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Abstract

Current pattern recognition sys tem s  tend to operate on a single sensor, e.g., a camera,  

however, the need is now evident for pattern recognition sys tem s  which can operate in 

multi-sensor environments.  For example, a robotics workstation may use range finders, 

cameras, tactile pads, etc. The Multi -sensor Kernel System (MKS) provides an efficient 

and coherent approach to the specification, recovery, and analysis of patterns in the data 

sensed by such a diverse set  of sensors. We demonstrate how such a system can be 

used to support both feature-based object models  as well as structural models.  The 

problem solved is the localization of a three-dimensional  object in 3 -space .  Moreover, 

MKS allows rapid reconfiguration of the available sensors  and the high-level  models.

1This work was  supported in part by the System Development Foundation and by NSF 
grants ECS-83-07483 and MCS-82-21750
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1. Introduction
The Multi -sensor Kernel System has been proposed as an efficient and uniform 

mechanism for dealing with data taken from several diverse sensors [ 1 S']. The system  

can be logically divided into three major parts: the sensor specification, low-level  

representation, and high-level modeling. In this paper, we  discuss  in detail the high-level  

modeling aspects  of the system.

1.1. S e n s o r  Specificat ion

Following the work of Foley [7], Pfaff [21], and Rosenthal [22] in the domain of logical 

graphical input device specifications, we have shown how MKS can provide a similar 

function in a mult i -sensor environment [15], Basically, a logical (or abstract) sensor can 

be viewed as a program whose  inputs are either system defined devices  (such as 

cameras) or the output of other logical sensors. Thus, logical sensors are formed from 

existing device drivers or from programs which perform som e  analysis on the data from 

other logical sensors. This allows for hiding of sensor type in that such a device can be 

implemented in hardware with only a driver interface, or can exist through several levels  

of software. Moreover, such a system can run interpretively in the s ense  that failure of a 

physical device does not preclude the definition of an alternative method for obtaining 

the same information. Such a sensor specification can be viewed as a sensor definition 

language, and thus, a semantics  of sensor definitions can be given, and this provides the 

user an extremely useful tool. Finally, a logical sensor is also defined in terms of its 

output. For uniformity of processing, the output of each logical sensor  is defined as an 

n-tuple whose  elements  all have a meaningful label that the user can understand and a 

range of possible values for that element.  For example, a camera could be defined in 

terms of a triple: (x-location, y-location, intensity) with allowed ranges: (0:1023, 0:1023, 

0:255). A camera then returns a stream of such triples. In this way, the output of one  

logical sensor can be quite conveniently used as the input to another logical sensor.

1.2. Low-Level  Process ing

The results of several workers in computer vision have shown the usefulness of 

performing a low-level  processing step before attempting high-level analysis of the 

sensed  data. In particular, Marr's primal sketch [17], Barrow and Tennenbaum's intrinsic 

characteristics [4], and to some extent, the region adjacency graph of Pavlidis [20], have 

all been proposed as a low-level  organizational tool for image data analysis. We have



shown how the recovery of 3-D information can be usefully organized in the spatial 

proximity graph [9, 15]. Most features (e.g., surface curvature, surface normal, range, 

texture, etc.) can be localized in 3 - sp ace  using current computer vision techniques  (see  

Ballard and Brown for an introduction [3]). Other approaches to the organization of point 

data include minimal spanning trees [25], relative neighborhood graphs [23], and Voronoi 

triangulations [1].

The spatial proximity graph simply takes a set  of points and creates a graph whose  

nodes are the points, and w h ose  edges  connect  each node to the m nearest neighbors of 

that node. MKS allows the spatial proximity graph to be generalized by allowing points 

from any k-dimensional space, and as will be discussed later, this permits one to analyze 

structure in any feature space  chosen by the user. The spatial proximity graph is built 

quite efficiently in terms of the k-d tree [8] which is built directly from the data (see  

Henderson [13, 14] for the use of the k-d tree for feature organization). A k-d tree is a 

binary sort tree for k-dimensional  keys where a nonterminal represents a subset  of the 

points, and a terminal contains a bucket of points. The root node represents the 

complete  set of data, and the set  of data points at each nonterminal is recursively divided 

into two se ts  by splitting at the median key value along the axis with greatest spread in 

value. Such an organization minimizes the average search time in terms of record 

a c c e s s e s  [8]. The user defines the k-tuple (to be used in low-level  processing)  as a 

subset of the n-tuple returned by the class of sensors  providing the data to the low-level  

processing module. These k-tuples serve as the basic organizational e lement of low-  

level processing, and all high-level  models must  be defined either directly in terms of 

them (as when feature models  are defined in terms of particular values for each element)  

or indirectly in terms of the spatial relations existing between the vectors (as in the 

Hough shape model). As a simple example, consider the following. A logical sensor  

"Circle Detector" is defined which takes direct camera data as input and returns a triple 

giving the (x-location, y-location,  radius) of each circle detected in the image, where the 

x-  and y- locations give the center of the circle with respect to the image coordinates.  

The low-level  processing is defined in terms of a 1-tuple (radius) which is a subset  of the 

original triple. The radius value models the invariant part of the data from the 

"Circle_Detector" and will be sorted by the low-level  processing.  To discover circles of 

any given radius, it is only necessary to query the sorted data. In case of a match, the 

index of the matching data vector can be used to recover the original x- location and y-
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location. Finally, the user may also define a distance function to be used by the system if 

the standard ones  such as Euclidean distance and Manhattan distance are not desired.

