
Pattern Recognition
in a Multi-sensor Environment1

Thomas C. Henderson and Wu So Fai

UUCS 83-001

18 July 1983

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract

Current pattern recognition sys tem s tend to operate on a single sensor, e.g., a camera,

however, the need is now evident for pattern recognition sys tem s which can operate in

multi-sensor environments. For example, a robotics workstation may use range finders,

cameras, tactile pads, etc. The Multi -sensor Kernel System (MKS) provides an efficient

and coherent approach to the specification, recovery, and analysis of patterns in the data

sensed by such a diverse set of sensors. We demonstrate how such a system can be

used to support both feature-based object models as well as structural models. The

problem solved is the localization of a three-dimensional object in 3 -space . Moreover,

MKS allows rapid reconfiguration of the available sensors and the high-level models.

1This work was supported in part by the System Development Foundation and by NSF
grants ECS-83-07483 and MCS-82-21750

Table of Contents
1. Introduction 1

1.1. Sensor Specification 1
1.2. Low-Level Processing 1

2. High-Level Modeling 3
2.1. Feature Models 6
2.2. Hough Shape Models 7

2.2.1. Rotational Invariant 3-D Hough Shape Model 10
3. MKS Modes of Operation 11
4. Case Studies 14

4.1. Feature Models 17
4.2. Hough Shape Model 24

5. Conclusions and Further Research 29

i

List of Figures
Figure 2-1: High-Level Modeling and Matching 3
Figure 2-2: Example of Hough shape definition 9
Figure 2-3: Example of Hough shape detection ; 9
Figure 3-1: Organization of MKS 12

- Figure 3-2: Sensor Integration Into Task Environment 14
Figure 4-1: Scene 1, typical 2-D scene 16
Figure 4-2: Scene 2, a set of simple 3-D objects, stereo view 1 16
Figure 4-3: Scene 3, a set of simple 3-D objects, stereo view 2 17
Figure 4-4: Surface points on the cube 22
Figure 4-5: Surface points on the sphere 23
Figure 4-6: SPG for a cube with 4 nearest neighbors 23
Figure 4-7: SPG for a sphere with 4 nearest neighbors 24
Figure 4-8: Initial circular accumulators when detecting cube 26
Figure 4-9: Detected surface points of the Renault piece 27
Figure 4-10: SPG of the Renault piece with 4 nearest neighbors 28
Figure 4-11: Initial circular accumulators when detect ing Renault piece 29

ii

»

List of Tables
Table 4-1: Vectors produced by "Circle Detector" 18
Table 4-2: Spatial Proximity Graph for the Circle Radii 18
Table 4-3: Vectors Produced by "Corners_Holes_Detector" 19
Table 4-4: Spatial Proximity Graph of Nut Data 20

: Table 4-5: Vectors Produced by "Surface Curvature" 21
Table 4-6: Spatial Proximity Graph for Planar and Curved Surface Points 21
Table 4-7: Vertexes of the Cube 25

iii

1

1. Introduction
The Multi -sensor Kernel System has been proposed as an efficient and uniform

mechanism for dealing with data taken from several diverse sensors [1 S']. The system

can be logically divided into three major parts: the sensor specification, low-level

representation, and high-level modeling. In this paper, we discuss in detail the high-level

modeling aspects of the system.

1.1. S e n s o r Specificat ion

Following the work of Foley [7], Pfaff [21], and Rosenthal [22] in the domain of logical

graphical input device specifications, we have shown how MKS can provide a similar

function in a mult i -sensor environment [15], Basically, a logical (or abstract) sensor can

be viewed as a program whose inputs are either system defined devices (such as

cameras) or the output of other logical sensors. Thus, logical sensors are formed from

existing device drivers or from programs which perform som e analysis on the data from

other logical sensors. This allows for hiding of sensor type in that such a device can be

implemented in hardware with only a driver interface, or can exist through several levels

of software. Moreover, such a system can run interpretively in the s ense that failure of a

physical device does not preclude the definition of an alternative method for obtaining

the same information. Such a sensor specification can be viewed as a sensor definition

language, and thus, a semantics of sensor definitions can be given, and this provides the

user an extremely useful tool. Finally, a logical sensor is also defined in terms of its

output. For uniformity of processing, the output of each logical sensor is defined as an

n-tuple whose elements all have a meaningful label that the user can understand and a

range of possible values for that element. For example, a camera could be defined in

terms of a triple: (x-location, y-location, intensity) with allowed ranges: (0:1023, 0:1023,

0:255). A camera then returns a stream of such triples. In this way, the output of one

logical sensor can be quite conveniently used as the input to another logical sensor.

1.2. Low-Level Process ing

The results of several workers in computer vision have shown the usefulness of

performing a low-level processing step before attempting high-level analysis of the

sensed data. In particular, Marr's primal sketch [17], Barrow and Tennenbaum's intrinsic

characteristics [4], and to some extent, the region adjacency graph of Pavlidis [20], have

all been proposed as a low-level organizational tool for image data analysis. We have

shown how the recovery of 3-D information can be usefully organized in the spatial

proximity graph [9, 15]. Most features (e.g., surface curvature, surface normal, range,

texture, etc.) can be localized in 3 - sp ace using current computer vision techniques (see

Ballard and Brown for an introduction [3]). Other approaches to the organization of point

data include minimal spanning trees [25], relative neighborhood graphs [23], and Voronoi

triangulations [1].

