore, the interpreta-
tion of image fidelity metrics can be problematic because they
are not necessarily correlated with the ability of an observer to
perform a task with the image. For these reasons, a task-based
approach to image-quality assessment has been advocated in
which image quality is measured by specifying 1) a task, 2) an
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observer, and 3) an objective figure of merit for observer per-
formance [1]. Either human observers or numerical (comput-
erized) observers, which are typically called model observers,
may be considered. There is value in each, and the choice for a
specific observer depends on the goal at hand [1]. As discussed
in [2], model observers are valuable for system development
and optimization, whereas human observers are suitable for final
clinical validation. The results presented in this paper are moti-
vated by the problem of system development and performance
optimization with model observers; they are not applicable to
image-quality assessment using human observers.
Observer performance for a binary classification task can be

described by the receiver operating characteristic (ROC) curve
and by associated ROC summary measures [1], [3], [4]. Since
only a finite number of images is available for testing the ob-
server, estimates of ROC figures of merit suffer from statis-
tical variability. Of course, this variability decreases as more
images are used, but there are few situations where the number
of images is large enough to allow variability to be neglected.
In particular, creating images with modern 3-D reconstruction
algorithms requires significant computational effort, so that the
number of images that can be reasonably produced (typically
around 200) for an ROC study necessitates careful control of
statistical variability. This issue becomes particularly promi-
nent when there are many parameters for the reconstruction
algorithm, since any change in these parameters requires re-
construction of new images. Hence, even for model observers,
there is strong motivation to control and reduce statistical vari-
ability so that sufficient statistical power may be achieved in
image-quality evaluations.
In many types of image-quality evaluations, knowledge of

the difference of image class means is available. In particular,
when simulated tomographic data is used, which is generally the
case for early-stage evaluations, the image means can often be
well-estimated by reconstructing the data means. This is clearly
the case for linear reconstruction methods, such as those of the
filtered backprojection (FBP) type. Furthermore, this is often
a very good assumption for nonlinear iterative reconstruction
methods such as expectation maximization (EM) [5], [6] and
penalized-likelihood [7]. (In general, the accuracy with which
image means can be estimated from the data means depends
on the reconstruction algorithm, signals, and backgrounds of
interest, e.g., strong signals are typically more difficult to esti-
mate.) In addition to simulated-data scenarios, good estimates of
the imagemeans can also be obtained for some types of real-data
experiments; see, e.g., [2], [8].
For linear model observers, knowledge of the difference of

image class means translates into knowledge of the difference
of class means for the rating data. Note that current approaches
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to ROC estimation from observer ratings do not take advantage
of this information and are not readily modified to include it. For
excellent overviews of the ROC estimation literature, the reader
is referred to the books by Pepe [3], Krzanowski and Hand [4],
Zhou et al. [9], and Zou et al. [10].
By contrast, the ROC estimators that we propose in this work

take knowledge of the difference of class means for the observer
ratings into account. We demonstrate that knowledge of this dif-
ference can be used to greatly reduce statistical variability in es-
timates of observer performance 1 and that confidence intervals
with exactly-known coverage probabilities can be constructed.
To construct our new estimators, we assume that 1) the dif-

ference in class means for the observer ratings is known, 2) the
observer ratings are normally distributed for each class of im-
ages, and 3) the variance of the observer ratings is the same for
each class of images. The first assumption is the central hypoth-
esis of this work, while the other two assumptions are made pri-
marily to facilitate our investigation. From a practical perspec-
tive, these conditions are generally satisfied for linear model ob-
servers applied to the detection of small, low-contrast lesions at
a known-location. Specifically, the first assumption is well-jus-
tified in many settings for linear observers, as discussed ear-
lier. In addition, the second assumption is a good approximation
for linear observers since reconstructed tomographic images are
often approximately multivariate normal; see [11, Sec. 2.5] and
references therein for a nice discussion of this issue in the con-
text of nuclear medicine, and see [12, Appendix] for the case
of X-ray CT. Furthermore, even for images that are not nor-
mally-distributed, the normality of ratings for a linear observer
is often justified by the central limit theorem. The third assump-
tion is well-justified, since the absence or presence of a small,
low-contrast lesion has little impact on the image covariance
matrix. As a consequence, the variance of ratings produced by a
linear model observer at a fixed location is practically the same
for each class of images; this observation has been made by Bar-
rett and Myers [1, p. 1209] in the context of nuclear medicine
and it was quantitatively analyzed in [13] for X-ray CT.
The present work can be viewed as an extension of the study

