
P a r a l l e l i z i n g T a b l e d E v a l u a t i o n s

E x t e n d e d A b s t r a c t

Juliana Freire * Rui Hu J Terrance Swift, David S. Warren +
Department of Computer Science

State University of New York at Stony Brook
Stony Brook, N Y 11794-4400

Email: {juliana,ruihu,tswift, warren} @cs.sunysb.edu
Phone: (516) 632-8470

A bstract: SLG is a table-oriented resolution method that extends SLD evaluation in two ways. It
computes the well-founded model for logic programs with negation with polynomial data complexity,
and it terminates for programs with the bounded-term-size property. Furthermore SLG has an ef­
ficient sequential implementation for modularly stratified programs in the SLG-WAM of XSB. This
paper addresses general issues involved in parallelizing tabled evaluations by introducing a model of
shared-memory parallelism which we call table parallelism and by comparing it to traditional models
of parallelizing SLD. A basic architecture for supporting table parallelism in the framework of the
SLG-WAM is also presented, along with an algorithm for detecting termination of subcomputations.

Keyw ords: Parallel Logic Programming, Tabling, Table-parallelism, SLG, XSB.

1 Introduction

The deficiencies of SLD resolution are well known, and
extended efforts have been made to remedy these defi­
ciencies. For instance, while SLD can be combined effi­
ciently with negation-by-failure in SLDNF, the seman­
tics of SLDNF have proven unacceptable for many pur­
poses, in particular for non-monotonic reasoning. Even
without negation, SLD is susceptible to infinite loops and
redundant subcomputations, making it unacceptable for
deductive databases.

The latter deficiency, that of repeating subcomputa­
tions has given rise to many systems which table sub­
computations: OLDT [18], and SLG-AL [19], and SLG

* Partially supported by CAPES-Brazil.
^Supported by NSF grant CCR-9123200.
♦Partially supported by grants NSF CDA-9303181 and NSF

CCR- 9102159.

[7, 6] are three tabling methods which have been imple­
mented. At an abstract level, systems which use magic
evaluation can be thought of tabling systems as well.
Substantiation for this claim stems both from the asymp­
totic results of [14] and the experimental results of [17].
Tabling also appears to be relevant for computing the
well-founded semantics: besides SLG, well-founded or­
dered search [15] and the tabulated resolution of [5] are
two recent proposals which also use tabling.

Due to the power of tabling, many approaches have
been formulated for its implementation — indeed [12]
cites dozens. Nearly all of these approaches are sequen­
tial, however. We propose an abstract model, called
table-parallelism for parallelizing tabled evaluations. In
a sequential framework, SLG and SLD can be combined
both theoretically and practically: the SLG-WAM eval­
uates SLD resolution with minimal overhead, and allows

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

free intermixture of SLD and SLG predicates. There is
every reason to believe that when SLG is parallelized, it
will be possible to mix table-parallelism with and- and
or- SLD parallelism. While table-parallelism can exploit
or-parallelism and some and-parallelism present in pro­
grams, it is orthogonal to both, as will become clear. In
parallelizing practical programs, it is envisioned that a
combination of all three approaches will prove beneficial,
just as a combination of SLG and SLD works best for
practical sequential programs.

The idea behind table-parallelism is simple: the table
can be thought of as a large structured buffer, through
which cooperating threads communicate.

E x a m p le 1.1 t a b le a/2 .
p (a , b) . p (a , d) . p (b , c) .

q (b) . q (c) .
a (X , Z) a (X , Y) , a (Y , Z) .
a (X , Z) p (X , Z) , q (Z) .
? - a (a , Z) .

As a motivation for the parallel SLG model, consider
the SLG forest in Figure 1 for the program of Example
1.1. Each SLG-subgoal can be thought of starting a new
thread. Thus the call to a(b,Z) in node 5 begins a new
thread, as does the call to a(c,Z) in node 11. Nodes
like 0, 6, or 12, which use program clause resolution to
produce answers, are called generator nodes, while nodes
like 2, 3, 8, 9, or 14 which perform SLD resolution are
called interior nodes.