The spatial proximity graph simply takes a set of points and creates a graph whose

nodes are the points, and w h ose edges connect each node to the m nearest neighbors of

that node. MKS allows the spatial proximity graph to be generalized by allowing points

from any k-dimensional space, and as will be discussed later, this permits one to analyze

structure in any feature space chosen by the user. The spatial proximity graph is built

quite efficiently in terms of the k-d tree [8] which is built directly from the data (see

Henderson [13, 14] for the use of the k-d tree for feature organization). A k-d tree is a

binary sort tree for k-dimensional keys where a nonterminal represents a subset of the

points, and a terminal contains a bucket of points. The root node represents the

complete set of data, and the set of data points at each nonterminal is recursively divided

into two se ts by splitting at the median key value along the axis with greatest spread in

value. Such an organization minimizes the average search time in terms of record

a c c e s s e s [8]. The user defines the k-tuple (to be used in low-level processing) as a

subset of the n-tuple returned by the class of sensors providing the data to the low-level

processing module. These k-tuples serve as the basic organizational e lement of low-

level processing, and all high-level models must be defined either directly in terms of

them (as when feature models are defined in terms of particular values for each element)

or indirectly in terms of the spatial relations existing between the vectors (as in the

Hough shape model). As a simple example, consider the following. A logical sensor

"Circle Detector" is defined which takes direct camera data as input and returns a triple

giving the (x-location, y-location, radius) of each circle detected in the image, where the

x- and y- locations give the center of the circle with respect to the image coordinates.

The low-level processing is defined in terms of a 1-tuple (radius) which is a subset of the

original triple. The radius value models the invariant part of the data from the

"Circle_Detector" and will be sorted by the low-level processing. To discover circles of

any given radius, it is only necessary to query the sorted data. In case of a match, the

index of the matching data vector can be used to recover the original x- location and y-

2

3

location. Finally, the user may also define a distance function to be used by the system if

the standard ones such as Euclidean distance and Manhattan distance are not desired.

5*"

2. High-Level Modeling
To discover patterns in data requires three things: ^

1. an abstract model of the pattern,

2. a description of a pattern from the data, and

3. a method for matching the model and the description.

Figure 2-1 outlines the relationships between the model, the description and the matcher.

Ideal World

High-Level
Representations

Real World

Low-Level
Representations

World Models World Descriptions

Matcher

Result

Figure 2-1: High-Level Modeling and Matching

Various types of models exist, and the choice of the model determines in large part how

the descriptions will be derived from the data and what form those descriptions take;

moreover, once the model and description have been specified, the nature of the matcher

should be clear.

The model is first determined in terms of an ideal world, e g , as a mathematical or

prototypical abstraction. For example, it may be decided to model polyhedra. Given this

notion, it is then possible to specify some particular mechanism for representing this

class; we call this the high-level representation. For the polyhedra example, this might be

one of several possibilities, e.g., each polyhedron might be represented as a graph w hose

vertexes have a 3 - sp a ce location. Finally, depending on whether or not- the high-level

representation is parameterized, it may be necessary to provide a method for deriving a

world model from the high-level representation. For example, if it were necessary to

detect polyhedra in digital images, then a rendering technique would have to be applied

to the high-level representation in terms, perhaps, of lighting sources and surface

reflectance properties. Of course, it is possible that the high-level representation and the

object model are the same.

The data analyzed is sensed from the real world. This data is then organized into a

low-level representation which imposes a desired structure and uniformity on the data. A

world description of the sensed data is then derived from the low-level representation.

This description is in terms of the object model, i.e., the type and attributes of the object

model determine the type and attributes of the description.

The kind of matching performed depends on the object model and description to be

matched. Two standard methods of matching can be used: functional and structural. A

functional similarity (or dissimilarity) measure is defined as a combination of parameter

values defined in terms of measures on the data. These parameters can be conveniently

viewed as forming a single vector; this makes it possible to take advantage of standard

distance functions on a vector, e.g., Euclidean distance, Manhattan distance, etc. Such a

distance can also be defined as a logical function. Structural matching, on the other

hand, usually requires solving som e form of the subgraph isomorphism problem. This

problem is computationally very expensive to solve, and we will therefore make some

simplifying assumptions and solve a restricted structural matching problem (see the

Hough shape transform below).

Our discussion of high-level object models will center around the following definitions

(see Henderson [10]). An object model cons is ts of:

1. a spatial decomposit ion of the object,

2. a description of the parts of the object, and

3. a description of the relations between the parts of the object.

4

We classify object models according to the presence or absence of these three

components. An object model which provides only (1) and (2) will be called a feature

model. An object model which provides all three components will be ca+led a structural

model. -

Feature models describe objects by specifying a set of features to be computed and a

set of reference values (in terms of the mean and standard deviation, perhaps) for the

object being modeled. Since values for such features for objects of the same class are

rarely exact, we often use feature models together with statistical methods of

classification. We define a measure which gives a distance between the feature vector

for the model and the computed feature vector of a test shape. The test shape can be

described as similar to the model if the distance is less than som e specified threshold.

A structural object model describes the spatial decomposit ion of an object, and

consequently must describe the primitive parts composing the object. The primitives

should provide a compact description of the object with little or no loss of information.

Once the primitives have been obtained, we compute the relations, such as adjacency,

collinearity, and symmetry, between the primitives.

In terms of the object recognition problem, we have investigated two approaches to

object modeling: feature modeling and the Hough shape transform. Feature modeling

provides a simple method for analyzing low-level features that can be recovered reliably

and efficiently from the sensors. In the implementation described here, a 3-D object is

represented in terms of som e simple features of the object, e.g., number of vertexes,

number of holes, etc. A sensor is then specified which recovers just these features from

newly detected objects in the environment, and then the feature values of the unknown

objects are compared to the reference values of the known objects. The Hough shape

transform provides for the recovery of the spatial location and orientation of the detected

object. This is accomplished by taking advantage of the spatial relations between the

vertexes of the object and matching each detected vertex of an object to a specific model

vertex.

5

2.1. Feature Models

Distinct features of the ideal world such as weight, area, major-axis, minor-axis, etc., of

objects can be used effectively for object recognition. For example, almost all of the

commercial computer vision systems available for use perform object recognition and

analysis in terms of som e small number of features (10 to 20) wh ich: can be easily

extracted from a 2-D binary image. Most often there exists a many to one map from real

world objects to such a set of features. This usually poses no problem since the set of

features is chosen with the entire set of objects to be modeled in mind, and ambiguities

can be avoided. On the other hand, a certain amount of location and scale invariance can

be easily accounted for by not using any features based on absolute size or location. For

example, the class of rectangles might be modeled as four 90 degree corners.