in [14], which pertained to the estimation of ideal (perfectly
trained) channelized Hotelling observer (CHO) performance
with known difference of class means in channel space. Al-
though powerful, the results in [14] have the limitation that
they are not applicable to the assessment of non-prewhitening
matched filter (NPMF) observers or to general finitely-trained
linear observers with a fixed template. These important cases
are addressed here by suitably generalizing the approach of
[14] to deal directly with observer ratings.
The paper is organized as follows. After reviewing ROC

curves and ROC figures of merit, we present our new point and
confidence interval estimators. Subsequently, the new point and
interval estimators for the area under the ROC curve (AUC)

1It is obvious that introducing prior knowledge reduces statistical variability.
However, the reduction is not always large. For example, consider the problem
of estimating the variance from independent, identically distributed samples.
In this case, using knowledge of the mean changes the -distribution of the
sample variance by only one degree of freedom, so that the decrease in statistical
variability is tiny. The primary contribution of our work is to demonstrate that
a large statistical advantage results from using knowledge of the difference of
class means.

with known difference of class means are compared to two esti-
mators that do not incorporate this knowledge. Specifically, the
comparison is with a simple parametric estimator that is closely
related to the maximum likelihood estimator (MLE), and with
the nonparametric Mann-Whitney U estimator. Finally, we
present an approximate confidence interval for a difference of
AUC values. Our results consistently show that knowledge
of the difference of class means offers a large advantage for
statistical inference.

II. IMAGE-QUALITY METRICS BASED ON LINEAR OBSERVERS

Recall that a task-based approach to image quality requires
three ingredients: a task, an observer, and an objective figure of
merit for observer performance [1]. The approach presented in
this work pertains to any binary discrimination task at a fixed
location in the image. Here, each image is to be classified as be-
longing to one of two image classes, denoted as class 1 and class
2. In a medical context, these image classes could correspond to
normal and diseased conditions, respectively.
We assume that the observer is a linear model observer, de-

fined by a fixed (nonrandom) template, . For each image, ,
the observer computes a rating statistic, , defined as ,
where and are written as column vectors. To clas-
sify each image, the model observer compares to a threshold,
. If , then the observer concludes that the image is from
class 2. Otherwise, the image is classified as belonging to class
1. Throughout this paper, we will denote the values of the rating
statistic, , for class-1 images as and the values of the rating
statistic for class-2 images as .
Flexibility in the choice of the observer template, , rep-

resents an important aspect of image-quality metrics based on
the performance of linear observers. Typical choices for the
template, , include both non-prewhitening and prewhitening
matched filters, possibly with the use of channels [1]. However,
because there are many possible ways to define the template,
and because we wish to keep our discussion general, the ques-
tion of how to choose will not be addressed here.
For each threshold, , the observer’s performance is fully

characterized by two quantities, called the true positive fraction
(TPF) and the false positive fraction (FPF) [1], [3]. The TPF
is the probability that the observer correctly classifies a class-2
image as belonging to class 2, whereas the FPF is the proba-
bility that the observer incorrectly classifies a class-1 image as
belonging to class 2. Since each value of results in a different
TPF and FPF, observer performance over all thresholds is com-
pletely described by the curve of (FPF, TPF) values parameter-
ized by . This curve is called the receiver operating character-
istic (ROC) curve [1], [3]. To denote the TPF as a function of
the FPF, we will write TPF(FPF).
As explained in the introduction, we assume that and are

normally distributed with equal variances, i.e.,
and . (If a random variable, , follows a normal
distribution with mean, , and variance, , we write

.) In this case, the ROC curve takes the form [3, Result
4.7, p. 82]

(1)
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where and are the cumulative distribution func-
tion (cdf) and the inverse cdf, respectively, for the standard
normal distribution, , and

