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A bstract: SLG is a table-oriented resolution method that extends SLD evaluation in two ways. It 
computes the well-founded model for logic programs with negation with polynomial data complexity, 
and it terminates for programs with the bounded-term-size property. Furthermore SLG has an ef­
ficient sequential implementation for modularly stratified programs in the SLG-WAM of XSB. This 
paper addresses general issues involved in parallelizing tabled evaluations by introducing a model of 
shared-memory parallelism which we call table parallelism and by comparing it to traditional models 
of parallelizing SLD. A  basic architecture for supporting table parallelism in the framework of the 
SLG-WAM is also presented, along with an algorithm for detecting termination of subcomputations.
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1 Introduction

The deficiencies of SLD resolution are well known, and 
extended efforts have been made to remedy these defi­
ciencies. For instance, while SLD can be combined effi­
ciently with negation-by-failure in SLDNF, the seman­
tics of SLDNF have proven unacceptable for many pur­
poses, in particular for non-monotonic reasoning. Even 
without negation, SLD is susceptible to infinite loops and 
redundant subcomputations, making it unacceptable for 
deductive databases.

The latter deficiency, that of repeating subcomputa­
tions has given rise to many systems which table sub­
computations: OLDT [18], and SLG-AL [19], and SLG
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[7, 6] are three tabling methods which have been imple­
mented. At an abstract level, systems which use magic 
evaluation can be thought of tabling systems as well. 
Substantiation for this claim stems both from the asymp­
totic results of [14] and the experimental results of [17]. 
Tabling also appears to be relevant for computing the 
well-founded semantics: besides SLG, well-founded or­
dered search [15] and the tabulated resolution of [5] are 
two recent proposals which also use tabling.

Due to the power of tabling, many approaches have 
been formulated for its implementation —  indeed [12] 
cites dozens. Nearly all of these approaches are sequen­
tial, however. We propose an abstract model, called 
table-parallelism for parallelizing tabled evaluations. In 
a sequential framework, SLG and SLD can be combined 
both theoretically and practically: the SLG-WAM eval­
uates SLD resolution with minimal overhead, and allows
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free intermixture of SLD and SLG predicates. There is 
every reason to believe that when SLG is parallelized, it 
will be possible to mix table-parallelism with and- and 
or- SLD parallelism. While table-parallelism can exploit 
or-parallelism and some and-parallelism present in pro­
grams, it is orthogonal to both, as will become clear. In 
parallelizing practical programs, it is envisioned that a 
combination of all three approaches will prove beneficial, 
just as a combination of SLG and SLD works best for 
practical sequential programs.

The idea behind table-parallelism is simple: the table 
can be thought of as a large structured buffer, through 
which cooperating threads communicate.

E x a m p le  1.1 t a b le  a/2 .
p ( a , b ) . p ( a , d ) . p ( b , c ) .  

q ( b ) . q ( c ) . 
a ( X , Z ) a ( X , Y ) , a ( Y , Z )  . 
a ( X , Z ) p ( X , Z ) , q ( Z ) .
? - a ( a , Z ) .

As a motivation for the parallel SLG model, consider 
the SLG forest in Figure 1 for the program of Example 
1.1. Each SLG-subgoal can be thought of starting a new 
thread. Thus the call to a(b,Z) in node 5 begins a new 
thread, as does the call to a(c,Z) in node 11. Nodes 
like 0, 6, or 12, which use program clause resolution to 
produce answers, are called generator nodes, while nodes 
like 2, 3, 8, 9, or 14 which perform SLD resolution are 
called interior nodes.

Since each thread is itself an independent SLG-tree, 
each will have its own stacks, as well as its own heap and 
trail. The table space will be kept in shared-memory, as 
will the completion stack, kept for determining when to 
complete an SLG-subgoal. At a broad level, the par­
allel SLG-WAM differs from its sequential counterpart
[16] in that it decouples the return of answers from the 
scheduling of their resolution, and in its use of a more 
complicated completion algorithm1.

For in-memory queries, the SLG-WAM appears to be 
the fastest sequential tabling implementation currently 
available ([17]), and we believe its speed is due to its 
use of WAM-style Prolog compilation technology. This 
paper sketches a basic architecture for a shared-memory

1The SLG-WAM as described in [16] uses a tuple-at-a-time 
strategy for resolving answers with subgoals. While this strategy 
is efficient for logic programming, an alternate semi-naive strategy, 
has also been implemented for executing calls to disk.

parallel SLG-WAM for definite programs —  an architec­
ture whose implementation is currently under develop­
ment. We also discuss in detail how to detect when a 
tabled subcomputation has been completed. In a tabled 
evaluation, a given predicate may be part of a mutually 
dependent set of subgoals, called a strongly connected 
component or SCC2. The ability to dynamically deter­
mine both the membership of subgoals in an SCC and 
to detect when an SCC has been completed is neces­
sary both to evaluate programs with negation and to ef­
ficiently evaluate definite programs. In a parallel frame­
work, the detection of completion has much in common 
with termination detection for concurrent systems and 
we make use of results from concurrency theory in the 
proof of our algorithms correctness.

The rest of this paper is organized as follows. In Sec­
tion 2 we describe the parallel execution model for SLG. 
The relations between table-parallelism and other forms 
of parallelism found in Prolog is discussed in Section 3. 
The issue of completion detection is addressed in Section 
4, and in Section 5 the implementation framework of the 
parallel SLG-WAM is fully presented.