Since each thread is itself an independent SLG-tree,
each will have its own stacks, as well as its own heap and
trail. The table space will be kept in shared-memory, as
will the completion stack, kept for determining when to
complete an SLG-subgoal. At a broad level, the par­
allel SLG-WAM differs from its sequential counterpart
[16] in that it decouples the return of answers from the
scheduling of their resolution, and in its use of a more
complicated completion algorithm1.

For in-memory queries, the SLG-WAM appears to be
the fastest sequential tabling implementation currently
available ([17]), and we believe its speed is due to its
use of WAM-style Prolog compilation technology. This
paper sketches a basic architecture for a shared-memory

1The SLG-WAM as described in [16] uses a tuple-at-a-time
strategy for resolving answers with subgoals. While this strategy
is efficient for logic programming, an alternate semi-naive strategy,
has also been implemented for executing calls to disk.

parallel SLG-WAM for definite programs — an architec­
ture whose implementation is currently under develop­
ment. We also discuss in detail how to detect when a
tabled subcomputation has been completed. In a tabled
evaluation, a given predicate may be part of a mutually
dependent set of subgoals, called a strongly connected
component or SCC2. The ability to dynamically deter­
mine both the membership of subgoals in an SCC and
to detect when an SCC has been completed is neces­
sary both to evaluate programs with negation and to ef­
ficiently evaluate definite programs. In a parallel frame­
work, the detection of completion has much in common
with termination detection for concurrent systems and
we make use of results from concurrency theory in the
proof of our algorithms correctness.

The rest of this paper is organized as follows. In Sec­
tion 2 we describe the parallel execution model for SLG.
The relations between table-parallelism and other forms
of parallelism found in Prolog is discussed in Section 3.
The issue of completion detection is addressed in Section
4, and in Section 5 the implementation framework of the
parallel SLG-WAM is fully presented.

2 Table-Parallelism

Tabling systems in general — be they SLG, OLDT, Magic
or anything else — have four types of actions not found
in SLD evaluation.

1. Creation of a new tabled subgoal;

2. Addition of an answer to a table;

3. Consumption of an answer from a table;

4. Determining when a set of subgoals is completely
evaluated.

While the details of parallelizing these operations in
a WAM framework are presented in Sections 4 and 5,
the fundamental idea behind table-parallelism is to par­
allelize at creation of new tabled subgoals. (Or, as a
practical matter, at creation of certain tabled subgoals).
New threads for tabled subgoals are rooted in genera­
tor nodes and called generator threads: they generate
answers and copy them into the table. The originating

2 The term recursive component is also sometimes used for
SCCs.

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 3

0 . a (a , Z) : g e n e r a t o r : a (a , Z)

1 . a (a , Z) : a c t i v e : a (a , Z) <- a (a , Y) , a (Y, Z) 2 . a (a , Z) : i n t e r i o r : a (a , Z) < - p (a , Z) , q (Z))

5 . a (a , Z) : a c t i v e : a (a , Z) <- a (b , Z) 3 . a (a , Z) : i n t e r i o r : a (a , b) <- q (b) 16 . a (a , d) : i n t e r i o r : a (a , d) <- q (d)

15 a (a , Z) : a n s w e r : a (a , c) <- 4 . a (a , Z) : a n s w e r : a (a , b) <-

6. a (b , Z) : g e n e r a t o r : a (b , Z)

7 a (b , Z) : a c t i v e : a (b , Z) <- a (b , Y) , a (Y , Z) 8. a (b , Z) : i n t e r i o r : a (b , Z) < - p (b , Z) . q (Z)

11 . a (b , Z) : a c t i v e : a (b , Z) < - a (c , Z) 9. a (b , Z) : i n t e r i o r : a (b , c) <- q (c)

10 . a (b , Z) : a n s w e r : a (b , c) < -

12. a (c , Z) : g e n e r a t o r : a (c , Z)

13. a (c , Z) : a c t i v e : a (c , Z) < - a (c , Y) , a (Y, Z) 14 . a (c , Z) : a c t i v e : a (c , Z) <- p (c , Y) , q (Y)