(2)

is the observer signal-to-noise ratio with . For nor-
mally distributed ratings, SNR is a meaningful measure of the
distance between the distributions of and and is therefore a
suitable metric for observer performance [1, p. 819]. (Note that
the notion of observer SNR should not be confused with that of
pixel SNR, which is not directly connected with observer per-
formance.)
A widely-used figure of merit for observer performance is the

area under the ROC curve, denoted as AUC. The AUC may be
interpreted as the average TPF, averaged over the entire range of
FPF values [3]. Under our distributional assumptions, the AUC
takes the form [1, p. 819], [3, p. 84]

(3)

In this work, we will always assume that , so that
and .

When only a restricted range of FPF values is considered rel-
evant for observer performance, then the partial area under the
ROC curve, defined as

(4)

can be used as a summary measure [3]. The pAUCmay be inter-
preted as the TPF averaged over the FPF values between
and . Observe that under our assumptions for the ratings,
TPF at fixed FPF, AUC, and pAUC are strictly increasing func-
tions of SNR only. Later, we will take advantage of this property
to construct our confidence interval estimators for TPF, AUC,
and pAUC.

III. POINT ESTIMATION OF SNR

Suppose that continuous-valued observer ratings are avail-
able for class 1 images and class 2 images, where either
or can be zero. Denote these ratings for classes 1 and 2

as and , respectively, and sup-
pose that the observer ratings are independent and normally dis-
tributed with equal variances for each class, i.e.,
and . In this section, we introduce and charac-
terize a point estimator for SNR for the case when is known
and , , and are unknown. 2

Below, the sampling distribution for the SNR estimator will
be described using the inverted gamma distribution, which is
reviewed in Appendix A. If a random variable, , follows an
inverted gamma distribution with parameters and , we write

. Also, we use the notational convention that if
the upper limit on a summation is zero, then the summation is
zero.

2Note that knowing does not imply that either or is known. Whereas if
either or is known along with , then and are both known.

We start by defining unbiased estimators of and as

(5)

and

(6)

Observe that when and are both nonzero, and have
lower variance than the conventional unbiased sample mean es-
timators, and , re-
spectively. This advantage is gained through the incorporation
of . The above mean estimates can then be used to define the
pooled variance estimator

(7)

Now, for , define the SNR estimator

(8)

with

(9)

where and is the Euler Beta function. The
multiplicative factor, , is chosen so that is unbiased. The
sampling distribution and optimality of are characterized
by the following theorem, which is proved in Appendix B.
Theorem 1: Let and suppose that is known

and that , , and are unknown. If is computed from in-
dependent samples and , where

, with , , and ,
then
(a) with and ,

where
(b) is the uniformly minimum variance unbiased

(UMVU) estimator for SNR.
Hence, the sampling distribution of is simply related

to the inverted gamma distribution, and is the minimum
variance estimator among all unbiased estimators of SNR.
Below, we state a corollary to Theorem 1, which is also proved
in Appendix B.
Corollary 1: Let , , and suppose that

the hypotheses of the previous theorem are satisfied. If ,
then

Corollary 1 shows that the ratio of the mean of to its
standard deviation only depends on and . This property can
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be used to select sample sizes, without requiring the nominal
SNR value.
Note that instead of assuming that is known, both and

could be assumed to be known. From a practical viewpoint, re-
quiring knowledge of and is significantly more constraining.
Nevertheless, we have investigated the advantage that results
from assuming that both and are known, as opposed to only
knowing . Specifically, the properties of the following SNR es-
timator that incorporates both and were studied:

(10)

where is defined by (9) with and

(11)

It turns out that obeys a theorem identical to that given for
, except that the value of must be replaced by .

Given the behavior of the inverted Gamma distribution ( plays
a role similar to that of degrees of freedom for a distribution),
the statistical advantage resulting from incorporating knowl-
edge of both and , as opposed to only , is very small. For
this reason, we focus the development in this paper to the less
constraining case of known .