5*"

2. High-Level Modeling
To discover patterns in data requires three things: ^

1. an abstract model of the pattern,

2. a description of a pattern from the data, and

3. a method for matching the model and the description.

Figure 2-1 outlines the relationships between the model, the description and the matcher.

Ideal World

High-Level
Representations

Real World

Low-Level
Representations

World Models World Descriptions

Matcher

Result

Figure 2-1:  High-Level Modeling and Matching 

Various types of models exist, and the choice of the model determines in large part how  

the descriptions will be derived from the data and what form those descriptions take; 

moreover, once  the model and description have been specified, the nature of the matcher  

should be clear.

The model is first determined in terms of an ideal world, e g ,  as a mathematical or 

prototypical abstraction. For example, it may be decided to model polyhedra. Given this 

notion, it is then possible to specify some particular mechanism for representing this



class; we  call this the high-level  representation. For the polyhedra example, this might be 

one of several possibilities, e.g., each polyhedron might be represented as a graph w hose  

vertexes have a 3 - sp a ce  location. Finally, depending on whether or not- the high-level  

representation is parameterized, it may be necessary to provide a method for deriving a 

world model  from the high-level  representation. For example, if it were necessary to 

detect polyhedra in digital images,  then a rendering technique would have to be applied 

to the high-level  representation in terms, perhaps, of lighting sources and surface 

reflectance properties. Of course,  it is possible  that the high-level  representation and the 

object model are the same.

The data analyzed is sensed  from the real world. This data is then organized into a 

low-level  representation which imposes  a desired structure and uniformity on the data. A 

world description of the sensed  data is then derived from the low-level  representation.  

This description is in terms of the object model, i.e., the type and attributes of the object  

model determine the type and attributes of the description.

The kind of matching performed depends on the object model and description to be 

matched. Two standard methods of matching can be used: functional and structural. A 

functional similarity (or dissimilarity) measure is defined as a combination of parameter 

values defined in terms of measures on the data. These parameters can be conveniently 

viewed as forming a single vector; this makes it possible  to take advantage of standard 

distance functions on a vector, e.g., Euclidean distance, Manhattan distance, etc. Such a 

distance can also be defined as a logical function. Structural matching, on the other 

hand, usually requires solving som e  form of the subgraph isomorphism problem. This 

problem is computationally very expensive to solve, and we will therefore make some  

simplifying assumptions and solve a restricted structural matching problem (see the 

Hough shape transform below).

Our discussion of high-level object models  will center around the following definitions 

(see Henderson [10]). An object model cons is ts  of:

1. a spatial decomposit ion of the object,

2. a description of the parts of the object, and

3. a description of the relations between the parts of the object.
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We classify object models according to the presence or absence  of these  three 

components.  An object model which provides only (1) and (2) will be called a feature 

model. An object model which provides all three components  will be ca+led a structural 

model. -

Feature models describe objects by specifying a set  of features to be computed and a 

set  of reference values (in terms of the mean and standard deviation, perhaps) for the 

object being modeled. Since values for such features for objects of the same class are 

rarely exact, we often use feature models together with statistical methods of 

classification. We define a measure which gives  a distance between the feature vector  

for the model and the computed feature vector of a test  shape. The test  shape can be 

described as similar to the model if the distance is less than som e  specified threshold.

A structural object model describes the spatial decomposit ion of an object, and 

consequently must describe the primitive parts composing  the object. The primitives 

should provide a compact  description of the object with little or no loss  of information. 

Once the primitives have been obtained, we  compute the relations, such as adjacency,  

collinearity, and symmetry, between the primitives.

In terms of the object recognition problem, we have investigated two approaches to 

object modeling: feature modeling and the Hough shape transform. Feature modeling  

provides a simple method for analyzing low-level  features that can be recovered reliably 

and efficiently from the sensors.  In the implementation described here, a 3-D object is 

represented in terms of som e  simple features of the object, e.g., number of vertexes,  

number of holes, etc. A sensor is then specified which recovers just these  features from 

newly detected objects in the environment, and then the feature values of the unknown 

objects are compared to the reference values of the known objects. The Hough shape  

transform provides for the recovery of the spatial location and orientation of the detected 

object. This is accomplished by taking advantage of the spatial relations between the 

vertexes of the object and matching each detected vertex of an object to a specific model  

vertex.
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2.1. Feature Models

Distinct features of the ideal world such as weight, area, major-axis, minor-axis, etc., of 

objects can be used effectively for object recognition. For example, almost all of the 

commercial computer vision systems available for use perform object recognition and 

analysis in terms of som e  small number of features (10 to 20) wh ich: can be easily 

extracted from a 2-D binary image. Most often there exists a many to one map from real 

world objects to such a set  of features. This usually poses  no problem since the set  of 

features is chosen with the entire set of objects to be modeled in mind, and ambiguities  

can be avoided. On the other hand, a certain amount of location and scale invariance can 

be easily accounted for by not using any features based on absolute size or location. For 

example, the class of rectangles might be modeled as four 90 degree corners.