S u b g o a l A nsw er

a (a , X) a (a , b)

a (a , c)

a (b, X) a (b , c)

a (c, X)

Figure 1: SLG forest

4 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

Local Glob-

Choice
Point

Table Space

Subgoal Dependency Lists

Completion Stack

Local Glob-

Choice
Point

Figure 2: Shared M em ory Layout

active node will asynchronously consume answers as they
are added to the table, as noted in Section 1. Since com­
munication is through the table, there are clear benefits
to sharing the table. Likewise, the engine must dynami­
cally detect when a set of subgoals is mutually dependent
as well as when such a set has been completely evalu­
ated. Thus, the com pletion stack which supports this
decision is also kept in shared memory. In order to sup­
port efficient completion detection, a further structure,
the subgoal dependency list will be kept in memory as
well; its function will be explained below.

Memory layout for the parallel SLG-WAM is shown
in Figure 2. Unlike many parallel Prologs neither the lo­
cal stack nor the heap is shared: rather variable bindings
are explicitly copied on subgoal call and answer return.
Indeed, for tabling to work properly, a subgoal must be
traversed in its entirety to determine whether it is new
or not. Also, bindings of answers must in general be
explicitly unified with the variables of subgoals. As a
result, there is much less incentive to share WAM stacks
in a tabling system than in a Prolog system3.

Evaluations of the sequential SLG-WAM are deter­
ministic, a property which the engine uses heavily. For
instance, every time a new answer for a tabled subgoal is
generated, it is scheduled on the choice point stack to be
returned to the active subgoals that are variants of the
tabled predicate. Properties of a depth-first evaluation
are also used to detect of completion of an SCC. The first
subgoal of an SCC visited by a sequential evaluation is
called the root of the SCC. Whenever the system fails

3The SLG-WAM described in [16] avoids the reunification of
answer clauses in certain, but not all cases.

over the root of an SCC, it is provable that each subgoal
inside the component is completed and all answers have
been generated (Details can be found in [6]).

The strategy outlined above is unsuitable for parallel
SLG, since active nodes for a particular tabled predi­
cated might be in different threads. As a reflection of
this difference, each thread will need to maintain a sub­
goal dependency list which keeps a pointer to the answers
last resolved by each active node that corresponds to an
uncompleted subgoal4. While the subgoal dependency
list keeps thread-specific data, it is kept in a global area
for use in the completion algorithm as will be discussed
in Section 4.

The SLG-forest grows dynamically as predicates are
called and thus the number of active threads depends on
the particular program. For programs with high degree
of table-parallelism, the number of active threads can be
much larger than the number of actual processors. This
would probably lead to a “slow down” if compared to
the sequential execution, as most thread schedulers are
slow at making general re-scheduling decisions [4]. In
addition, most systems impose a limit on the number of
threads that can be executing at a time.

As a first approach, we will require the user to decide
which predicates to execute in parallel. Future research,
will investigate scheduling strategies to distribute work
among threads. For instance, a global queue may be kept
so that whenever a tabled predicate is called for the first
time, instead of spawning a new thread, the task would
be added to the global queue. Available threads would
then steal work from this queue. Trailing and schedul­
ing mechanisms of the SLG-WAM already support the
context switching required for this method.

One of the main goals of the parallel logic program­
ming community is to exploit parallelism implicitly —
including full Prolog with standard semantics [11, 10].
Prolog’s implementation of SLD generates answer substi­
tutions in textual order, but this notion does not exist in
SLG, where the order of answer substitutions produced
through clause resolution for generator nodes may not
resemble the order produced by answer clause resolution
with active (consuming) nodes. While SLD with cuts
and SLG can be intermixed in the sequential framework,
certain semantic changes to the cut are necessary to pre­
serve the correctness of SLG. Parallelizing programs with
the SLG cut remains an open issue. Aside from that,

1 An optimization is available for completed subgoals.

Trail Trail

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 5

p(1,2). p(1,3). p(3,2).
a(2,3). a(3,4). a(3,5).
q(X,Y) a(X,Y).
q(X,Y) :- a(X,Z), q(Z,Y).