2 Table-Parallelism

Tabling systems in general —  be they SLG, OLDT, Magic 
or anything else —  have four types of actions not found 
in SLD evaluation.

1. Creation of a new tabled subgoal;

2. Addition of an answer to a table;

3. Consumption of an answer from a table;

4. Determining when a set of subgoals is completely 
evaluated.

While the details of parallelizing these operations in 
a WAM framework are presented in Sections 4 and 5, 
the fundamental idea behind table-parallelism is to par­
allelize at creation of new tabled subgoals. (Or, as a 
practical matter, at creation of certain tabled subgoals). 
New threads for tabled subgoals are rooted in genera­
tor nodes and called generator threads: they generate 
answers and copy them into the table. The originating

2 The term recursive component is also sometimes used for 
SCCs.
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0 . a ( a , Z ) : g e n e r a t o r : a ( a , Z)

1 .  a ( a , Z) : a c t i v e : a ( a , Z ) <- a ( a , Y ) , a ( Y, Z)  2 .  a ( a , Z) : i n t e r i o r : a ( a , Z) < - p ( a , Z) , q (Z ) )

5 .  a ( a , Z) : a c t i v e : a ( a , Z) <- a ( b , Z )  3 .  a  ( a , Z) : i n t e r i o r : a ( a , b ) <- q ( b )  16 .  a ( a , d) : i n t e r i o r : a ( a , d ) <- q ( d )

15 a ( a , Z ) : a n s w e r : a ( a , c ) <- 4 .  a ( a , Z ) : a n s w e r : a ( a , b ) <-

6.  a ( b , Z ) : g e n e r a t o r : a ( b , Z)

7 a  ( b , Z) : a c t i v e : a ( b , Z ) <- a ( b , Y ) , a ( Y , Z ) 8.  a  ( b , Z) : i n t e r i o r : a ( b , Z) < - p ( b , Z) . q (Z)

11 .  a  ( b , Z) : a c t i v e : a ( b , Z ) < - a ( c , Z) 9.  a ( b , Z) : i n t e r i o r : a ( b , c ) <- q ( c )

10 .  a ( b , Z ) : a n s w e r : a ( b , c ) < -

12.  a ( c , Z) : g e n e r a t o r : a ( c , Z)

13.  a ( c , Z ) : a c t i v e : a ( c , Z) < - a ( c , Y ) , a ( Y, Z)  14 .  a ( c , Z) : a c t i v e : a ( c , Z ) <- p ( c , Y ) , q (Y)

S u b g o a l A nsw er

a  (a , X) a  ( a , b) 

a ( a , c )

a  (b,  X) a ( b , c )

a  (c,  X)

Figure 1: SLG  forest
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Figure 2: Shared M em ory  Layout

active node will asynchronously consume answers as they 
are added to the table, as noted in Section 1. Since com­
munication is through the table, there are clear benefits 
to sharing the table. Likewise, the engine must dynami­
cally detect when a set of subgoals is mutually dependent 
as well as when such a set has been completely evalu­
ated. Thus, the com pletion stack which supports this 
decision is also kept in shared memory. In order to sup­
port efficient completion detection, a further structure, 
the subgoal dependency list will be kept in memory as 
well; its function will be explained below.

Memory layout for the parallel SLG-WAM is shown 
in Figure 2. Unlike many parallel Prologs neither the lo­
cal stack nor the heap is shared: rather variable bindings 
are explicitly copied on subgoal call and answer return. 
Indeed, for tabling to work properly, a subgoal must be 
traversed in  its entirety  to determine whether it is new 
or not. Also, bindings of answers must in general be 
explicitly unified with the variables of subgoals. As a 
result, there is much less incentive to share WAM stacks 
in a tabling system than in a Prolog system3.

Evaluations of the sequential SLG-WAM are deter­
ministic, a property which the engine uses heavily. For 
instance, every time a new answer for a tabled subgoal is 
generated, it is scheduled on the choice point stack to be 
returned to the active subgoals that are variants of the 
tabled predicate. Properties of a depth-first evaluation 
are also used to detect of completion of an SCC. The first 
subgoal of an SCC visited by a sequential evaluation is 
called the root of the SCC. Whenever the system fails

3The SLG-WAM described in [16] avoids the reunification of 
answer clauses in certain, but not all cases.

over the root of an SCC, it is provable that each subgoal 
inside the component is completed and all answers have 
been generated (Details can be found in [6]).

The strategy outlined above is unsuitable for parallel 
SLG, since active nodes for a particular tabled predi­
cated might be in different threads. As a reflection of 
this difference, each thread will need to maintain a sub­
goal dependency list which keeps a pointer to the answers 
last resolved by each active node that corresponds to an 
uncompleted subgoal4. While the subgoal dependency 
list keeps thread-specific data, it is kept in a global area 
for use in the completion algorithm as will be discussed 
in Section 4.

The SLG-forest grows dynamically as predicates are 
called and thus the number of active threads depends on 
the particular program. For programs with high degree 
of table-parallelism, the number of active threads can be 
much larger than the number of actual processors. This 
would probably lead to a “slow down” if compared to 
the sequential execution, as most thread schedulers are 
slow at making general re-scheduling decisions [4]. In 
addition, most systems impose a limit on the number of 
threads that can be executing at a time.