In the context of the mult i -sensor framework, feature models  are defined directly in 

terms of a logical sensor Every logical sensor has a characteristic output vector. The 

characteristic output vector gives  the number of features returned by the sensor,  a 

meaningful name for each feature, and the range of possible  values for the feature. For 

example, the logical sensor "Circle_Detector" returns three features: x-location, y- location,  

and radius (all with respect  to a known viewpoint or camera), and the allowed ranges  

might be 0:1024, 0:1024, and 0:512, respectively. Thus, to specify a model for circles of 

radius 2, call the model C2, there must be a mechanism to specify that x- location and y -  

location are irrelevant for the model, whereas the radius value must be 2. This is easily 

implemented by allowing ''don't care" as the assigned reference value for a feature in the 

model. Thus, a model is completely specified by naming a logical sensor and then giving 

a value for every feature returned by the sensor. The vector obtained by omitting the 

"don't care" values is called the reference vector for the model.

Once a model has been defined, this has certain ramifications for the construction of 

the k-d tree. Namely, the k-vector used in the construction of the k-d tree is formed 

precisely from those  elements  of the vector produced by the logical sensor for which 

"don't care" was not specified in the model. For example, the previously mentioned 

"CircleDetector" based model called "C2" causes the data from "CircleDetector" to be 

sorted on the last e lement of each triple. In general, the spatial proximity graph does  not 

have much meaning in this context. However, we  will discuss  a convenient  mechanism  

for matching which does  exploit the spatial proximity graph.
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Matching can be accomplished in several ways; we give three here. First of all, if the 

models  are all based on the same subset  of the same logical sensor, then the model  

vectors can be organized in a k-d tree (the model tree), and as new description vectors  

are produced by the sensors,  a query can be made on the model tree :for the nearest  

neighbor of the new description vector. A threshold can be specified for the query, and 

the matching function can be built into the tree search. A simple matching function for 

feature vectors  can be defined as follows. Let the model reference vector be m =

(m-|,nri2....im̂ ), and let the new description vector be v = (v1,V2 .....v )̂. Then we define the

distance between m and v as:

distance(m.v) = SUM {fj(mj,Vj)}.

The fj's provide a mechanism by which feature value ranges can be normalized with 

respect to each other. The user can specify these  functions appropriately with respect  to 

the feature being measured, and also a threshold for the distance function below which a 

match will be recorded between the model  and the description vector. An alternative 

method for feature matching is to build the description vectors into a k-d tree and then 

query that tree with the appropriate models'  reference vectors. Matching takes place 

much as before.

Finally, it is also possible to incorporate the model reference vectors into the data. 

Then when the spatial proximity graph is built, the descriptions which match the 

reference vectors will be connected to them by edges. When building the spatial 

proximity graph, it is merely necessary to specify the threshold associated with the model  

and an infinite number of neighbors (since it can't be known in advance how many 

objects there are which match the model).

2.2. Hough Shape  Models

An extension of the 2-D Hough shape transform to handle 3-D surfaces offers an 

alternative approach to object identification, and furthermore permits the localization of 

objects in space. That is, the exact transformation can be found which maps the 

reference object onto the detected object. The classic Hough transform [16] is a method  

for detecting curves by using the duality between points on a curve and parameters of 

that curve [6], For instance, in the case  of straight lines, we  could parameterize them by 

their corresponding s lopes and intercepts. The parameter space  is then quantized, and an 

accumulator is associated with each point in the parameter space.  The accumulator is
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incremented for each detected point whose  associated curve in parameter space crosses  

that accumulator. Local maxima in the accumulators correspond to collinear points in the 

image space.  The values in the accumulators measure the number of points on the line.

The Hough shape transform is a generalization of the classic Hough transform for 

handling objects which have no simple analytic forms, but have particular 

shapes [2, 5, 18]. A reference point is picked. For each boundary point, compute the 

displacement vector from the boundary point to the reference point. Store the reference  

point and the displacement vectors. The basic strategy of the Hough shape transform is 

to compute the possible loci of the reference point given edge point data in an image,  

and is achieved by associating an accumulator with each point in space,  and applying the 

following algorithm: for all e, a detected edge location, and for all d, a displacement  

vector, increment the accumulator at (e+d). Possible locations for the reference point are 

given by the maxima in the accumulator array. Figure 2 -2  gives an example of the Hough 

shape definition. Figure 2-3 shows  the corresponding Hough shape detection, and blank 

represents a zero in the accumulator array.

The extended 3-D Hough algorithm works as fol lows [11, 12]. A 3-D object is 

represented as a collection of n vertexes. These vertexes in turn are denoted by their

(x,y,z) locations. Call this set  of 3-D points P, where P = {(Xj,yj,Zj},) i=1....n. Choose some

reference point, P q  = ( x q , Y q , z q , ) ,  e.g., the centroid of the set of triples. The object  

representation is given as a list of displacement vectors  from each point in P to the 

reference point P q . The model is then a characterization of P  as a displacement from 

each vertex to the reference P q .

Given the spatial proximity graph representation of a set of points sampled from the 

surface of a polyhedral object, the points in the graph can be grouped to find the planar 

regions. The planar faces  of the detected object are then intersected to find the vertexes  

of the object. The detection procedure is then to match the set  of model vertexes with 

the detected vertexes as points in the transform space.  From matching each point on the 

surface of an object to matching a small set of points representing the vertexes of the 

object, we arrive at a much reduced set to be matched.