In the context of the mult i -sensor framework, feature models are defined directly in

terms of a logical sensor Every logical sensor has a characteristic output vector. The

characteristic output vector gives the number of features returned by the sensor, a

meaningful name for each feature, and the range of possible values for the feature. For

example, the logical sensor "Circle_Detector" returns three features: x-location, y- location,

and radius (all with respect to a known viewpoint or camera), and the allowed ranges

might be 0:1024, 0:1024, and 0:512, respectively. Thus, to specify a model for circles of

radius 2, call the model C2, there must be a mechanism to specify that x- location and y -

location are irrelevant for the model, whereas the radius value must be 2. This is easily

implemented by allowing ''don't care" as the assigned reference value for a feature in the

model. Thus, a model is completely specified by naming a logical sensor and then giving

a value for every feature returned by the sensor. The vector obtained by omitting the

"don't care" values is called the reference vector for the model.

Once a model has been defined, this has certain ramifications for the construction of

the k-d tree. Namely, the k-vector used in the construction of the k-d tree is formed

precisely from those elements of the vector produced by the logical sensor for which

"don't care" was not specified in the model. For example, the previously mentioned

"CircleDetector" based model called "C2" causes the data from "CircleDetector" to be

sorted on the last e lement of each triple. In general, the spatial proximity graph does not

have much meaning in this context. However, we will discuss a convenient mechanism

for matching which does exploit the spatial proximity graph.

6

Matching can be accomplished in several ways; we give three here. First of all, if the

models are all based on the same subset of the same logical sensor, then the model

vectors can be organized in a k-d tree (the model tree), and as new description vectors

are produced by the sensors, a query can be made on the model tree :for the nearest

neighbor of the new description vector. A threshold can be specified for the query, and

the matching function can be built into the tree search. A simple matching function for

feature vectors can be defined as follows. Let the model reference vector be m =

(m-|,nri2....im̂), and let the new description vector be v = (v1,V2v)̂. Then we define the

distance between m and v as:

distance(m.v) = SUM {fj(mj,Vj)}.

The fj's provide a mechanism by which feature value ranges can be normalized with

respect to each other. The user can specify these functions appropriately with respect to

the feature being measured, and also a threshold for the distance function below which a

match will be recorded between the model and the description vector. An alternative

method for feature matching is to build the description vectors into a k-d tree and then

query that tree with the appropriate models' reference vectors. Matching takes place

much as before.

Finally, it is also possible to incorporate the model reference vectors into the data.

Then when the spatial proximity graph is built, the descriptions which match the

reference vectors will be connected to them by edges. When building the spatial

proximity graph, it is merely necessary to specify the threshold associated with the model

and an infinite number of neighbors (since it can't be known in advance how many

objects there are which match the model).

2.2. Hough Shape Models

An extension of the 2-D Hough shape transform to handle 3-D surfaces offers an

alternative approach to object identification, and furthermore permits the localization of

objects in space. That is, the exact transformation can be found which maps the

reference object onto the detected object. The classic Hough transform [16] is a method

for detecting curves by using the duality between points on a curve and parameters of

that curve [6], For instance, in the case of straight lines, we could parameterize them by

their corresponding s lopes and intercepts. The parameter space is then quantized, and an

accumulator is associated with each point in the parameter space. The accumulator is

7

8

incremented for each detected point whose associated curve in parameter space crosses

that accumulator. Local maxima in the accumulators correspond to collinear points in the

image space. The values in the accumulators measure the number of points on the line.

The Hough shape transform is a generalization of the classic Hough transform for

handling objects which have no simple analytic forms, but have particular

shapes [2, 5, 18]. A reference point is picked. For each boundary point, compute the

displacement vector from the boundary point to the reference point. Store the reference

point and the displacement vectors. The basic strategy of the Hough shape transform is

to compute the possible loci of the reference point given edge point data in an image,

and is achieved by associating an accumulator with each point in space, and applying the

following algorithm: for all e, a detected edge location, and for all d, a displacement

vector, increment the accumulator at (e+d). Possible locations for the reference point are

given by the maxima in the accumulator array. Figure 2 -2 gives an example of the Hough

shape definition. Figure 2-3 shows the corresponding Hough shape detection, and blank

represents a zero in the accumulator array.

The extended 3-D Hough algorithm works as fol lows [11, 12]. A 3-D object is

represented as a collection of n vertexes. These vertexes in turn are denoted by their

(x,y,z) locations. Call this set of 3-D points P, where P = {(Xj,yj,Zj},) i=1....n. Choose some

reference point, P q = (x q , Y q , z q ,) , e.g., the centroid of the set of triples. The object

representation is given as a list of displacement vectors from each point in P to the

reference point P q . The model is then a characterization of P as a displacement from

each vertex to the reference P q .

Given the spatial proximity graph representation of a set of points sampled from the

surface of a polyhedral object, the points in the graph can be grouped to find the planar

regions. The planar faces of the detected object are then intersected to find the vertexes

of the object. The detection procedure is then to match the set of model vertexes with

the detected vertexes as points in the transform space. From matching each point on the

surface of an object to matching a small set of points representing the vertexes of the

object, we arrive at a much reduced set to be matched.

For each detected vertex, we associate the n displacement vectors to compute the

possible loci of the reference point, P q , in parameter space. Accumulate counts for the

possible locations of P q . The location that has the maximum count in the 3-D space

corresponds to the translated position of the reference point P q of the object model.

The above algorithm produces a unique maximum for any translated P, and the

maximum value is equal to the number of detected object vertexes. But if all the points

in P are not in the detected object, then the maximum will be less than the number of

points in the model object. Moreover, if there are several copies of the object, then there

may not be a unique maximum. However, the reference point is always guaranteed to be

one of the maxima.