As a first approach, we will require the user to decide 
which predicates to execute in parallel. Future research, 
will investigate scheduling strategies to distribute work 
among threads. For instance, a global queue may be kept 
so that whenever a tabled predicate is called for the first 
time, instead of spawning a new thread, the task would 
be added to the global queue. Available threads would 
then steal work from this queue. Trailing and schedul­
ing mechanisms of the SLG-WAM already support the 
context switching required for this method.

One of the main goals of the parallel logic program­
ming community is to exploit parallelism implicitly —  
including full Prolog with standard semantics [11, 10]. 
Prolog’s implementation of SLD generates answer substi­
tutions in textual order, but this notion does not exist in 
SLG, where the order of answer substitutions produced 
through clause resolution for generator nodes may not 
resemble the order produced by answer clause resolution 
with active (consuming) nodes. While SLD with cuts 
and SLG can be intermixed in the sequential framework, 
certain semantic changes to the cut are necessary to pre­
serve the correctness of SLG. Parallelizing programs with 
the SLG cut remains an open issue. Aside from that,

1 An optimization is available for completed subgoals.

Trail Trail
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p(1,2). p(1,3). p(3,2). 
a(2,3). a(3,4). a(3,5).
q(X,Y) a(X,Y). 
q(X,Y) :- a(X,Z), q(Z,Y).

P(1>2). q(2,Y)

r(X,Y)
' 1 P(1»3), q(3,Y) P(3>2), q(2,Y)

r(X,Y):- p(X,Z), q(Z,Y). q(2,3) q(2,4) q(2,5) q(3,4) q(3,5) q(2,3) q(2,4) q(2,5)

table and_pr/3, p/2, r/2.

and_pr(X,Y,_) :- p(X,Y), fail. 
and_pr(X,_,Z) :- r(X,Z), fail. 
and_pr(X,Y,Z) :- p(X,Y),r(X,Z).
:- q(X), and_pr(X,Y,Z).

Figure 3: Join in Parallel Prolog

support for full Prolog can be provided by using stan­
dard techniques adopted by current or-parallel systems 
such as Muse [1] and Aurora [11].

A  major advantage of parallel SLG over other parallel 
Prolog systems is the avoidance of redundant computa­
tion. In Figure 3, for instance, any or-parallel Prolog 
would have to compute the relation q (2 ,Y ) twice. In 
SLG, if the predicate q were declared as tabled it would 
be computed only once, and any other subsequent call 
would simply consult the table. This avoidance of redun­
dant computation has long been recognized as necessary 
for data-oriented queries. No less important is that SLG 
terminates for programs of bounded term size.

The copying of a subgoal each time a thread is cre­
ated was a drawback ofthe Abstract Model [20]. Tabling 
systems, however, require copying of subgoals whether 
they are sequential or not5. When used judiciously, ta­
bling may greatly improve performance over SLD ([3, 
17]), and copying does not add a particular overhead for 
the parallel version. An advantage of using a copy-based 
method is that each thread can work independently on 
physically separated data, and issues related to environ­
ment sharing are avoided. (This property brings up the 
possibility of implementing parallel SLG on distributed 
memory machines).

3 Table vs. And/O r Parallelism

Because SLG is a different resolution method than SLD, 
the idea of parallelism in the context of SLG departs 
from traditional and- and or-parallelism. Parallelism will 
occur whenever a (parallel) tabled predicate is executed 
—  not in the parallel execution of subgoals in the body of 
a clause, nor in the parallel execution of multiple clauses

1: and_pr(X,Y,Z)

5 Reducing copying has been investigated for tabling systems in 
many contexts. Like most tabling systems, the SLG-WAM uses 
an array of static and dynamic techniques to address these issues
([13])-

p(X,Y)

p(X,Y)
r(X,Z)

3: and pr(X,Y
p(X,Y),
r(X,Z)

2: and_pr(X,Y,Z)
r(X,Z)

Figure 4: And-parallelism in SLG

defining a predicate.
The use of a copying strategy, and the lack of stack 

sharing between different threads allows each thread to 
work independently of the others on its own SLG tree 
in the SLG forest. Therefore, there is a great flexibil­
ity on the choice of evaluation strategy used to com­
pute answers for the tabled predicate within each tree. 
The strategy could consist of sequential SLG, sequen­
tial SLD or any parallel model. In this sense, table- 
parallelism can be considered orthogonal to both and- 
and or-parallelism.

An interesting characteristic of table-parallelism is 
that by adopting an appropriate scheduling method, it 
may emulate or-parallelism. Given a predicate consisting 
of N  clauses, one needs only fold the body of each clause 
into a unique tabled predicate. I f  the subgoals are not 
present in the table, the caller spawns threads for each 
predicate in turn, failing —  as a means of looking for 
new work —  between each. (I f  the subgoals are present 
in the table, the consuming process reads them out, se­
quentially). We do not yet have any information about 
when such a strategy may be efficient. It is believed that 
table-parallelism may be most useful at coarser levels, or 
when redundant subcomputations are a problem.