For each detected vertex, we  associate  the n displacement vectors  to compute the 

possible loci of the reference point, P q , in parameter space. Accumulate counts  for the





possible locations of P q . The location that has the maximum count in the 3-D space  

corresponds to the translated position of the reference point P q  of the object model.

The above algorithm produces a unique maximum for any translated P, and the 

maximum value is equal to the number of detected object vertexes. But if all the points  

in P are not in the detected object, then the maximum will be less than the number of 

points in the model object. Moreover, if there are several copies  of the object, then there 

may not be a unique maximum. However, the reference point is always guaranteed to be 

one of the maxima.

Since in general, objects are both translated and rotated, a more realistic Hough shape  

model will be the one which deals with rotation as well as translation. The following 

sect ion outlines the algorithm to compute rotational invariant 3-D Hough transform. (For 

details, s ee  Wu [24].)

2.2.1. Rotational  Invariant 3-D Hough Shape  Model

Given a set  of points P={(Xj,Vj,Xj)}, i=1,n, representing a 3-D object model, ch oose  some  

reference point P q , (x q -Vq . Z q )- such that the lengths of all the vectors of R = { ( d X j , d y j , d Z j ) } ,  

where dXj=XQ-Xj, dyj=yQ-yj, and dZj=ZQ-Zj, are distinct. The model representation is then 

in terms of R and the reference point, P q .

Given a set  of detected points D={(Xj,Vj,Xj)}, i=1,m, use a 3-D array H, to accumulate  

counts for possible  location of Pq in space. Then the rotation invariant 3-D Hough 

transform is computed by:

for all p = (x,y,z) in D, 

for all r in R,

increment H(sphere with center at (x,y,z) and radius r) by 1.

In actual implementation, the accumulators are defined in terms of intersect ions of 

spheres which represent possible loci of rotated and translated P q ' s . Intuitively, the 

rotation invariant 3-D Hough transform is computed by keeping accumulators for points  

of intersection of the various spheres centered at all the detected points. Then the 

location in H having the maximum value corresponds to the translated and rotated
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position of the reference point P q , of the object model. However, if there exists possible  

rotational symmetry of the object model, there is no guarantee of a unique maximum in 

the accumulator array H. In this case,  any of the maxima may be chosen.

Recall that P q , the model reference point, is of distinct distance from all vectors in 

R. Call the possible location of the transformed point P q ', ( x q ' , V q ' , z q ' ) .  With the finding of 

the possible location of the transformed P q , construct R'={(dXj,dyj,dZj)}, i=1,m, where  

dXj=XQ'-Xj, dy j=yQ'—y j, and dZj=ZQ'-Zj, and (Xj,yj,z j) in D. Matching is done by finding for 

each r' in R', its counterpart r in R, such that r'=r. Then the detected point in D which 

gives  rise to r' corresponds to the possible  transformed location of the model  point in P  

which gives  rise to r. The match is reported in terms of the transformation that maps the 

model  points to the detected points.

3. MKS Modes of Operation
In terms of these  three major parts, MKS operates in two distinct modes:

1. Configuration Time. Sensors are specified, the low-level  representation is 
determined, and high-level  object models are described and stored in a model  
database.

2. Execution Time. The data from the sensors is organized in terms of low-level  
data structures, m ode l-based  descriptions of the data are constructed,  and 
finally, the object models are matched to the descriptions derived from the  
sensor  data.

An overview of the configuration time view of MKS has been given by Henderson and 

Wu [15]. Figure 3-1 shows  the relation between the configuration t ime view and the  

execution time view of MKS.



MKS

12
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Representation Representation

k-d tree Controllers Sensors Programs
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Vector Output to k-d tree 

Matching 

Analysis Result

F i g u r e  3 - 1 :  Organization of MKS 

Obviously, the system is driven by the arrival of data from the actual sensors.  

Currently, the data from one or more sensors can be analyzed as a sequence  of 

snapshots  of data. If more than one sensor is providing data to the system, then several 

instances of the system run concurrently; each handles a specific model. Moreover, 

rather than analyze data continually as it is received, the data is collected in a buffer until 

the buffer is filled, then the data in the buffer is analyzed. If more data arrives, it can 

either be discarded, or integrated into existing data structures; however, it is 

computationally expensive to add data to the existing data structures, s ince the k-d tree 

must be completely rebuilt when new data is added.

The sensor provides output vectors which are then formulated into the appropriate k- 

tuple for low-level  processing. This may involve a normalization step to weight  the data 

more evenly than the raw feature values allow. For example, given the two features: 

number of holes and perimeter length (in pixels), it is clear that a difference of one hole

Hough Feature Spatial
Models Models Proxim



is much more significant than a difference of one in the perimeter length in pixels. At the 

present time, this problem is handled by normalizing the ranges of the features and 

assigning weights to the various features, however, it would be more convenient  to allow 

a decision tree or som e  other form of logical analysis of the relations between features.

The k-tuples provided by the formatting step are then built into a k-d tree [8, 15]. This 

provides an efficient method for recovering the spatial structure of the data. This step is 

accomplished by querying the k-d tree with each data point in turn and creating a graph 

linking the m nearest  neighbors to each query point. Note that the graph is not 

necessarily symmetric. Moreover, the k-d tree itself can be used as the basis for feature 

modeling, and therefore in some c ases  the spatial proximity graph need not be built.