P(1>2). q(2,Y)

r(X,Y)
' 1 P(1»3), q(3,Y) P(3>2), q(2,Y)

r(X,Y):- p(X,Z), q(Z,Y). q(2,3) q(2,4) q(2,5) q(3,4) q(3,5) q(2,3) q(2,4) q(2,5)

table and_pr/3, p/2, r/2.

and_pr(X,Y,_) :- p(X,Y), fail.
and_pr(X,_,Z) :- r(X,Z), fail.
and_pr(X,Y,Z) :- p(X,Y),r(X,Z).
:- q(X), and_pr(X,Y,Z).

Figure 3: Join in Parallel Prolog

support for full Prolog can be provided by using stan­
dard techniques adopted by current or-parallel systems
such as Muse [1] and Aurora [11].

A major advantage of parallel SLG over other parallel
Prolog systems is the avoidance of redundant computa­
tion. In Figure 3, for instance, any or-parallel Prolog
would have to compute the relation q (2 ,Y) twice. In
SLG, if the predicate q were declared as tabled it would
be computed only once, and any other subsequent call
would simply consult the table. This avoidance of redun­
dant computation has long been recognized as necessary
for data-oriented queries. No less important is that SLG
terminates for programs of bounded term size.

The copying of a subgoal each time a thread is cre­
ated was a drawback ofthe Abstract Model [20]. Tabling
systems, however, require copying of subgoals whether
they are sequential or not5. When used judiciously, ta­
bling may greatly improve performance over SLD ([3,
17]), and copying does not add a particular overhead for
the parallel version. An advantage of using a copy-based
method is that each thread can work independently on
physically separated data, and issues related to environ­
ment sharing are avoided. (This property brings up the
possibility of implementing parallel SLG on distributed
memory machines).

3 Table vs. And/O r Parallelism

Because SLG is a different resolution method than SLD,
the idea of parallelism in the context of SLG departs
from traditional and- and or-parallelism. Parallelism will
occur whenever a (parallel) tabled predicate is executed
— not in the parallel execution of subgoals in the body of
a clause, nor in the parallel execution of multiple clauses

1: and_pr(X,Y,Z)

5 Reducing copying has been investigated for tabling systems in
many contexts. Like most tabling systems, the SLG-WAM uses
an array of static and dynamic techniques to address these issues
([13])-

p(X,Y)

p(X,Y)
r(X,Z)

3: and pr(X,Y
p(X,Y),
r(X,Z)

2: and_pr(X,Y,Z)
r(X,Z)

Figure 4: And-parallelism in SLG

defining a predicate.
The use of a copying strategy, and the lack of stack

sharing between different threads allows each thread to
work independently of the others on its own SLG tree
in the SLG forest. Therefore, there is a great flexibil­
ity on the choice of evaluation strategy used to com­
pute answers for the tabled predicate within each tree.
The strategy could consist of sequential SLG, sequen­
tial SLD or any parallel model. In this sense, table-
parallelism can be considered orthogonal to both and-
and or-parallelism.

An interesting characteristic of table-parallelism is
that by adopting an appropriate scheduling method, it
may emulate or-parallelism. Given a predicate consisting
of N clauses, one needs only fold the body of each clause
into a unique tabled predicate. I f the subgoals are not
present in the table, the caller spawns threads for each
predicate in turn, failing — as a means of looking for
new work — between each. (I f the subgoals are present
in the table, the consuming process reads them out, se­
quentially). We do not yet have any information about
when such a strategy may be efficient. It is believed that
table-parallelism may be most useful at coarser levels, or
when redundant subcomputations are a problem.

Table-parallelism can also exploit some of the and-
parallelism present in logic programs. Consider the goal

q(X) , p (X ,Y), r (X ,Z). In parallel SLG, we could
simulate and-parallelism by rewriting that goal as in Fig­
ure 4, and declaring and_pr/3, p/2 and r/2 as tabled.
In this case all answers for p/2 and r/2 would be com­

Table

6 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

puted in parallel, assuming that they are not already in
the table. As they are being computed, they will be fed
to the third clause of and_pr/3, where p/2 and r/2 will
be active, (consumer) nodes.