Table-parallelism can also exploit some of the and- 
parallelism present in logic programs. Consider the goal

q(X ) , p (X ,Y ), r (X ,Z ). In parallel SLG, we could 
simulate and-parallelism by rewriting that goal as in Fig­
ure 4, and declaring and_pr/3, p/2 and r/2 as tabled. 
In this case all answers for p/2 and r/2 would be com­

Table
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puted in parallel, assuming that they are not already in 
the table. As they are being computed, they will be fed 
to the third clause of and_pr/3, where p/2 and r/2 will 
be active, (consumer) nodes.

A  preprocessor could be easily written to generate 
code that emulates either behavior. I f  it were desired 
for table parallelism to emulate and- or or- parallelism, 
analysis could be performed to determine where a pro­
gram contains and- and or- parallelism using traditional 
techniques. The output of the analysis phase would then 
be adapted as input to such a preprocessor. In practice, 
table-parallelism has its own strengths, which are mainly 
complimentary to traditional methods.

4 Parallel Completion

Detection of completion is a non-trivial problem in a se­
quential framework, and the difficulties are compounded 
for parallel evaluations. While various approaches to this 
problem are possible, implementation of a workable en­
gine requires a minimum of synchronization: accordingly 
we base our approach on distributed termination detec­
tion algorithms as in [8].

Section 2 introduced the shared completion stack, 
used to detect completion of an SCC. The completion 
stack consists of frames for each incomplete tabled sub­
goal. The frames are pushed onto the stack when the 
subgoals are called, and consist of the following elements.

D F N  

PosLink  

PosM in  

StateFlag 

AnswerFlag  

ColorFlag

D F N ,  P o sM in , and PosLink  ([16, 6]) are used in 
the sequential model as well as the parallel, and together 
determine the extent of the SCC. For a given tabled sub­
goal A, PosLink is originally set to the unique D F N  of A. 
I f  A  calls another incomplete tabled predicate B, whose 
D F N  is less than that of P o sL in k (A ), P os lin k (A ) is 
set to Pos lin k (B ), so that PosLink  reflects the earli­
est direct dependency of A. Conversely, subgoals on the 
completion stack are assumed to depend on other sub­
goals of higher D F N .  Consider the following situation. 
Subgoal A  calls a new subgoal B, and a new frame is 
placed on the completion stack. B  later calls a subgoal

C  which is an ancestor of both. In this situation A  de­
pends on C  through B  and none of these subgoals can 
be completed until they all are. We thus cannot com­
plete A  before C , because A  depends on an incomplete 
subgoal B, younger than A, and B  depends on a sub­
goal C  older than A. In other words, A, B , and C  are 
in the same SCC, rooted at C . To prevent improper 
completion, information about the PosLink  values for 
these subgoals must be propagated to A  before it can be 
completed. The characteristics of this propagation vary 
from the sequential to the parallel model (See [6] for the 
sequential case). We let P o s M in (A ) stand for the min­
imum PosLink  value of all subgoals younger than A  —  
information which is available from the completion stack.

The StateFlag indicates whether the thread is do­
ing some computation, while the AnswerFlag  indicates 
whether there are still answers for the thread to pro­
cess. The StateFlag can have values done, undone or 
unconditionally done. Conceptually, the AnswerFlag  
can have values done or undone, however it is imple­
mented as a pointer into the subgoal dependency list. 
The Answ erFlag  for a thread T, will be a disjunction 
of the next answer pointer for all Active nodes in T. 
The Answ erFlag  will be done when all answers have 
been used. In order to complete correctly, a computa­
tion needs to maintain the following invariants.

Invariant 4.1 (S ta teF lag ) The StateFlag is done for 
a given thread iff it is performing no answer or program 
clause resolution (i.e. doing no work).

Invariant 4.2 (A n sw erF lag ) The Answ erFlag is done 
for a given thread iff all active nodes in the SLG  tree for 
the thread has resolved all applicable answers in the table.

Whenever a thread exhausts all of its program and 
answer clauses it sets both StateFlag and AnswerFlag  
to done, and goes to sleep. Whenever a new answer is 
added to a table for any of the Active nodes in the thread, 
the thread’s Answ erFlag  is effectively set to undone, 
since the AnswerFlag  is a list of pointers into the table. 
After a thread wakes up, it executes the following steps.

1. The thread set its StateFlag to undone.

2. The thread traverses its subgoal dependency list to 
see if new answers have been returned for its active 
nodes.

Unique Depth-first number 
Earliest direct dependency 
Earliest indirect dependency 
Thread is working 
Thread has consumed all answers 
Thread may affect other subgoals
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3. I f  new answers have been returned, the thread lays 
down an a n sw e r jre tu rn  choice point (presented 
in Section 5) for each uncompleted subgoal. The 
engine will backtrack through the choice points and 
continue its normal execution. The engine iterates 
steps 1 and 2 while there is work to do.

4. When there is no more work left, the thread sets 
StateFlag to done ( AnswerFlag  has been effec­
tively set to done) and sleeps.

Under the formalism of [6] or [16], the following propo­
sition can easily be proven.

Proposition  4.1 (Pa ra lle l C om pletion )
Let £ be a computation in which Invariants 4.1 and 4.2 
hold. Let

D F N (S )  =  P osL in k (S ) =  m in (P o sL in k (A ))

for all A  younger than S on the completion stack. Also 
let

S ta teF lag (S ') =  Answer F la g (S ') =  done,

where S ' denotes S and every A  younger than S on the 
completion stack. Then the subgoals from S to the top 
of the stack constitute a maximal S C C  and have been 
completely evaluated.