In general, the matching program is allowed to query both the high-level  model  

database and the low-level  representations constructed by MKS (see Figure 2-1). The 

models  are compared, one after the other, with the descriptions derived from the low-  

level data structures. The ideal world can be anything from a set  of particular feature 

values which characterize an object to a computer aided design 3-D model. The world 

model generated would be the normalized vector and an image depicting a rendering of 

the object (given lighting, surface characteristics, etc.), respectively. The matcher can 

then compute any distance function desired to compare the world model and the world 

description, for example, a simple distance function on vectors regarded as points in 

Euclidean k-space,  or an algorithm to solve the subgraph isomorphism.

Clearly, the results of the analysis can be used in a feedback loop to control the 

acquisition of new data or to manipulate the environment in s o m e  way. For example,  

once a 3-D object is localized in space, i.e., its exact position and orientation are known, 

then a manipulator can be moved to that location to grasp it. In our view, the 

localization of 3-D objects will most  often be done with non-contact  sensors;  however,  

once an attempt at grasping is begun, then contact  sensors will play a crucial role in 

grasping and manipulating the object. Our goal is the application of MKS to a robotics 

workstation having several cameras, range finders, robot arms, and dextrous hands with 

multiple contact sensor  pads in the fingers.

The analysis of the data performed by MKS is essentially a cycle  of data collection, data 

organization, data analysis and environment manipulation. MKS can be integrated into
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Task ------  Manipulator "

/  \
/  \

/  \

S e n s o r s ---- Models

Figure 3-2:  Sensor Integration Into Task Environment

The definition of the matcher, as well as the actions to take based on its result, are 

given within the task. The basic interface to MKS occurs through public functions allowed  

on the abstract data types: the k-d tree and spatial proximity graph.

4. Case Studies
Next we present the execution flow of the essential  processes  involved in object  

recognition and localization within the framework of our mult i -sensor system. It also 

shows som e  sample runs of object identification based on a feature-based high-level  

object modeling technique and the Hough shape modeling technique.

As explained in the previous section on high-level  modeling, the type and attributes of 

the object model, from a specific 3-D object modeling technique, determine the type and 

attributes of the world description of the sensed  data. Therefore, a particular 3-D object  

model initiates the process  of object recognition through the following mechanism. Once  

the object model  is chosen,  it controls the calling parameters of the k-d tree building and 

the spatial proximity graph builder. This is because  the world description is derived from 

the spatial proximity graph, and it also is directly in terms of the object model. For 

example, if we  are working with a feature model to detect  circles of radius two units, 

then a feature vector on the k-d tree is a singleton formed by the magnitude of the 

radius of a circle. Moreover, the specific distance function associated with this particular 

feature model  also determines the dissimilarity function used to construct the k-d tree 

and its related spatial proximity graph.

such a workstat ion as sh o w n  in Figure 3 -2 .
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Upon closer examination, the influence of the object model does not stop at the level of 

the execution of the k-d tree builder. It propagates down to the choice of which sensors  

must be activated to acquire the corresponding features from the sensed  world.

As a result, we choose  to run in our mult i -sensor environment by invoking a certain 

object model. The flow of the execution of the mult i -sensor framework is as follows:

1. Invocation of a high-level object model  to be detected which automatically 
fixes the dimension of the k-d tree and the dissimilarity function used in 
constructing both the k-d tree and the spatial proximity graph.

2. Activation of the types of logical sensors which are required to acquire the 
features corresponding to the high-level  object model.

3. Organization of the sensed data into a k-d tree structure.

4. Construction of, if necessary, the spatial proximity graph from the k-d tree.

5. Grouping, if necessary, on the spatial proximity graph to obtain features  
required by the high-level object model.

6. Matching of the detected world description to the world model.

7. Report of the possible transformations that map the model object to the 
detected object in the case of Hough shape model.

To provide data for the following case  studies, we have digitized three sc en es  with an 

RCA camera. We refer to these  sc en es  as Scene  1, Scene  2, and Scene  3, as shown in 

Figure 4-1,  Figure 4-2,  and Figure 4-3, respectively. Scene 1 gives  a typical 2-D type of 

scene,  and object descriptions are given in terms of the 2-D silhouette. Scene  2 and 

Scene  3 give a stereo pair view of a set of simple 3-D objects. These sc en es  and the 

discussion given are intended to illustrate the ways in which the system can be used.



Scene 1, typical 2-D sceneF i g u r e  4 - 1 :

a se t  of s imple  3 -D  objects,  s t e reo  v iew 1Figure 4-2: S ce n e



F i g u r e  4 - 3 :  Scene  3, a set  of simple 3-D objects, stereo view 2

4.1. F e a t u r e  M o d e l s

Within the mult i -sensor framework, we define each feature model directly in terms of a 

logical sensor. Every logical sensor has a characteristic output vector which contains all 

the features detected by the sensor. However, somet im es  only a subset  of the possible  

features is used for matching. The k-d tree builder only organizes se ts  of these  k 

features on the k-d tree. For matching, we incorporate the model reference vectors into 

the detected data to build the spatial proximity graph. In the spatial proximity graph, if a 

detected vector matches a certain reference vector, they will be neighbors. Therefore, in 

building the spatial proximity graph, it is merely necessary to specify the threshold 

dissimilarity associated with the model, and an infinite number of neighbors (this is due 

to the lack of advance knowledge of the number of detected objects which match the 

model).