A preprocessor could be easily written to generate
code that emulates either behavior. I f it were desired
for table parallelism to emulate and- or or- parallelism,
analysis could be performed to determine where a pro­
gram contains and- and or- parallelism using traditional
techniques. The output of the analysis phase would then
be adapted as input to such a preprocessor. In practice,
table-parallelism has its own strengths, which are mainly
complimentary to traditional methods.

4 Parallel Completion

Detection of completion is a non-trivial problem in a se­
quential framework, and the difficulties are compounded
for parallel evaluations. While various approaches to this
problem are possible, implementation of a workable en­
gine requires a minimum of synchronization: accordingly
we base our approach on distributed termination detec­
tion algorithms as in [8].

Section 2 introduced the shared completion stack,
used to detect completion of an SCC. The completion
stack consists of frames for each incomplete tabled sub­
goal. The frames are pushed onto the stack when the
subgoals are called, and consist of the following elements.

D F N

PosLink

PosM in

StateFlag

AnswerFlag

ColorFlag

D F N , P o sM in , and PosLink ([16, 6]) are used in
the sequential model as well as the parallel, and together
determine the extent of the SCC. For a given tabled sub­
goal A, PosLink is originally set to the unique D F N of A.
I f A calls another incomplete tabled predicate B, whose
D F N is less than that of P o sL in k (A), P os lin k (A) is
set to Pos lin k (B), so that PosLink reflects the earli­
est direct dependency of A. Conversely, subgoals on the
completion stack are assumed to depend on other sub­
goals of higher D F N . Consider the following situation.
Subgoal A calls a new subgoal B, and a new frame is
placed on the completion stack. B later calls a subgoal

C which is an ancestor of both. In this situation A de­
pends on C through B and none of these subgoals can
be completed until they all are. We thus cannot com­
plete A before C , because A depends on an incomplete
subgoal B, younger than A, and B depends on a sub­
goal C older than A. In other words, A, B , and C are
in the same SCC, rooted at C . To prevent improper
completion, information about the PosLink values for
these subgoals must be propagated to A before it can be
completed. The characteristics of this propagation vary
from the sequential to the parallel model (See [6] for the
sequential case). We let P o s M in (A) stand for the min­
imum PosLink value of all subgoals younger than A —
information which is available from the completion stack.

The StateFlag indicates whether the thread is do­
ing some computation, while the AnswerFlag indicates
whether there are still answers for the thread to pro­
cess. The StateFlag can have values done, undone or
unconditionally done. Conceptually, the AnswerFlag
can have values done or undone, however it is imple­
mented as a pointer into the subgoal dependency list.
The Answ erFlag for a thread T, will be a disjunction
of the next answer pointer for all Active nodes in T.
The Answ erFlag will be done when all answers have
been used. In order to complete correctly, a computa­
tion needs to maintain the following invariants.

Invariant 4.1 (S ta teF lag) The StateFlag is done for
a given thread iff it is performing no answer or program
clause resolution (i.e. doing no work).

Invariant 4.2 (A n sw erF lag) The Answ erFlag is done
for a given thread iff all active nodes in the SLG tree for
the thread has resolved all applicable answers in the table.

Whenever a thread exhausts all of its program and
answer clauses it sets both StateFlag and AnswerFlag
to done, and goes to sleep. Whenever a new answer is
added to a table for any of the Active nodes in the thread,
the thread’s Answ erFlag is effectively set to undone,
since the AnswerFlag is a list of pointers into the table.
After a thread wakes up, it executes the following steps.

1. The thread set its StateFlag to undone.

2. The thread traverses its subgoal dependency list to
see if new answers have been returned for its active
nodes.

Unique Depth-first number
Earliest direct dependency
Earliest indirect dependency
Thread is working
Thread has consumed all answers
Thread may affect other subgoals

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 7

3. I f new answers have been returned, the thread lays
down an a n sw e r jre tu rn choice point (presented
in Section 5) for each uncompleted subgoal. The
engine will backtrack through the choice points and
continue its normal execution. The engine iterates
steps 1 and 2 while there is work to do.