The intuition behind Proposition 4.1 is that if the 
PosLink  values are as specified, the subgoal forms the 
root (oldest subgoal) of an SCC. I f  the flag values are as 
specified, and if the invariants hold for the computation, 
then all mutually dependent subgoals have performed all 
answer and program clause resolution. Proving correct­
ness of completion then devolves upon ensuring that the 
invariants hold.

As an example of how the invariants can fail to hold, 
consider the following situation. We make use here, 
and throughout the paper of a convention that the root 
thread (the thread for the root subgoal of an SCC) leads 
the check for completion of the SCC.

Let root be the root of S C C root, which is currently 
being checked for completion. And, suppose S C C root =  
{ r n_ i , rn_ 2, •••, ^1, root}, root will check the status of 
the flags of each other subgoal, from rn_ 1 to tq, in this 
order. Suppose while root is checking the flags for Ti, 
after finding that all flags for ri, I >  i are done, another

check
flags

Subgoal StateFlag AnswerFlag ColorFlag

r >1-1 done done white

rk done done white

r. done done white

r.j done done black

r undone done white

) wake_up

Figure 5: Snapshot of Completion Stack

thread rj, where 0 < j < i ,  generates a new answer and 
activates a thread r& that has been already checked by 
root. The root will wrongly assume that r& is done, and 
it will incorrectly complete.

Following the model of [8], we address this problem 
by introducing another flag, the ColorFlag, for each 
tabled subgoal.

Definition 4-1 (ColorFlag) The ColorFlag  indicates 
that a node in the SCC may have generated new an­
swers after another node was checked as completed by 
the root. It can be either black, if new answers were 
added, or white, otherwise. □

Initially the ColorFlags  for all tabled subgoals are 
set to white. When after waking up, a thread r gener­
ates some new answers it will set its own color to black. 
During the completion check, if the root finds a black 
node, it will know that some node, that it had already 
checked, might have been awakened (see Figure 5), and 
therefore, completion has to be restarted.

5 Implementation Framework

This section presents the instruction- level changes needed 
to parallelize the SLG-WAM. While SLG-WAM instruc­
tions for definite programs have been presented in [16], a 
detailed knowledge of these instructions is not needed to 
for understanding this section, since the changes mainly 
involve adding concurrency features to tabling opera­
tions. The changes are as follows:

• When calling a tabled subgoal —  in the NEW AC­
TIVE instruction. I f the selected subgoal is not al­
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ready in the table, add an entry for it, create a 
thread and copy the subgoal into the thread. Up­
date the calling thread’s subgoal dependency list 
with a pointer to the active node. Then, f a i l  in 
order to find other work. The copy of the sub­
goal is required so that variables are not shared 
between threads. On the other hand if the selected 
subgoal is already in the table but not complete, 
the PosLink  value for the root subgoal should be 
updated, along with the subgoal dependency list. 
Resolution can then begin against answers in the 
table. Finally, if the subgoal is in the table and 
completed, the answers are treated as if they were 
asserted code. Neither the completion stack nor 
the subgoal dependency list needs to be updated.

• When adding an answer for a tabled subgoal —  
in the N E W  A NSW ER instruction. Besides adding 
an answer to the table, (if the answer is not al­
ready there), the instruction will set its Color Flag 
to black. The AnswerFlag, which is a (pointer to 
a) list of pointers into the table, will be effectively 
updated as discussed in Section 4.

• When checking for completion —  in the COM PLE­

TION instruction. The thread must first check that 
no answers have been added that might unify with 
any of its active subgoals. I f  answers have been 
added the process schedules their return on the 
choice point stack. Otherwise, the predicate marks 
its StateFlag as done and, if the thread is the root 
of its SCC, it begins the completion check algo­
rithm to be described below.

This model requires synchronization between threads 
when subgoals are created and when they are completed, 
but not otherwise. Adding a new SLG subgoal to the ta­
ble will require a lock to prevent multiple threads from 
simultaneously executing the N E W  ACTIVE  instruction 
for the subgoal. In the SLG-WAM the table for each 
predicate is structured as a tree, so that only a subtree 
need be locked, allowing a great deal of concurrency. 
Contention will be more likely to arise in the comple­
tion stack. For adding answers to the table, however, 
no locking will be necessary as there is a single generat­
ing thread for each subgoal (although possibly multiple 
consuming threads).

The issue of returning new answers to existing sub­
goals differs from the tuple-at-a-time method described

in [16], but resembles that of a sequential semi-naive 
implementation (to be described fully in a forthcoming 
paper). In the semi-naive implementation, an iteration 
consists of all work that occurs between failures back to 
the COMPLETION instruction for the root of an SCC. At 
iteration i, the engine uses answers from iteration i — l 
to determine a new set of answers. At the end of each 
iteration the COMPLETION instruction checks whether 
new answers have been added in iteration i or whether 
the SCC has instead reached fixpoint6. The semi-naive 
strategy can be incorporated into parallel execution: at 
each COMPLETION the engine returns any new answers 
added by other threads. Only in the case where no an­
swers have been added and there is no other work to do, 
does the parallel algorithm differ from sequential semi- 
naive. Rather than being able to determine fixpoint, the 
consuming thread must coordinate with other threads to 
determine if all answers have been derived for its active 
subgoals. I f  the thread is a root thread, it checks the flags 
of the completion stack using an algorithm described be­
low. Otherwise, the thread must poll at intervals to see 
whether new answers have been added.