Since in general, objects are both translated and rotated, a more realistic Hough shape

model will be the one which deals with rotation as well as translation. The following

sect ion outlines the algorithm to compute rotational invariant 3-D Hough transform. (For

details, s ee Wu [24].)

2.2.1. Rotational Invariant 3-D Hough Shape Model

Given a set of points P={(Xj,Vj,Xj)}, i=1,n, representing a 3-D object model, ch oose some

reference point P q , (x q -Vq . Z q)- such that the lengths of all the vectors of R = { (d X j , d y j , d Z j) } ,

where dXj=XQ-Xj, dyj=yQ-yj, and dZj=ZQ-Zj, are distinct. The model representation is then

in terms of R and the reference point, P q .

Given a set of detected points D={(Xj,Vj,Xj)}, i=1,m, use a 3-D array H, to accumulate

counts for possible location of Pq in space. Then the rotation invariant 3-D Hough

transform is computed by:

for all p = (x,y,z) in D,

for all r in R,

increment H(sphere with center at (x,y,z) and radius r) by 1.

In actual implementation, the accumulators are defined in terms of intersect ions of

spheres which represent possible loci of rotated and translated P q ' s . Intuitively, the

rotation invariant 3-D Hough transform is computed by keeping accumulators for points

of intersection of the various spheres centered at all the detected points. Then the

location in H having the maximum value corresponds to the translated and rotated

10

11

position of the reference point P q , of the object model. However, if there exists possible

rotational symmetry of the object model, there is no guarantee of a unique maximum in

the accumulator array H. In this case, any of the maxima may be chosen.

Recall that P q , the model reference point, is of distinct distance from all vectors in

R. Call the possible location of the transformed point P q ', (x q ' , V q ' , z q ') . With the finding of

the possible location of the transformed P q , construct R'={(dXj,dyj,dZj)}, i=1,m, where

dXj=XQ'-Xj, dy j=yQ'—y j, and dZj=ZQ'-Zj, and (Xj,yj,z j) in D. Matching is done by finding for

each r' in R', its counterpart r in R, such that r'=r. Then the detected point in D which

gives rise to r' corresponds to the possible transformed location of the model point in P

which gives rise to r. The match is reported in terms of the transformation that maps the

model points to the detected points.

3. MKS Modes of Operation
In terms of these three major parts, MKS operates in two distinct modes:

1. Configuration Time. Sensors are specified, the low-level representation is
determined, and high-level object models are described and stored in a model
database.

2. Execution Time. The data from the sensors is organized in terms of low-level
data structures, m ode l-based descriptions of the data are constructed, and
finally, the object models are matched to the descriptions derived from the
sensor data.

An overview of the configuration time view of MKS has been given by Henderson and

Wu [15]. Figure 3-1 shows the relation between the configuration t ime view and the

execution time view of MKS.

MKS

12

High-Level Low-Level Sensor Specification
Representation Representation

k-d tree Controllers Sensors Programs
ity

Vector Output to k-d tree

Matching

Analysis Result

F i g u r e 3 - 1 : Organization of MKS

Obviously, the system is driven by the arrival of data from the actual sensors.

Currently, the data from one or more sensors can be analyzed as a sequence of

snapshots of data. If more than one sensor is providing data to the system, then several

instances of the system run concurrently; each handles a specific model. Moreover,

rather than analyze data continually as it is received, the data is collected in a buffer until

the buffer is filled, then the data in the buffer is analyzed. If more data arrives, it can

either be discarded, or integrated into existing data structures; however, it is

computationally expensive to add data to the existing data structures, s ince the k-d tree

must be completely rebuilt when new data is added.

The sensor provides output vectors which are then formulated into the appropriate k-

tuple for low-level processing. This may involve a normalization step to weight the data

more evenly than the raw feature values allow. For example, given the two features:

number of holes and perimeter length (in pixels), it is clear that a difference of one hole

Hough Feature Spatial
Models Models Proxim

is much more significant than a difference of one in the perimeter length in pixels. At the

present time, this problem is handled by normalizing the ranges of the features and

assigning weights to the various features, however, it would be more convenient to allow

a decision tree or som e other form of logical analysis of the relations between features.

The k-tuples provided by the formatting step are then built into a k-d tree [8, 15]. This

provides an efficient method for recovering the spatial structure of the data. This step is

accomplished by querying the k-d tree with each data point in turn and creating a graph

linking the m nearest neighbors to each query point. Note that the graph is not

necessarily symmetric. Moreover, the k-d tree itself can be used as the basis for feature

modeling, and therefore in some c ases the spatial proximity graph need not be built.

In general, the matching program is allowed to query both the high-level model

database and the low-level representations constructed by MKS (see Figure 2-1). The

models are compared, one after the other, with the descriptions derived from the low-

level data structures. The ideal world can be anything from a set of particular feature

values which characterize an object to a computer aided design 3-D model. The world

model generated would be the normalized vector and an image depicting a rendering of

the object (given lighting, surface characteristics, etc.), respectively. The matcher can

then compute any distance function desired to compare the world model and the world

description, for example, a simple distance function on vectors regarded as points in

Euclidean k-space, or an algorithm to solve the subgraph isomorphism.

Clearly, the results of the analysis can be used in a feedback loop to control the

acquisition of new data or to manipulate the environment in s o m e way. For example,

once a 3-D object is localized in space, i.e., its exact position and orientation are known,

then a manipulator can be moved to that location to grasp it. In our view, the

localization of 3-D objects will most often be done with non-contact sensors; however,

once an attempt at grasping is begun, then contact sensors will play a crucial role in

grasping and manipulating the object. Our goal is the application of MKS to a robotics

workstation having several cameras, range finders, robot arms, and dextrous hands with

multiple contact sensor pads in the fingers.