IV. CONFIDENCE INTERVALS

Our knowledge of the sampling distribution for implies
the next theorem, which enables us to compute confidence inter-
vals for SNR, TPF(FPF), AUC, and pAUC with exact coverage
probabilities; see Appendix C for a proof.
Theorem 2: Let and suppose that is known

and that , , and are unknown. Let , be such
that for some , and let . If

is computed from independent samples
and , where ,
with , , and , then
(a) For each observation of , there exist unique values

and in satisfying
and , where is

the cumulative distribution function (cdf) of the inverted
gamma distribution with .

(b) Let and
. Then the random intervals

and

where the last three intervals are defined by substituting
and for SNR in (1), (3), and (4),

are exact confidence intervals for SNR, TPF(FPF),
AUC, and pAUC , respectively.

Hence, we can calculate a confidence interval for SNR
and any strictly increasing transformation of it from a realization
of by numerically solving the equations in Theorem 2(a)
for and . Note that if , then and if
, then . In either of these cases, the confidence
interval defined is said to be one-sided. Otherwise, the interval
is said to be two-sided [15].
We close this section by restating a theorem that we proved in

[13], which is also applicable here. When our assumptions for
the observer ratings are satisfied, it shows that a simultaneous

confidence band for the entire ROC curve can be con-
structed from a confidence interval for SNR. Below, we
denote the collection of points on the ROC curve as

.
Theorem 3: Suppose that and that

. Let be a confidence interval
for SNR, and define the set

and

where

Then is a confidence band for the ROC curve in the
sense that, for any value of SNR, is contained in
with probability , i.e., .
The confidence band defined in Theorem 3 is equivalent

to the union over all FPF values of confidence intervals for
TPF. Such a construction of an exact confidence band is possible
because the ROC curve is parameterized by only SNR when our
assumptions are satisfied [13].

V. AUC ESTIMATOR EVALUATIONS

To assess the performance of the estimators introduced in the
previous section, we now present an evaluation of our new point
and interval AUC estimators. For this evaluation, we do not con-
sider any specific imaging scenario, but rather compute all quan-
tities from exact theoretical expressions, presuming that our as-
sumptions for the ratings are satisfied. Hence, no Monte Carlo
simulation of ratings was necessary. Such an approach allows us
to cover a wide number of scenarios, and is enabled by the fact
that the distributions of all estimators considered in this section
only depend on SNR, and .

A. AUC Point Estimators

We compared our new parametric AUC point estimator,
, to two other AUC estimators that

do not incorporate prior knowledge of . The first is the
parametric plug-in estimator
with . Here,
and are the usual sample means and

is the

usual pooled sample variance. Hence, is closely related
to the MLE for AUC when is unknown, 3 and only differs

3Note that the popular software package ROCKIT [16] is also based on an
MLE, but in a distribution-free setting. Since relies on stronger distri-
butional assumptions than ROCKIT, it is expected to be slightly more efficient.
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Fig. 1. Plots of relative bias (left) and relative error (right) for AUC point es-
timators as a function of the total number of images, , with .
The plots correspond to true AUC values of 0.6 (top), 0.75 (middle), and 0.9
(bottom).

from it by the normalization factor in the expression of , as
the MLE would use instead of . The second
AUC estimator is the normalized Mann-Whitney U statistic,
defined as

(12)

where if is true and otherwise. The nor-
malized Mann-Whitney U statistic is a widely-used, nonpara-
metric, unbiased estimator of AUC [3], [4].
For our evaluations, we compared the relative bias and rel-

ative root-mean-square-error for true AUC values of 0.6, 0.75,
and 0.9 with . For each estimator, we computed the rel-
ative bias as and the relative
root-mean-square-error (rmse) as , where
mse is the estimator’s mean-square-error. All quantities were
calculated numerically from exact analytical expressions, where
the calculations for and utilized observations
made in [13] and [17], respectively. The results of our evalua-
tions are shown in Fig. 1. Note that because is unbi-
ased, it is not included in the bias plots. From these plots, we see
that our new AUC estimator, , has a very small negative
bias (less than 0.3%) and significantly better relative rmse than
the estimators that do not incorporate knowledge of .