Returning answers is summarized in the procedure 
Iterate in Figure 6. The subgoal dependency list main­
tains information for subgoals which are active for each 
thread. In order to make use of new answers at the end 
of an iteration, the thread will exploit two properties for 
an answer trie. A  path from the root of the trie to a 
leaf node constitutes an answer for the trie. The first 
property exploited is that each leaf of the trie is linked 
together in a list for sequential access. When answers 
are added to a trie, the trie is extended, and the an­
swers are also added to the end of the list, using a global 
listend pointer to the end of the trie. For each subgoal 
in the dependency list the thread creates answer return 
choice points, which contain, among other information, 
a local listend value for iteration i and a local listend 
value for iteration i — l. The answer return choice point 
then backtracks through each active node for its subgoal 
and returns each answer in the listend interval to the 
node. O f course, there may be discrepancies between 
global and local listend values: a generator thread may 
add an answer as a consumer thread reads the listend. 
While the discrepancy is probably not important while a

6Failure back to the root of an SCC does not always reclaim 
space, since environments for SLG predicates are maintained be­
tween iterations.
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Iterate
If subgoal dependency list is empty

A n sw erF la g  =  StateFlag  =  uncondjdone;
update subgoal stack;
exit;

Else
For each subgoal in list

If (subgoal is unconditionally complete 
and there are no unexamined answers) 

Remove subgoal from list 
Else

If there are unexamined answers
lastJistend  =  local distend ) 
local distend  =  globalJistend', 
create answer return choice point;

Figure 6: Algorithm for iterating computation

thread is in the process of iteration, it must be rectified 
by the time the subgoals are completed.

When a thread wakes up to poll for answers it will 
set its StateFlag undone. It will then run through its 
subgoal dependency list and return the new answers from 
the global table to the suspended nodes in its subtree and 
continue its normal, sequential SLG, execution. When 
it runs out of work, (or if there was no work to begin 
with) it resets its StateFlag to done. I f  in the course of 
its execution, this thread generates new answers, it will 
set its ColorFlag  to black, indicating that other nodes 
might have been activated. Finally, if the current thread 
is not the leader of its SCC, it goes to sleep. Otherwise, 
it will start the completion check.

The COMPLETION instruction uses the algorithm in 
Figure 7. In the case where a thread depends only on 
subgoals which are unconditionally done, and where all 
answers have been examined, the thread marks its ta­
ble as unconditionally complete and exits. Otherwise, if 
a thread traverses the subgoal dependency list and finds 
no new answers, its AnswerFlag  is effectively done, so it 
sets its StateFlag to done in the completion stack (Since 
we assume only one thread per subgoal there will be no 
confusion). I f  a new answer is added for a subgoal upon 
which other subgoals depend, the subgoal dependency 
lists and AnswerFlags will reflect this change. The 
thread generating a new answer also resets its ColorFlag

CheckCompletion(S)
If Iterate exits 

exit;
if S depends on a subgoal which is not complete 

if any choice point has been added
StateFlag  =  A n sw erF la g  =  undone; 
fail; {backtrack through the choicepoints}

Else
if S belongs to the youngest SCC

StateFlag  =  A n sw erF la g  =  done; 
if S is the leader

for each r; 6 S’s SCC such that r; is 
not uncond_done

wait ( (r i .S ta te F la g = = d o n e ) and 
(r i  .S ta teF la g==d on e ))\  

\f(ri.Co lorF lag==b\a ck ) 
set the C olorF la gs  for all 
subgoals in the SCC to white; 
suspend and restart completion later; 

complete tables for all subgoals in SCC;
Else

sleep;
Else fail; {not youngest SCC}

Figure 7: Pseudo-code for COMPLETION instruction

to black.

During completion check the leader will check all sub­
goals in its SCC, that are not unconditionally done. If 
any subgoal has either Answ erFlag  or StateFlag un­
done, the leader will wait until both are set to done. I f 
both flags are done, the leader will check the ColorFlag. 
I f  the ColorFlag  is white, the leader will proceed to the 
next subgoal. Whenever the leader reaches its own frame 
in the completion stack, by Theorem A .I, all subgoals 
in the SCC are completely evaluated, and its is safe to 
mark the tables complete, pop the completion stack, and 
terminate. After the root subgoal, or leader, completes 
all tables, it notifies the threads that it is safe to exit 
and exits itself. Otherwise, if the leader finds some black 
subgoal, a subgoal may have generated new answers that 
have not been consumed. The leader then fails and com­
pletion check will be restarted later.

The root thread thus enters a loop where it traverses 
the subgoal dependency list and either returns answers
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or checks for completion, while the non-root threads ei­
ther return answers or mark themselves as conditionally 
complete, by setting its flags to done. Since a given 
SCC may grow as new dependencies are added, different 
threads may become root at different times. I f  invari­
ants 1 and 2 hold, the algorithm handles this situation. 
Suppose that thread Ti is root and thread T2 later be­
comes root. Ti would only complete after it was deter­
mined that there were no unresolved answer or program 
clauses in the SCC. On the other hand, T2 would have 
been made root only if some subgoal in the SCC rooted 
at Ti discovered a dependency on T2. But this cannot 
occur after all answer and program clauses have been 
resolved.