The analysis of the data performed by MKS is essentially a cycle of data collection, data

organization, data analysis and environment manipulation. MKS can be integrated into

13

14

Task ------ Manipulator "

/ \
/ \

/ \

S e n s o r s ---- Models

Figure 3-2: Sensor Integration Into Task Environment

The definition of the matcher, as well as the actions to take based on its result, are

given within the task. The basic interface to MKS occurs through public functions allowed

on the abstract data types: the k-d tree and spatial proximity graph.

4. Case Studies
Next we present the execution flow of the essential processes involved in object

recognition and localization within the framework of our mult i -sensor system. It also

shows som e sample runs of object identification based on a feature-based high-level

object modeling technique and the Hough shape modeling technique.

As explained in the previous section on high-level modeling, the type and attributes of

the object model, from a specific 3-D object modeling technique, determine the type and

attributes of the world description of the sensed data. Therefore, a particular 3-D object

model initiates the process of object recognition through the following mechanism. Once

the object model is chosen, it controls the calling parameters of the k-d tree building and

the spatial proximity graph builder. This is because the world description is derived from

the spatial proximity graph, and it also is directly in terms of the object model. For

example, if we are working with a feature model to detect circles of radius two units,

then a feature vector on the k-d tree is a singleton formed by the magnitude of the

radius of a circle. Moreover, the specific distance function associated with this particular

feature model also determines the dissimilarity function used to construct the k-d tree

and its related spatial proximity graph.

such a workstat ion as sh o w n in Figure 3 -2 .

15

Upon closer examination, the influence of the object model does not stop at the level of

the execution of the k-d tree builder. It propagates down to the choice of which sensors

must be activated to acquire the corresponding features from the sensed world.

As a result, we choose to run in our mult i -sensor environment by invoking a certain

object model. The flow of the execution of the mult i -sensor framework is as follows:

1. Invocation of a high-level object model to be detected which automatically
fixes the dimension of the k-d tree and the dissimilarity function used in
constructing both the k-d tree and the spatial proximity graph.

2. Activation of the types of logical sensors which are required to acquire the
features corresponding to the high-level object model.

3. Organization of the sensed data into a k-d tree structure.

4. Construction of, if necessary, the spatial proximity graph from the k-d tree.

5. Grouping, if necessary, on the spatial proximity graph to obtain features
required by the high-level object model.

6. Matching of the detected world description to the world model.

7. Report of the possible transformations that map the model object to the
detected object in the case of Hough shape model.

To provide data for the following case studies, we have digitized three sc en es with an

RCA camera. We refer to these sc en es as Scene 1, Scene 2, and Scene 3, as shown in

Figure 4-1, Figure 4-2, and Figure 4-3, respectively. Scene 1 gives a typical 2-D type of

scene, and object descriptions are given in terms of the 2-D silhouette. Scene 2 and

Scene 3 give a stereo pair view of a set of simple 3-D objects. These sc en es and the

discussion given are intended to illustrate the ways in which the system can be used.

Scene 1, typical 2-D sceneF i g u r e 4 - 1 :

a se t of s imple 3 -D objects, s t e reo v iew 1Figure 4-2: S ce n e

F i g u r e 4 - 3 : Scene 3, a set of simple 3-D objects, stereo view 2

4.1. F e a t u r e M o d e l s

Within the mult i -sensor framework, we define each feature model directly in terms of a

logical sensor. Every logical sensor has a characteristic output vector which contains all

the features detected by the sensor. However, somet im es only a subset of the possible

features is used for matching. The k-d tree builder only organizes se ts of these k

features on the k-d tree. For matching, we incorporate the model reference vectors into

the detected data to build the spatial proximity graph. In the spatial proximity graph, if a

detected vector matches a certain reference vector, they will be neighbors. Therefore, in

building the spatial proximity graph, it is merely necessary to specify the threshold

dissimilarity associated with the model, and an infinite number of neighbors (this is due

to the lack of advance knowledge of the number of detected objects which match the

model).

The following three examples illustrate the feature-based object modeling technique.

Circle Model

We use the logical sensor called "Circle_Detector" to analyze Scene 1. The output of

"Circle_Detector" is vectors of the form (Xj,yj,rj) where Xj,yj are the coordinates of the

18

centroid of the i ^ detected object, and rj is the radius of the detected object. The model

reference vector is:

("don't care", "don't care ", 2).

"Don't care" indicates that the field it appears in is not to be used as part of the model

definition. We include the model reference vector at the beginning of the file containing

the detected vectors. Table 4-1 gives a set of vectors input to the k-d tree builder.

Object # (x-location, y-location, radius)

0 "don't care", "don't care", 2
1 256, 86, 0
2 371, 137, 0
3 269, 171, 0
4 397, 223, 1
5 320, 224, 2
6 128, 240, 3
7 230, 257, 5
8 358, 309, 0.5
9 333, 343, 0.5
10 256, 429, 0
11 384, 429, 0.5

Table 4-1: Vectors produced by "Circle Detector"

Table 4 -2 gives the resultant spatial proximity graph. The integers on the i ^ row are

the indexes of the neighbors of the ith object. The number of nearest neighbors chosen

is 12, and the distance threshold is 0.1.

O b j e c t # N e i g h b o r s

0 5
1 2 3
2 1 3
3 1 2
4 -
5 0
6 -
7 -
8 9 10
9 8 10

_ 10 8 9
11 -

Table 4 -2 : Spatial Proximity Graph for the Circle Radii

Since the 5* ̂ detected vector is the only one with radius 2, the reference vector and

this vector are neighbors.

Nut Model ::

We use the logical sensor called "Corner_Holes_Detector" to analyze Scene 1. The

output of "Corner_Holes_Detector" is vectors of the form (Xj,yj,Cj,hj) where Xj,y| are the

coordinates of the centroid of the i*̂ 1 detected object, Cj is the number of corners

detected in the object, and hj is the number of holes detected. The model reference

vector is:

(''don't care ", "don't care", 4, 1).