The following three examples  illustrate the feature-based object modeling technique.

Circle Model

We use the logical sensor called "Circle_Detector" to analyze Scene 1. The output of 

"Circle_Detector" is vectors  of the form (Xj,yj,rj) where Xj,yj are the coordinates of the
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centroid of the i ^  detected object, and rj is the radius of the detected object. The model  

reference vector is:

("don't care", "don't care ", 2).

"Don't care" indicates that the field it appears in is not to be used as part of the model  

definition. We include the model reference vector at the beginning of the file containing 

the detected vectors. Table 4-1 gives  a set of vectors  input to the k-d tree builder.

Object # ( x-location, y-location,  radius )

0 "don't care", "don't care", 2
1 256, 86, 0
2 371, 137, 0
3 269, 171, 0
4 397, 223, 1
5 320, 224, 2
6 128, 240, 3
7 230, 257, 5
8 358, 309, 0.5
9 333, 343, 0.5
10 256, 429, 0
11 384, 429, 0.5

Table 4-1:  Vectors produced by "Circle Detector"

Table 4 -2  gives  the resultant spatial proximity graph. The integers on the i ^  row are 

the indexes of the neighbors of the ith object. The number of nearest neighbors chosen  

is 12, and the distance threshold is 0.1.

O b j e c t  # N e i g h b o r s

0 5
1 2 3
2 1 3
3 1 2
4 -
5 0
6 -
7 -
8 9 10
9 8 10 

_ 10 8 9
11 -

Table  4 -2 :  Spatial Proximity Graph for the Circle Radii



Since the 5*  ̂ detected vector is the only one with radius 2, the reference vector and 

this vector are neighbors.

Nut Model ::

We use the logical sensor called "Corner_Holes_Detector" to analyze Scene  1. The 

output of "Corner_Holes_Detector" is vectors  of the form (Xj,yj,Cj,hj) where Xj,y| are the 

coordinates of the centroid of the i*̂ 1 detected object, Cj is the number of corners 

detected in the object, and hj is the number of holes  detected. The model  reference 

vector is:

( ''don't care ", "don't care", 4, 1 ).

Table 4 - 3  gives  a set  of vectors input to the k-d tree builder.

Object # ( x-location, y- location, corners, holes )

0 "don't care", "don't care", 4, 1
1 256, 86, 6, 0
2 • 371, 137, 4, 0
3 269, 171, 8, 0
4 397, 223, 0, 0
5 320, 224, 0, 0
6 128, 240, 0, 0
7 230, 257, 0, 0
8 358, 309, 4, 1
9 333, 343, 6, 1
10 256, 429, 8, 0
11 384, 429, 6, 1

Table 4-3:  Vectors Produced by "Corners_Holes_Detector"

Table 4 - 4  gives the resultant spatial proximity graph. The integers on the i**1 row are 

the indexes of the neighbors of the i**1 object. The number of nearest neighbors chosen
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Object # Neighbors

0 8
1 -
2 -
3 10
4 5 6 7
5 4 6 7
6 4 5 7
7 4 5 6
8 0
9 1 1
10 3
11 9

Table 4-4: Spatial Proximity Graph of Nut Data

Since the 8 ^  detected vector is the only one with four corners and one hole, the 

reference vector and this vector are neighbors.

Planar Surface Model and Curved Surface Model

We use the logical sensor called "SurfaceCurvature" to analyze the sphere-cube  pair in 

Scene 2 and Scene 3. (We assume that the cube and the sphere atop it have been 

separated out from the other objects in the scene,  e.g., by the connectivity of the spatial 

proximity graph based on the 3-D surface points.) The output of "Surface Curvature" is 

vectors of the form: (xj,yj,Zj,nj) where (Xj,Vj,zj) are the coordinates of the i ^  detected

object, and nj is the encoded curvature at the i**1 surface point. For a curved surface, nj 

is encoded as "1". For a planar surface, nj is encoded as "-1". The planar surface model  

reference vector is:

( ''don't care", "don't care", "don't care", -1 ).

The curved surface reference vector is:

( "don't care", "don't care", "don't care", 1 ).

Table 4 -5  gives  a small sample of the set  of vectors  input to the k-d tree. The first two  

entries in the table are the reference vectors, then the next f ew  lines give som e  sample  

paints from the sphere, and finally, the last few lines give som e  sample points from the 

cube.
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The neighbors lists for objects 0 and 1 give the planar surface points and the curved 

surface points, respectively. The spatial proximity graph (SPG) actually divides the set  of 

detected vectors into one set with planar surface and the other set  with curved surface.  

If we use this information to build separate spatial proximity graphs from the two distinct 

sets  of points (see Figure 4 - 4  and Figure 4-5)  for the two types of objects, we get  the 

results shown in Figure 4 - 6  and Figure 4-7.  We can use the Hough shape modeling 

technique to find out what type of polyhedra the object with the planar surface is, if 

necessary.

Figure 4-4:  Surface points on the cube



Figure 4 -5 :  Surface points  on the sphere

F i g u r e  4 - 6 :  SPG for a cube with 4 nearest neighbors



To directly apply the Hough shape transform to a model of a 3-D object in terms of its 

surface points would require a 3-D accumulator array, as discussed in sect ion 2.2, which 

could easily exhaust the memory of a machine. Therefore, it is necessary to compress  

the size of the model representation. We recommend two approaches, illustrated by two  

examples, which drastically reduce the set  of accumulators.