B. AUC Confidence Intervals

Next, we compared the new AUC confidence interval based
on to AUC confidence intervals based on and

, respectively. The confidence intervals based on
were computed as described in [13], and the confidence

Fig. 2. Mean 95% AUC confidence interval length plotted versus with
and . The plots correspond to true AUC values of

0.6 (top left), 0.75 (top right), and 0.9 (bottom left). (bottom right) The ratio
of the -based MCIL to the -based MCIL plotted versus for

, 0.75, and 0.9.

intervals based on were calculated using method 5 of
Newcombe, which was identified as a preferred approach [18].
The figure of merit for the AUC confidence interval com-

parison was the mean 95% confidence interval length (MCIL).
For the intervals based on and , we calculated the
MCIL by numerically evaluating exact analytical expressions
involving the sampling distributions. On the other hand, the
MCIL for the intervals based on was estimated from
50 000 Monte Carlo trials for each choice of the parameters,
which gives an accuracy of .
The MCIL for the three AUC confidence interval estimators

is plotted versus in Fig. 2 with for ,
0.75, and 0.9. The plots indicate that the -based estimator
yields, on average, substantially shorter intervals than the esti-
mators that do not incorporate knowledge of . For example, the
plot for shows that with 100 images, the MCIL for
the -based estimator is roughly 0.03, compared to approx-
imately 0.21 for the other estimators. Fig. 2 (bottom right) con-
tains plots of the ratio of the 95%MCIL for the -based in-
tervals to the 95% MCIL for the -based intervals for AUC
values of 0.6, 0.75, and 0.9. It can be seen that as the AUC value
increases, the reduction in length realized by the -based in-
tervals decreases. Nevertheless, even for , theMCIL
for the -based intervals is smaller by a factor of almost two.

VI. CONFIDENCE INTERVALS FOR A DIFFERENCE
OF AUC VALUES

Typically, ROC analysis is used to compare two (or more)
different imaging scenarios, whereas the confidence intervals
discussed in the previous section only apply to the evaluation
of a single imaging scenario. A simple approach to enable such
a comparison is to invoke the Bonferroni inequality [19, p. 13]
to build a rectangular confidence region for all involved AUC
estimates. However, this approach is not optimal when a paired
study design is considered, because it does not account for the
possible reduction in variability when there is a positive corre-
lation between AUC estimates. In this section, we discuss how
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to construct a confidence interval for a difference of two AUC
values in a paired study design in the case where the differ-
ence between class means is known for the two underlying ROC
curves. This confidence interval is approximate, but it is shown
to be highly robust in terms of coverage probability, and to yield,
like the intervals in the previous section, a strong statistical ad-
vantage.

A. Theory

Below, subscripts and will be used to denote quanti-
ties corresponding to scenarios and , respectively. For ex-
ample, the AUC point estimator for scenario A will be written
as .
The difference in AUC values can be estimated as

. Assuming asymptotic normality of this
difference, we can construct a Wald-style confidence
interval for as

(13)

where .
Now, it is necessary to estimate

(14)

As shown in Appendix E, the delta method (first-order Taylor
approximations) can be used to derive the approximate expres-
sions

(15)

(16)

(17)

where denotes the standard normal, , probability
density function (pdf). The coefficients in these expressions can
be estimated by substituting and for and

, respectively. Estimators for , ,
and are discussed next.
Denote the class 1 and class 2 observer ratings for scenarios A

and B with the vectors and ,
respectively. Suppose that these ratings each follow bivariate
normal distributions, i.e., and
with mean vectors and , and
common covariance matrix

(18)

For each scenario, suppose that the observer rates class 1
and class 2 images. From the above distributional assump-
tions, it follows that (see Appendix E)

(19)

(20)

(21)

where is the degrees of freedom and is the
Gaussian hypergeometric function. A MATLAB® function for

is provided in Appendix E. The expres-
sions in (19)–(21) are exact. We can estimate these quantities by
substituting and for and , respec-
tively, and by estimating . To estimate the correlation coeffi-
cient, , we define an unbiased covariance estimator, similar to
, as

(22)

The correlation coefficient can then be estimated with

(23)