Table 4 - 3 gives a set of vectors input to the k-d tree builder.

Object # (x-location, y- location, corners, holes)

0 "don't care", "don't care", 4, 1
1 256, 86, 6, 0
2 • 371, 137, 4, 0
3 269, 171, 8, 0
4 397, 223, 0, 0
5 320, 224, 0, 0
6 128, 240, 0, 0
7 230, 257, 0, 0
8 358, 309, 4, 1
9 333, 343, 6, 1
10 256, 429, 8, 0
11 384, 429, 6, 1

Table 4-3: Vectors Produced by "Corners_Holes_Detector"

Table 4 - 4 gives the resultant spatial proximity graph. The integers on the i**1 row are

the indexes of the neighbors of the i**1 object. The number of nearest neighbors chosen

20

Object # Neighbors

0 8
1 -
2 -
3 10
4 5 6 7
5 4 6 7
6 4 5 7
7 4 5 6
8 0
9 1 1
10 3
11 9

Table 4-4: Spatial Proximity Graph of Nut Data

Since the 8 ^ detected vector is the only one with four corners and one hole, the

reference vector and this vector are neighbors.

Planar Surface Model and Curved Surface Model

We use the logical sensor called "SurfaceCurvature" to analyze the sphere-cube pair in

Scene 2 and Scene 3. (We assume that the cube and the sphere atop it have been

separated out from the other objects in the scene, e.g., by the connectivity of the spatial

proximity graph based on the 3-D surface points.) The output of "Surface Curvature" is

vectors of the form: (xj,yj,Zj,nj) where (Xj,Vj,zj) are the coordinates of the i ^ detected

object, and nj is the encoded curvature at the i**1 surface point. For a curved surface, nj

is encoded as "1". For a planar surface, nj is encoded as "-1". The planar surface model

reference vector is:

(''don't care", "don't care", "don't care", -1).

The curved surface reference vector is:

("don't care", "don't care", "don't care", 1).

Table 4 -5 gives a small sample of the set of vectors input to the k-d tree. The first two

entries in the table are the reference vectors, then the next f ew lines give som e sample

paints from the sphere, and finally, the last few lines give som e sample points from the

cube.

22

The neighbors lists for objects 0 and 1 give the planar surface points and the curved

surface points, respectively. The spatial proximity graph (SPG) actually divides the set of

detected vectors into one set with planar surface and the other set with curved surface.

If we use this information to build separate spatial proximity graphs from the two distinct

sets of points (see Figure 4 - 4 and Figure 4-5) for the two types of objects, we get the

results shown in Figure 4 - 6 and Figure 4-7. We can use the Hough shape modeling

technique to find out what type of polyhedra the object with the planar surface is, if

necessary.

Figure 4-4: Surface points on the cube

Figure 4 -5 : Surface points on the sphere

F i g u r e 4 - 6 : SPG for a cube with 4 nearest neighbors

To directly apply the Hough shape transform to a model of a 3-D object in terms of its

surface points would require a 3-D accumulator array, as discussed in sect ion 2.2, which

could easily exhaust the memory of a machine. Therefore, it is necessary to compress

the size of the model representation. We recommend two approaches, illustrated by two

examples, which drastically reduce the set of accumulators.

The first approach works well with polyhedral models. We reduce the size of the model

representation by using the vertexes of the polyhedron to represent it.

The second approach is suitable for objects of irregular shape. This approach consists

of choosing four control points which are recoverable from the type of data available, and

determining the geometric transformation from the model to the detected control points.

If the control points are not directly distinguishable, e.g., they are all vertexes of the same

order, then the Hough shape transform can be used to label them; otherwise, the

transformation can be determined directly.

4.2. H ough S h a p e M od el

25

Cube

We would like to use a cube as the model object to illustrate the first approach. The

logical sensor used is "Range Finder". The model is given in terms of : ;

reference point: (1.5, 1.3, 1.25), :

and radii of magnitude :
4.09,
3.43,
3.38,
3.28,
2.54,
2.40,
2.33,
0.65.

Figures 4 - 4 and 4 -6 show the detected surface points of the cube and the corresponding

spatial proximity graph obtained, respectively, as displayed on the PS300. After

performing grouping on the spatial proximity graph to find the faces of the cube and

intersecting the different faces, we found the vertexes given in Table 4-7.

x y z

4.0 -1.0 1.0
4.0 1.0 1.0
6.0 1.0 1.0
6.0 -1.0 1.0
4.0 1.0 -1.0
4.0 1.0 -1.0
6.0 1.0 -1.0
6.0 -1.0 -1.0

Table 4-7: Vertexes of the Cube

Figure 4 - 8 show s the initial set of accumulators when detecting the cube

26

m's denote model vertexes

mrf denotes model reference point

d's denote detected vertexes

denotes detected reference point

F i g u r e 4 - 8 : Initial circular accumulators when detect ing cube

Since there are rotational symmetries in the cube with respect to the chosen model

reference point, we actually detected eighteen possible locations for the model reference

point. Here is the one we picked, and along with it is the corresponding transformation

that maps the model cube to the detected cube:

detected reference point: (6.5, 1.3, 1.25)

transformation matrix:

|~1. 0. 0. 0. [
j 0. 1. 0. 0. j
j 0. 0. 1. 0. j
|_5. 0. 0. 1_|

In this case the detected cube is an instantiation of the model cube which has simply

been translated by 5 units in the positive direction along the x-axis.

27

Renault Piece

We would like to use the industrial object shown below as the model object to illustrate

the second approach. The logical sensor used is "Range Finder". There rare about 2000

paint samples. We call this piece the Renault piece. Figure 4 - 9 show s the detected

surface points of the Renault piece. (This data was digitized on a laser range finder

developed at INRIA, Rocquencourt, France by F. Germane.) Figure 4 -10 is the spatial

proximity graph obtained as displayed on the Evans and Sutherland PS300.