By formalizing the algorithm outlined in this section, 
it is provable that:

•  Threads term inate i f f  the ir subgoals have been com ­
pletely evaluated;

•  There w ill be no deadlock o r starvation.

The formal statement of these results and their proof are 
contained in the Appendix.

6 Conclusion

Tabling adds the ability to evaluate programs according 
to the well-founded semantics; it adds important ter­
mination properties to evaluations, whether or not the 
program contains negation; and it computes queries with 
polynomial data complexity, again whether or not nega­
tion is present in the program that evaluates the query. 
Depending on one’s point of view, tabling is thus a desir­
able addition or a necessary addition to an evaluation. 
This paper constitutes a first step in the design of a 
parallel SLG-WAM for definite programs. Its implemen­
tation intended to be a continuation of the semi-naive 
sequential model, as indicated in Section 5. While im­
plementation results are not yet available, the forego­
ing discussion indicates that only instructions for tabled 
predicates are to be changed by the design. As a re­
sult, for sequential SLD the times for the parallel engine 
should equal the sequential SLD times for the sequential 
engine: about a 10-15% overhead added to the WAM.

While we have introduced the model of table-paralle- 
lism, due to space limitations, we have only discussed its

most basic model. As a first instance, the model paral­
lelizes all tabled evaluation —  clearly this is not always a 
wise strategy. A  clear first extension would allow the user 
to parallelize only certain tabled predicates. As a second 
extension, SCCs could be analyzed statically and threads 
matched to SCCs rather than to subgoals. A  third ex­
tension might be to make the completion stack into a 
tree, so that SCCs could complete early. While this last 
extension might cause some overhead in determining the 
root of the SCC, it would be expected to be reduce the 
synchronization needed for completion. These three ex­
tensions are straightforward, but their worth can only 
be ascertained in the context of an implemented system 
for which work is now underway.

Acknowledgem ents: We are indebted to Phil Lewis 
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A  Appendix: Correctness of Com ­
pletion Algorithm

Th eorem  A .l (Completion Algorithm)  Given a set S 
of mutually dependent tabled subgoals, the completion al­
gorithm of Figure 8 will mark as complete the subgoals 
in S iff y A  £ S , A  is completely evaluated. Also, it is 
guaranteed that there will be no deadlocks or starvation.

Proo f: In order to prove Theorem A .l, we need to 
prove the following:

1. The completion algorithm will mark as complete 
the subgoals in S iff VA  £ S, A  is completely eval­
uated.

2. Deadlock is prevented. In other words, it will al­
ways be the case that either completion detection 
or subgoal computation can occur.

3. There will no be starvation. In other words, during 
completion detection, if the subgoals in the SCC 
are not completely evaluated, subgoal computation 
will resume.

Program verification techniques, such as the ones de­
scribed in [9, 2], are needed for formal proof of the above 
four properties. The proof here is based on the dis­
tributed completion proof presented in [8].

When synchronizing threads for completion we may 
abstractly assume that the threads of the SCCs enter 
one of three procedures: wakeup to look for new answers; 
completion to check for completion of the nodes in the 
SCC; or terminate.

Using the structure of Section 5, the wakeup choice 
will be executed each time a tabled predicate starts to

ftp://ftp.cs.nmsu.edu
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wakeup:
r.S tateF lag  =  undone;
reads the tables of all active subgoals in its tree; 
r. A n sw erF la g  =  done; 
if ( r generates new answers)

writes the answers into r ’s table; 
r.color =  black; 

r.S tateF lag  =  done; 
sleep; 

term inate: 
exit; 

com pletion :
if subgoal is not the root 

exit;
for (i= n -l; i>0; i-----)

while ( (r i .S ta te F Zag==undone)
or (r { .  A n sw er F la g  = =  u n d on e )) ; 

if (r i.co lor  = =  black)
for (i= n -l; i>0; i-----)

ri.color =  white;
suspend and restart completion later; 

broadcast to r „ _ i ,..., ri to terminate; 
exit;

Figure 8: Non-deterministic choices for tabled predi­
cates.

execute the check_complete instruction. At this point 
it will check whether there are new answers to the active 
subgoals in its SLG tree, and if that is the case, return 
the answers to these subgoals. If, while executing, this 
tabled predicate itself generates new answers, it will set 
its ColorFlag  to black, since it might have awakened 
some other tabled subgoals in its SCC.

Only the root (leader) of an SCC will execute the 
com pletion  choice. During com pletion, the root will 
check whether all subgoals in the SCC have completed, 
and if that is the case, it will complete the tables, signal 
the other threads to exit, and terminate. I f  some subgoal 
in the SCC is either executing program or answer clauses, 
the root will wait until this subgoal is done to resume 
the checking. If, while scanning the completion stack 
the root finds any subgoal whose ColorFlag  is black, it 
whitens the ColorFlags  for all subgoals in its SCC and 
suspends the completion check.