B. Evaluations

We carried out Monte Carlo simulations to evaluate the cov-
erage probability and mean confidence interval length (MCIL)
for the approximate confidence intervals introduced in the last
subsection. For purposes of comparison, we also assessed these
metrics for Wald-style confidence intervals based on the Mann-
Whitney U statistic employing the variance-covariance estima-
tors of DeLong et al. [20]; see [3, p. 108] for further details on
these intervals.
The results of our evaluation for several choices of the pa-

rameters , , , , and are listed in Table I for
the case of 95% confidence intervals . The coverage
probabilities and MCILs in this table were estimated from 10
million Monte Carlo trials for each combination of parameters.
Conservative 95% confidence bounds for each coverage proba-
bility can be obtained by adding and subtracting 0.014 to/from
each point estimate (expressed in %), respectively. The esti-
mates in Table I indicate that the coverage probability of the
known- approach is more reliable than the Mann-Whitney-
based intervals for small values of and . Moreover, a signif-
icant advantage in MCIL is observed for the known- estimator
in all cases.
The results of a more comprehensive evaluation of the

coverage probability for the known- intervals are shown
in Fig. 3 for with . This figure il-
lustrates how the coverage probabilities change as varies.
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TABLE I
COVERAGE PROBABILITIES AND MEAN CONFIDENCE INTERVAL LENGTHS CORRESPONDING TO 95% CONFIDENCE INTERVALS FOR

. THE TABLE COMPARES CONFIDENCE INTERVALS BASED ON THE MANN-WHITNEY STATISTIC (MW) TO INTERVALS
BASED ON . ALL COVERAGE PROBABILITIES ARE EXPRESSED IN %

Fig. 3. Box plots displaying the estimated coverage probability of approx-
imate 95% confidence intervals for with .
Each box plot corresponds to one value of , and summarizes the cov-
erage probability for 81 combinations of AUC values, with ,

.

Namely, for , 0.65, 0.75, 0.85, and 0.95, box
plots are given to summarize the estimated coverage prob-
abilities for 81 combinations of AUC values, with ,

.
Each coverage probability was estimated from 1 million Monte
Carlo trials to obtain an accuracy of . The box plots
were each generated with the MATLAB® command boxplot.
To interpret the plots, note that the edges of each box are the
25% and 75% percentiles, and the horizontal line inside the
box is the median. The length of each whisker is 1.5 times the
distance between the 75% and 25% percentiles, and data points
outside this range are plotted individually.
From these plots, we see that the coverage probabilities for

the known- intervals are generally very reliable. The most ex-
treme outliers in each plot correspond to cases for which either

or . In these situations, the nor-
mality assumption on the difference of AUC estimates is likely
not well-satisfied.

VII. DISCUSSION AND CONCLUSIONS

In this work, we investigated the reduction in statistical vari-
ability that may be gained in ROC estimates by using knowl-
edge of , the difference of the class means for the observer
ratings. To execute our investigation, we introduced parametric
point and confidence interval ROC estimators that incorporate
knowledge of . For the case of AUC estimation, we compared
the performance of our known- point and interval estimators
to parametric and nonparametric estimators that do not utilize
knowledge of . This evaluation demonstrated that the known-
estimators introduced here are much more powerful than esti-
mators that do not incorporate knowledge of . For example,
the mean length of the known- 95% AUC confidence intervals
can be as much as seven times smaller than it is for approaches
that do not use knowledge of ; see Fig. 2 (bottom right).
In the definition of our point estimator for SNR, we included

a multiplicative factor, , to make it unbiased (and hence, a
UMVU estimator). Although it is not immediately obvious from
our expressions, it is easy to show that our confidence interval
estimators do not depend on . Also, it can be seen that as
and increase, rapidly approaches one. Therefore, for large
and , our SNR point estimator is essentially the same as

the maximum likelihood estimator (MLE) for SNR when is
known. As a consequence of the invariance property of MLEs
[19, p. 320], our point estimators for TPF, AUC, and pAUC are
therefore asymptotically equivalent to the MLEs for these quan-
tities. Hence, because MLEs are asymptotically efficient [19, p.
472], our point estimators for TPF, AUC, and pAUC will also
be asymptotically efficient.
After evaluating the known- confidence intervals for a single