Figure 4-9: Detected surface points of the Renault piece

28

F i g u r e 4 - 1 0 : SPG of the Renault piece with 4 nearest neighbors

The four control points chosen as model points could be derived from the spatial

proximity graph of the model. The model is given in terms of:

model reference point (10.344000, 19.333334, 25.122999)

and the radii of magnitude:
29.900755,
18.041958,
13.079391,
3.379884.

The detected control points are:

(-21.000000,-7.246000,2.706000),
(-17.600000, -3.183000, 16.096001),
(-17.200001, 3.755000, 16.305000),
(-18.000000, 10.844000, 25.872999).

Figure 4-11 shows the initial set of accumulators using the four control points for

detection.

m's denote model vertexes

mrf denotes model reference point

d's denote detected vertexes

denotes detected reference point

F igure 4-11: Initial circular accumulators when detecting Renault piece

Here is the transformation that the maps the model object to the detected object:

| 0.000000 1.000000 -0.000000 0.000000 |
| -1.000000 -0.000002 0.000002 0.000000 |
| -0.000000 -0.000000 1.000001 0.000000 I
|_-2.000000 1.000031 0.999962 1.000000 J

In this case, the detected object is an instantiation of the model object after it has been

translated by (1.0, 2.0, 1.0) and rotated by 90 degrees with respect to the z-axis.

5. C o n c lu s io n s and Further R esearch

The m ulti-sensor integration and data acquisition system which is of interest to us is

configured by defining the sensors, the low -leve l representation, and the h igh-level

modeling techniques. The specified task description dictates when new sensor data is

required and how it should be obtained. Matching models to descriptions can take place

30

in the task. Based upon the results of the analysis on the data, the objects or the

environment can be manipulated.

The primary goal of this research was to develop a low -leve l representation of the real

world phenomena and to integrate that representation into a meaningful interpretation of

the real world. We accomplished this goal by developing the spatial proxim ity graph as

the low -leve l representation and incorporating it with two high-level modeling methods, a

feature-based modeling method, and the Hough shape modeling method.

We extended certain previous researchers' 2-D low -leve l representations, such as the

region adjacency graph, to a realistic and flexible 3 -D low -leve l representation, the spatial

proxim ity graph. We can handle not only 3-D visual information, but we can also manage

3 -D nonvisual information, such as tactile information from a robot hand. In using the

Hough shape model, we introduced a new extension, the rotational invariant 3 -D Hough

shape model, to the classic Hough shape model which was originally designed to handle

2 -D shapes without any simple analytical form.

Concerning the issue of object localization, we must take into consideration treatment

of errors in detected data, strategies which are best for acquiring new information for

object determination, and measures to disambiguate situations such as multiple objects

which are similar in one view but different in actuality. In matching we define a

dissimilarity measure, as mentioned in section 2.1, between the model and the detected

object. The distance function for each vector dimension, and the overall tolerance in the

matching function should be tailored to take into account errors in the detected data. In

gathering new information to complete object determination for partially recognized

objects, the strategy is to activate the appropriate sensors for missing features. In

distinguishing objects which are similar in one view but different in actuality, information

should be gathered from more than one view so as to capture fully the three

dimensionality of the target environment.

Based upon case studies with our framework for a m ulti-sensor system in a simulated

environment, we observe the follow ing in relation to computation speeds for real-tim e

hand manipulation. Before manipulation can occur, objects must be localized. Object

localization involves organization of sensor systems through controllers and actuators to

achieve a smooth flow of data in a m ulti-sensor environment, organization of sensor data

31

into their corresponding spatial proxim ity graphs, and matching between the world

descriptions and the h igh-level models. Since the spatial proxim ity graph can be

efficiently constructed by an algorithm of order(nlogn) time complexity, the possibility of

real-tim e hand manipulation is constrained by the efficiency both of -the sensors in

supplying features of the detected environment, and of the h igh-level modeling technique

used in matching. Another way of considering this issue of real-tim e manipulation in

connection with the tactile sensors is as follows. The robot hand and other sensors, such

as a zooming device, which are mechanical devices, consume time when being positioned

from one physical location to another. Consequently, the amount of sensor data output

in a small time interval will most likely be of a manageable quantity which can be

organized into a coherent low -leve l representation by our system. Some of the most

important areas for further research are presented in the follow ing paragraphs.

Of crucial importance to building u p -to -da te spatial proxim ity graphs to organize a

continuous flow of a massive amount of sensor data is the ability to dynamically insert

and delete data on a k-d tree or any equivalent database storage structure that allows

efficient query and searching to be performed on the data. Overmars and van

Leeuwen [19] have presented some initial work on dynamic m ulti-dimensional data

structures, and the usefulness of their results to our application must be investigated.

Another important area for research concerns the logical sensor system. Physical

sensors are defined by parameters associated with the individual sensor of some known

class, e.g., TV cameras, tactile pads, etc. Logical sensors are defined in terms of physical

devices, and algorithms on their data, e.g., an "Edgefinder" can be defined in terms of a

tactile pad on a robot hand, and a pressure analysis program. As described in section

11, associated with each sensor is a characteristic output vector which defines exactly

the name and the allowed range of data. With these characteristic output vectors, we can

combine vector elements of same name but different allowed range by some appropriate

coercion, such as forcing a higher precision range to become a lower one. With this

mechanism of treating the "same" kind of data from different precision sensors, in

addition to the uniform sensor output, namely a feature and its 3 -D location, we can

integrate sensor data from different sensors with the logical sensor system. An easily

reconfigurable sensor system certainly facilitates the acquisition and derivation of

appropriate features needed for the construction of a low -leve l world description which is

A third area of further research pertains to the investigation of structural modeling

techniques which allow the automatic derivation and exploitation of constraints which can

then be used to control the acquisition of data, in terms of limiting the amount of data to

acquire and specifying the type of data to acquire. It would be interesting to know what

kinds of constraints can be derived from such representation methods as generalized

cylinders, shape grammars, and relational networks.