The first approach works well with polyhedral models.  We reduce the size of the model  

representation by using the vertexes of the polyhedron to represent it.

The second approach is suitable for objects of irregular shape. This approach consists  

of choosing four control points which are recoverable from the type of data available, and 

determining the geometric  transformation from the model to the detected control points. 

If the control points are not directly distinguishable, e.g., they are all vertexes of the same  

order, then the Hough shape transform can be used to label them; otherwise, the 

transformation can be determined directly.

4.2. H ough  S h a p e  M od el



25

Cube

We would like to use a cube as the model object to illustrate the first approach. The 

logical sensor used is "Range Finder". The model is given in terms of : ; 

reference point: (1.5, 1.3, 1.25), :

and radii of magnitude :
4.09,
3.43,
3.38,
3.28,
2.54,
2.40,
2.33,
0.65.

Figures 4 - 4  and 4 -6  show the detected surface points of the cube and the corresponding  

spatial proximity graph obtained, respectively, as displayed on the PS300. After 

performing grouping on the spatial proximity graph to find the faces  of the cube and 

intersecting the different faces, we found the vertexes given in Table 4-7.

x y z

4.0 -1.0 1.0
4.0 1.0 1.0
6.0 1.0 1.0
6.0 -1.0 1.0
4.0 1.0 -1.0
4.0 1.0 -1.0
6.0 1.0 -1.0
6.0 -1.0 -1.0

Table 4-7:  Vertexes of the Cube 

Figure 4 - 8  show s  the initial set of accumulators when detecting the cube
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m's denote model vertexes

mrf denotes  model reference point

d's denote detected vertexes

denotes  detected reference point 

F i g u r e  4 - 8 :  Initial circular accumulators when detect ing cube  

Since there are rotational symmetries  in the cube with respect  to the chosen model  

reference point, we actually detected eighteen possible locations for the model  reference  

point. Here is the one we picked, and along with it is the corresponding transformation 

that maps the model cube to the detected cube: 

detected reference point: (6.5, 1.3, 1.25)

transformation matrix:

|~1. 0. 0. 0. [  
j 0. 1. 0. 0. j 
j 0. 0. 1. 0. j 
|_5. 0. 0. 1_|

In this case the detected cube is an instantiation of the model cube which has simply 

been translated by 5 units in the positive direction along the x-axis.
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Renault Piece

We would like to use the industrial object shown below as the model object to illustrate 

the second approach. The logical sensor used is "Range Finder". There rare about 2000 

paint samples.  We call this piece the Renault piece. Figure 4 - 9  show s  the detected  

surface points of the Renault piece. (This data was digitized on a laser range finder 

developed at INRIA, Rocquencourt, France by F. Germane.) Figure 4 -10  is the spatial 

proximity graph obtained as displayed on the Evans and Sutherland PS300.

Figure 4-9:  Detected surface points of the Renault piece
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F i g u r e  4 - 1 0 :  SPG of the Renault piece with 4 nearest neighbors  

The four control points chosen as model points could be derived from the spatial 

proximity graph of the model. The model is given in terms of: 

model reference point ( 10.344000, 19.333334, 25.122999 )

and the radii of magnitude:
29.900755,
18.041958,
13.079391,
3.379884.

The detected control points are:

(-21.000000,-7.246000,2.706000),
(-17.600000, -3.183000, 16.096001),
(-17.200001, 3.755000, 16.305000),
(-18.000000, 10.844000, 25.872999).

Figure 4-11 shows  the initial set  of accumulators using the four control points for 

detection.



m's denote model vertexes

mrf denotes model reference point

d's denote detected vertexes

denotes detected reference point 

F igure 4-11: Initial circular accumulators when detecting Renault piece 

Here is the transformation that the maps the model object to the detected object:

| 0.000000 1.000000 -0.000000 0.000000 |
| -1.000000 -0.000002 0.000002 0.000000 |
| -0.000000 -0.000000 1.000001 0.000000 I
|_-2.000000 1.000031 0.999962 1.000000 J

In this case, the detected object is an instantiation of the model object after it has been 

translated by (1.0, 2.0, 1.0) and rotated by 90 degrees with respect to the z-axis.

5. C o n c lu s io n s  and  Further R esearch

The m ulti-sensor integration and data acquisition system which is of interest to us is 

configured by defining the sensors, the low -leve l representation, and the h igh-level 

modeling techniques. The specified task description dictates when new sensor data is 

required and how it should be obtained. Matching models to descriptions can take place
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in the task. Based upon the results of the analysis on the data, the objects or the 

environment can be manipulated.

The primary goal of this research was to develop a low -leve l representation of the real 

world phenomena and to integrate that representation into a meaningful interpretation of 

the real world. We accomplished this goal by developing the spatial proxim ity graph as 

the low -leve l representation and incorporating it with two high-level modeling methods, a 

feature-based modeling method, and the Hough shape modeling method.

We extended certain previous researchers' 2-D low -leve l representations, such as the 

region adjacency graph, to a realistic and flexible 3 -D  low -leve l representation, the spatial 

proxim ity graph. We can handle not only 3-D  visual information, but we can also manage 

3 -D  nonvisual information, such as tactile information from a robot hand. In using the 

Hough shape model, we introduced a new extension, the rotational invariant 3 -D  Hough 

shape model, to the classic Hough shape model which was originally designed to handle 

2 -D  shapes without any simple analytical form.