AUC value, we introduced an approximate confidence interval
for the difference of two AUC values that utilizes knowledge
of . An evaluation of this interval estimator demonstrated ro-
bustness as well as much better coverage probability and mean
confidence interval length than intervals based on the Mann-
Whitney U statistic employing the DeLong variance-covariance
estimator.
The known- estimators introduced here rely on three as-

sumptions. Namely, they require that 1) the difference in class
means for the observer ratings is known, 2) the observer ratings
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are normally distributed for each class of images, and 3) the
variance of the observer ratings is the same for each class of
images. As discussed in the introduction, these assumptions are
well-satisfied in many imaging contexts for linear observers ap-
plied to known-location discrimination tasks. Examples of such
tasks include those with variable background [2], [21]–[23]. In
addition to lesion detection tasks, detection of contrast/tracer
uptake variations [24] also appears amenable to our assump-
tions. In a future work, we will report on the robustness of our
estimation theory for application to X-ray CT image-quality
evaluation.
We have demonstrated that large statistical advantages can be

realized by parametric ROC estimators that incorporate knowl-
edge of . Extension of the known- concept to more complex
image-quality studies and to more general ROC estimators does
not appear to be trivial. Nonetheless, any such extension could
potentially be of great value for image-quality assessment.

APPENDIX A

: In this appendix, we review the inverted gamma distribu-
tion and some of its properties that are needed in the paper.
The inverted gamma distribution originates as the distribu-

tion of the reciprocal of a gamma random variable. It has two
positive parameters, and , called the shape and the scale pa-
rameters, respectively. A random variable is said to have an
inverted gamma distribution if its pdf takes the form [25]

(24)

when , and otherwise. Above, is the
Gamma function. If is an inverted gamma random variable
with parameters and , we write . The mean
of such an inverted gamma random variable is easily shown to
be [25]

(25)

An important special case of the inverted gamma distribution
is the inverted distribution. Specifically, it can be shown
that the reciprocal of a random variable with degrees of
freedom is an inverted gamma random variable with
and .
Our proof of Theorem 1 in Appendix B requires the next two

results regarding the inverted gamma distribution.
Lemma 1: Let be an arbitrary constant. If

and , then .
Proof: See [14, Lemma 7].
Lemma 2: Suppose that with and

let . Then , where
is the Euler Beta function.

Proof: Since is a strictly increasing function,
we can use the monotonic transformation theorem for random
variables [19, p. 51, Theorem 2.1.5] together with (24) to write
the pdf of as

(26)

when and otherwise. Hence, the expected
value of is

(27)

Performing the change of variable , (27) becomes

(28)

(29)

where we applied a standard formula [26, 18.76, p. 109], in the
last step.
Using the relation between the

Euler Beta function and the Gamma function and the fact that
, (29) may be rewritten as

.
It is straightforward to show that the cdf for the inverted

gamma distribution is

(30)

where is the upper incomplete gamma function. In
MATLAB®, the function gammainc can be used to evaluate
the inverted gamma cdf as ( ,
, “upper”).
For our proof of Theorem 2 in Appendix C, we will need

the following lemma, which expresses a useful property of the
inverted gamma cdf.

Lemma 3: Suppose that . Then at arbitrary
fixed values of and , the cdf of , , is a contin-
uous, strictly decreasing function of .

Proof: Although this property seems like it should be well-
known, we could not find any proof of it in the literature. One
way to prove it is as follows.
Suppose that and are fixed quantities, and define

. By (30), may be written as

(31)

It follows from (31) and the theorem on absolute continuity for
the Lebesgue integral [27, p. 141], that is continuous. In
addition, since and , the integrand in (31) is strictly
positive. Hence, (31) implies that is a strictly decreasing
function of .

APPENDIX B

Now, we prove Theorem 1 and Corollary 1, which charac-
terize . We use the notational convention that a summation
is zero if its upper limit is zero. Also, recall that .

Proof of Theorem 1(a): Let and
be the sample means for class 1 and class

2, respectively. Here, we use the convention that if
and if .