We picked the Hough shape model for its sim plicity as our first attempt. We would like

to suggest a closer examination of a possible improvement to our current vertex-based

implementation. When dealing with polyhedral models, an alternative to using vertexes to

represent the polyhedral faces of a 3-D object is to map each face of the 3-D object into

a 4 -D transform space, and model these points considered as an object. The 4 -D points

are the coefficients of the planes that contain the faces of the polyhedron. Since the

number of faces is usually small, we can keep the storage needed for accumulators under

control. However, the difficulty of such an approach lies in interpreting the geometric

meaning and geometric correspondence of the detected reference point found to the

model reference point. An undesirable consequence of lacking a clear understanding of

the geometric meaning and geometric correspondence is that the orientation of the

recognized object will remain unknown.

In order to have a versatile and robust pattern recognition system, the class of objects

to model should include, besides polyhedra, objects with curved surfaces. The inclusion

of such objects with curved surfaces naturally opens up avenues for research in

determining relevant models which in turn controls the kind of features appropriate to be

acquired through the low -leve l representation for object recognition. This may offer

some exciting research in conjunction with current research on representing curved

surfaces analytically using splines for instance.

Since we hope to operate our m ulti-sensor framework in the context of a robot

workstation, the list of possible research areas will be incomplete without including

research on manipulation of objects. The idea in abstract is that once object recognition

and localization are achieved, how should manipulation be performed? The current

system provides the necessary first step, namely object recognition and localization, for

32

de fin e d in te rm s of a h ig h- leve l m o d e l d e sc r ip tio n .

34

[1] Ahuja, N.
Dot Pattern Processing Using Voronoi Neighborhoods.
IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4(3):336-343,

- May, 1982. '

[2] Ballard, D.H.
Generalizing the Hough Transform to Detect Arbitrary Shapes.
Pattern Recognition 13(2): 111 — 122, 1981.

[3] Ballard, D.H. and C M. Brown.
Computer Vision.
Prentice Hall, New York, 1982.

[4] Barrow, Harry and Jay Tennenbaum.
Recovering Intrinsic Scene Characteristies from Images.
Technical Report 157, SRI International, April, 1978.

[5] Davis, L.S. and S. Yam.
A Generalized Hough-like Transformation for Shape Recognition.
Technical Report TR-134, U. of Texas, FEB, 1980.

[6] Duda, R.O. and P.E. Hart.
Use of the Hough Transform to Detect Lines and curves in Pictures.
Communications of the ACM 15:11-15, January, 1972.

[7] Foley, J.D. and A. Van Dam.
Fundamentals of Interactive Computer Graphics.
Addison-W esley Publishing Company, Reading, Massachusetts, 1982.

[8] Friedman, J.H., J.L. Bentley and R.A. Finkel.
An Algorithm for Finding Best Matches in Logarithmic Expected Time.
ACM Trans, on Math. Soft. 3(3):209-226, September, 1977.

[9] Henderson, T.C.
An Efficient Segmentation Method for Range Data.
In SPIE Conference on Robot V ision, pages 46-47. Arlington, VA, May, 1982.

[10] Henderson, T.C.
Feature Based 2-D Shape Models.
In O.D. Faugeras (editor), Vision par Ordinateur, pages 215-224. IMRIA-

Roquencourt, June, 1982.

[11] Henderson, T.C. and N. Keskes.
L'analyse des Objects Tridimensionnels.

. In Proc. 3rd Conf. on Patt. Recog, and Art. Intell., pages 277-287. Nancy, France,
September, 1981.

R efe re n ces

35

[12] Henderson, T.C. and A. Mitiche.
Modeling 3 -D Structure.
In B. Radig (editor), Modelle und Strukturen, pages 112-116. Springer-Verlag,

Berlin, October, 1981.

[13] Henderson, T. and E. TriendL
' Storing Feature Tree Descriptions as 2-D Trees.

” In Proceedings of Pattern Recognition and Image Processing Conference, pages
555-556. June, 1982.

[14] Henderson, T. and E. Triendl.
The k-d Tree Representation of Edge Descriptions.
In Proceedings of International Conference on Pattern Recognition. October, 1982.

[15] Henderson, Thomas C. and Wu So Fai.
A M ulti-sensor Integration and Data Acquisition System.
In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 274-280. IEEE, June, 1983.

[16] Hough, P.V.C.
Method and Means for Recognizing Complex Patterns.
U.S. Patent 3069654.
1962.

[17] Marr, D.
Early Processing of Visual Information.
Al Memo 450, MIT, Cambridge Mass, December, 1975.

[18] Merlin, P.M. and D.J. Farber.
A Parallel Mechanism for Detecting Curves in Pictures.
IEEE Transactions on Computers C-24:96-98, 1975.

[19] Overmars, M.H. and Jan van Leeuwen.
Dynamic M ulti-Dim ensional Data Structures Based on Q uad- and K-D Trees.
Acta Informatica 17:267-285, 1982.

[20] Pavilidis, T.
Structural Pattern Recognition.
Springer-Verlag, 1977.

[21] Pfaff, G., H. Kuhlmann and H. Hanusa.
Constructing User Interfaces Based on Logical Input Devices.
Computer 15(11):62—69, November, 1982.

[22] Rosenthal, D.S., J.C. Michener, G. Pfaff, R. Kessener and M. Sabin.
The Detailed Semantics of Graphics Input Devices.
Computer Graphics 16(3):33-38, July, 1982.

[23] Toussaint, G.T.
The Relative Neighborhood Graph of a Finite Planar Set.
Pattern Recognition 12:261-268, August, 1980.

[24] Wu So Fai.
A M ulti-sensor Integration and Data Acquisition System.
Master's thesis, University of Utah, June, 1983.

[25] Zahn, C.T. '
Graph-Theoretical Methods.for Detecting and Describing Gestalt Clusters

. IEEE Transactions on Computers C-20(1):68-86, 1971.

36