Concerning the issue of object localization, we must take into consideration treatment 

of errors in detected data, strategies which are best for acquiring new information for 

object determination, and measures to disambiguate situations such as multiple objects 

which are similar in one view but different in actuality. In matching we define a 

dissimilarity measure, as mentioned in section 2.1, between the model and the detected 

object. The distance function for each vector dimension, and the overall tolerance in the 

matching function should be tailored to take into account errors in the detected data. In 

gathering new information to complete object determination for partially recognized 

objects, the strategy is to activate the appropriate sensors for missing features. In 

distinguishing objects which are similar in one view but different in actuality, information 

should be gathered from more than one view so as to capture fully the three 

dimensionality of the target environment.

Based upon case studies with our framework for a m ulti-sensor system in a simulated 

environment, we observe the follow ing in relation to computation speeds for real-tim e 

hand manipulation. Before manipulation can occur, objects must be localized. Object 

localization involves organization of sensor systems through controllers and actuators to 

achieve a smooth flow of data in a m ulti-sensor environment, organization of sensor data
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into their corresponding spatial proxim ity graphs, and matching between the world 

descriptions and the h igh-level models. Since the spatial proxim ity graph can be 

efficiently constructed by an algorithm of order(nlogn) time complexity, the possibility of 

real-tim e hand manipulation is constrained by the efficiency both of -the sensors in 

supplying features of the detected environment, and of the h igh-level modeling technique 

used in matching. Another way of considering this issue of real-tim e manipulation in 

connection with the tactile sensors is as follows. The robot hand and other sensors, such 

as a zooming device, which are mechanical devices, consume time when being positioned 

from one physical location to another. Consequently, the amount of sensor data output 

in a small time interval will most likely be of a manageable quantity which can be 

organized into a coherent low -leve l representation by our system. Some of the most 

important areas for further research are presented in the follow ing paragraphs.

Of crucial importance to building u p -to -da te  spatial proxim ity graphs to organize a 

continuous flow  of a massive amount of sensor data is the ability to dynamically insert 

and delete data on a k-d tree or any equivalent database storage structure that allows 

efficient query and searching to be performed on the data. Overmars and van 

Leeuwen [19] have presented some initial work on dynamic m ulti-dimensional data 

structures, and the usefulness of their results to our application must be investigated.

Another important area for research concerns the logical sensor system. Physical 

sensors are defined by parameters associated with the individual sensor of some known 

class, e.g., TV cameras, tactile pads, etc. Logical sensors are defined in terms of physical 

devices, and algorithms on their data, e.g., an "Edgefinder" can be defined in terms of a 

tactile pad on a robot hand, and a pressure analysis program. As described in section 

11, associated with each sensor is a characteristic output vector which defines exactly 

the name and the allowed range of data. With these characteristic output vectors, we can 

combine vector elements of same name but different allowed range by some appropriate 

coercion, such as forcing a higher precision range to become a lower one. With this 

mechanism of treating the "same" kind of data from different precision sensors, in 

addition to the uniform sensor output, namely a feature and its 3 -D  location, we can 

integrate sensor data from different sensors with the logical sensor system. An easily 

reconfigurable sensor system certainly facilitates the acquisition and derivation of 

appropriate features needed for the construction of a low -leve l world description which is



A  third area of further research pertains to the investigation of structural modeling 

techniques which allow the automatic derivation and exploitation of constraints which can 

then be used to control the acquisition of data, in terms of limiting the amount of data to 

acquire and specifying the type of data to acquire. It would be interesting to know what 

kinds of constraints can be derived from such representation methods as generalized 

cylinders, shape grammars, and relational networks.

We picked the Hough shape model for its sim plicity as our first attempt. We would like 

to suggest a closer examination of a possible improvement to our current vertex-based 

implementation. When dealing with polyhedral models, an alternative to using vertexes to 

represent the polyhedral faces of a 3-D  object is to map each face of the 3-D object into 

a 4 -D  transform space, and model these points considered as an object. The 4 -D  points 

are the coefficients of the planes that contain the faces of the polyhedron. Since the 

number of faces is usually small, we can keep the storage needed for accumulators under 

control. However, the difficulty of such an approach lies in interpreting the geometric 

meaning and geometric correspondence of the detected reference point found to the 

model reference point. An undesirable consequence of lacking a clear understanding of 

the geometric meaning and geometric correspondence is that the orientation of the 

recognized object will remain unknown.

In order to have a versatile and robust pattern recognition system, the class of objects 

to model should include, besides polyhedra, objects with curved surfaces. The inclusion 

of such objects with curved surfaces naturally opens up avenues for research in 

determining relevant models which in turn controls the kind of features appropriate to be 

acquired through the low -leve l representation for object recognition. This may offer 

some exciting research in conjunction with current research on representing curved 

surfaces analytically using splines for instance.

Since we hope to operate our m ulti-sensor framework in the context of a robot 

workstation, the list of possible research areas will be incomplete without including 

research on manipulation of objects. The idea in abstract is that once object recognition 

and localization are achieved, how should manipulation be performed? The current 

system provides the necessary first step, namely object recognition and localization, for
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de fin e d  in te rm s  of a h ig h- leve l m o d e l d e sc r ip tio n .
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