From the definition of , we have

(32)
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Substituting for and
for in (32) and rearranging yields

(33)

Inserting the definitions of and into (33), simplifying, and
dividing by on both sides, we get

(34)

By a standard result [19, Theorem 5.3.1(c), p. 218] for the
distribution of the sample variance, the first and second terms
on the right side of (34) are distributed as and
random variables, respectively. In addition, it is easy to see that

. Hence, the third
term in (34) is distributed as a random variable. Since the
class-1 samples are independent of the class-2 samples, and
since and are independent of the first and second terms,
respectively [19, Theorem 5.3.1(a), p. 218], it follows that
all three terms in (34) are independent. Thus, .
Applying the relationship between the inverted distribution
and the inverted gamma distribution (see Appendix A), we
have . Next, observe that

(35)

where . Thus, Lemma 1 implies that
with and .

Proof of Theorem 1(b): For notational simplicity, denote
the class-1 and class-2 samples with the (random) vectors

and . Also, write
realizations of these vectors as and

, respectively. Below, we denote the statistics
, , and as defined by (5)–(7) with , , and , respectively,

when evaluated at and .
From Theorem 1(a), Lemma 2, and (9), it follows that

, i.e., is an unbiased estimator of SNR.
The joint pdf of the sample is

(36)

After lengthy algebra, (36) can be rewritten as

(37)

Define the vector

(38)

So (37) can be written in the form

(39)

By the Fisher-Neyman factorization theorem [28, Thm. 6.5, p.
35], [29, Prop. IV.C.1, p. 159], is a sufficient statistic.
Moreover, because the expression in (39) has the form of a full
rank exponential family [28, pp. 23–24], is a complete
statistic [28, Thm. 6.22, p. 42]. Since 1) is a complete
sufficient statistic, 2) is an unbiased estimator of ,
and 3) , i.e., is a function of

only, the Lehmann-Scheffé Theorem [28, Thm. 1.11,
p. 88] [29, p. 164] implies that is the unique UMVU esti-
mator of .

Proof of Corollary 1: From Theorem 1(b), we have
. Also, from Theorem 1(a), and (25), we have

(40)

The identity then yields

(41)

The stated ratio of mean to standard deviation thus follows.

APPENDIX C

Next, we prove Theorem 2, which enables us to calculate our
ROC confidence intervals. For this task, we need the following
lemmas.

Lemma 4: Let be a continuous random variable with cdf,
, that is a strictly decreasing function of the parameter

for each . Also, let , be such that
for some . Suppose that, for each in the sample
space of , the relations

may be solved for and . Then the functions
and are uniquely defined and the random interval

is an exact confidence interval for .
Proof: See [19, Theorem 9.2.12, p. 432] for a proof, and

[15, Section 11.4] for a complementary discussion.
Lemma 5: Let be a continuous, strictly increasing

function of . If is a confidence interval for ,
then is a confidence interval for .

Proof: See [13, Lemma 3].
Theorem 2 follows from Theorem 1(a) together with Lemmas

3, 4, and 5. Note that under our distributional assumptions, TPF,
AUC, and pAUC are strictly increasing functions of SNR.
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APPENDIX D

In this appendix, we give a MATLAB® function that com-
putes the ROC confidence intervals that are discussed in this
paper. Note that this code requires the Statistics Toolbox™ for
MATLAB®.

APPENDIX E

Here, we derive the expressions given in Section VI
for the confidence interval estimator of .
Since , can be approxi-
mated with a first-order Taylor expansion around the point

, i.e., for scenarios A and B,
and
,

where is the pdf for the standard normal distribution.
The approximations (15)–(17) follow immediately from these
expansions.
Next, note that (19) and (20) are simply restatements of (41).

Now, it remains to derive (21). We start by using the unbiased-
ness of and to write

(42)

Employing subscripts A and B to denote scenario A and B quan-
tities, respectively, the first term can be rewritten as

(43)

(44)

(45)

where and . Now,
applying [30, Theorem 3.2] together with the identity

and the fact that , we get

(46)

where is the Gaussian hypergeometric function.
Inserting (46) into (45), recalling the definition of , and sim-
plifying, yields

(47)
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We can simplify further by using [31, identity (9.5.3), p. 248] to
obtain

(48)

Finally, (21) follows from (42) and (48).
The MATLAB® function below can be used to numerically

approximate with a series expansion.
In our experience, 50 terms is generally sufficient to obtain high
accuracy.
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