While executing the completion alternative, the root

of the SCC, root (ro in Figure 8) checks the status of 
threads rn_ i , ..., ri, root, in this order. The necessary 
condition for the completion of root’s SCC is that root 
succeeds the checking for all ri. Let t denote the number 
of the thread whose flags are currently being checked by 
the root, then completion checking ends with t =  0.

The system’s state will be captured by an invariant, 
which we call P . In the sequel, P  will be constructed 
in a number of steps, each step consisting of an exten­
sion of the state space considered and of an appropriate 
adjustment of P .

As a first step, we solve the problem in the absence 
of wakeups: in that case an undone (active) thread can 
become done (passive), but a done thread cannot become 
undone. The conclusion that all threads are done has to 
follow from (i) the invariant (Po as shown below); (ii) 
t =  0; and (iii) the fact that the flags of the root itself 
are done. Furthermore, the invariant (P o ) has to hold, 
independently of the value of t, when thread root has 
initiated the completion checking, i.e., when t =  n — 1.

The above requirements are met by Po:

Po : (Vi : t <  i <  N  : thread ri is done)

We can now design the checking of Answ erFlag  and 
StateFlag of each thread so as to keep Po invariant. Ini­
tiation of completion checking establishes Po- Sequen­
tially checking the remaining threads, however, decreases 
t by 1, and may falsify Po- Invariance of Po is achieved 
by adopting:

Ru le A . I  The root waits until the flags for thread r.;+ i 
are done before its checks r i ’s StateFlag and AnswerFlag

In the completion alternative of Figure 8, Rule A .I cor­
responds to the statements:

while((7,j .StateFlag = =  undone)
or (ri. Answer Flag = =  undone))-,

When the flags of the other threads are done, the 
checking of flags will in due time be reached by root; 
when in addition thread root is done, termination can 
be concluded. The above discussion comprises the rules 
for checking flags.

Next to be taken into account is the possibility of 
wakeup: Po is falsified when thread ri with t <  i be­
comes undone on account of being waken up. Since only 
undone threads wake up other threads, we deduce that
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the waking up that falsified Po has been initiated by a 
thread rj with j  <  t. In order to solve the situation 
we adopt the weaker invariant Po V P u  such that any 
wakeup that may falsify Po establishes Pi.

To this end each thread is postulated to be either 
black or white (represented by the ColorFlag  of each 
subgoal). For P i we choose:

Pi ■ (3j, 0 <  j  <  t, such that thread rj is black)

Wakeup is prevented from falsifying Po V  Pi by adopting 
the following rule:

Ru le A .2 A thread wakes up another thread with a num­
ber higher than its own makes itself black 7.

We have to verify, however, that the information avail­
able at thread root combined with the weaker Po V  Pi 
can still suffice to conclude termination. Since

(t =  0 A  thread root is white) = >  -> P I

detection of termination has not been disabled.
With the possibility of a thread’s having the color 

black, a new phenomenon has been introduced, viz. that 
of the unsuccessful completion checking: when a black 
thread is detected, the conclusion of termination cannot 
be drawn. In a first instance this problem can be tackled 
by adopting:

Ru le A .3 After failing the completion checking, thread 
root reinitiates checking for completion.

This corresponds to the statement
suspend and re s ta r t  completion la te r ;  

in Figure 8.
Without the possibility of transitions from black to 

white, such a rechecking may not be successful. There­
fore our next task is to assure that the whitenings do not 
falsify the invariant Po V  Pi.

In view of the fact that initiating a check for comple­
tion establishes Po, we can safely adopt:

Ru le A .4 Thread root initiates a completion checking 
by making itself white and starting checking the status of 
thread rn_ i.

The thread root can safely be whitened, and we turn 
to the other threads. Since whitening a thread can fal­
sify only Pi, but does do so when that thread’s number 
exceeds t, we can safely adopt:

Ru le A .5 When it restarts completion checking, the root 
whitens all threads with number greater than t.

Since the restart of completion checking changes the 
value of t to n — 1, which establishes Po, we can fur­
ther adopt:

Ru le A .6 When it restarts the completion checking, the 
root whitens all threads from 0 to N  — 1.

Rule A .6 assures the correctness of the entire fo r  loop 
in the com pletion choice of Figure 8.

The above whitening protocols suffice to prove that 
when the algorithm terminates then all subgoals of the 
SCC are completed. An iteration of completion checking 
initiated after all subgoals are completely evaluated will 
end with all threads white and hence, a reiteration of the 
completion check is guaranteed to succeed.

The property that when all subgoals of the S C C  are 
completed then the completion algorithm will terminate 
derives from the fact that the root will eventually check 
for completion and it will restart completion later if it 
fails this time.

The absence of deadlock can be easily seen from the 
fact that the computation of subgoals (wakeup alterna­
tive of Figure 8) and the completion checking of the root 
(com pletion  alternative of Figure 8) need not wait for 
each other.

In order to prove that there is no starvation, we note 
that if during completion detection, there are subgoals 
in the S C C  which are not completely evaluated, these 
subgoals will be awakened later. After a thread wakes 
up to poll for answers, it will run through its subgoal 
dependency list and return the new answers from the 
global table to the suspended nodes in its subtree.

□

7For consistency w ith Section 5, a relaxed Rule 1 is used in 
Figure 8. This relaxed rule effectively states that a thread waking 
up another thread will blacken itself.