4. When there is no more work left, the thread sets
StateFlag to done (AnswerFlag has been effec­
tively set to done) and sleeps.

Under the formalism of [6] or [16], the following propo­
sition can easily be proven.

Proposition 4.1 (Pa ra lle l C om pletion)
Let £ be a computation in which Invariants 4.1 and 4.2
hold. Let

D F N (S) = P osL in k (S) = m in (P o sL in k (A))

for all A younger than S on the completion stack. Also
let

S ta teF lag (S ') = Answer F la g (S ') = done,

where S ' denotes S and every A younger than S on the
completion stack. Then the subgoals from S to the top
of the stack constitute a maximal S C C and have been
completely evaluated.

The intuition behind Proposition 4.1 is that if the
PosLink values are as specified, the subgoal forms the
root (oldest subgoal) of an SCC. I f the flag values are as
specified, and if the invariants hold for the computation,
then all mutually dependent subgoals have performed all
answer and program clause resolution. Proving correct­
ness of completion then devolves upon ensuring that the
invariants hold.

As an example of how the invariants can fail to hold,
consider the following situation. We make use here,
and throughout the paper of a convention that the root
thread (the thread for the root subgoal of an SCC) leads
the check for completion of the SCC.

Let root be the root of S C C root, which is currently
being checked for completion. And, suppose S C C root =
{ r n_ i , rn_ 2, •••, ^1, root}, root will check the status of
the flags of each other subgoal, from rn_ 1 to tq, in this
order. Suppose while root is checking the flags for Ti,
after finding that all flags for ri, I > i are done, another

check
flags

Subgoal StateFlag AnswerFlag ColorFlag

r >1-1 done done white

rk done done white

r. done done white

r.j done done black

r undone done white

) wake_up

Figure 5: Snapshot of Completion Stack

thread rj, where 0 < j < i , generates a new answer and
activates a thread r& that has been already checked by
root. The root will wrongly assume that r& is done, and
it will incorrectly complete.

Following the model of [8], we address this problem
by introducing another flag, the ColorFlag, for each
tabled subgoal.

Definition 4-1 (ColorFlag) The ColorFlag indicates
that a node in the SCC may have generated new an­
swers after another node was checked as completed by
the root. It can be either black, if new answers were
added, or white, otherwise. □

Initially the ColorFlags for all tabled subgoals are
set to white. When after waking up, a thread r gener­
ates some new answers it will set its own color to black.
During the completion check, if the root finds a black
node, it will know that some node, that it had already
checked, might have been awakened (see Figure 5), and
therefore, completion has to be restarted.

5 Implementation Framework

This section presents the instruction- level changes needed
to parallelize the SLG-WAM. While SLG-WAM instruc­
tions for definite programs have been presented in [16], a
detailed knowledge of these instructions is not needed to
for understanding this section, since the changes mainly
involve adding concurrency features to tabling opera­
tions. The changes are as follows:

• When calling a tabled subgoal — in the NEW AC­
TIVE instruction. I f the selected subgoal is not al­

8 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

ready in the table, add an entry for it, create a
thread and copy the subgoal into the thread. Up­
date the calling thread’s subgoal dependency list
with a pointer to the active node. Then, f a i l in
order to find other work. The copy of the sub­
goal is required so that variables are not shared
between threads. On the other hand if the selected
subgoal is already in the table but not complete,
the PosLink value for the root subgoal should be
updated, along with the subgoal dependency list.
Resolution can then begin against answers in the
table. Finally, if the subgoal is in the table and
completed, the answers are treated as if they were
asserted code. Neither the completion stack nor
the subgoal dependency list needs to be updated.

• When adding an answer for a tabled subgoal —
in the N E W A NSW ER instruction. Besides adding
an answer to the table, (if the answer is not al­
ready there), the instruction will set its Color Flag
to black. The AnswerFlag, which is a (pointer to
a) list of pointers into the table, will be effectively
updated as discussed in Section 4.

• When checking for completion — in the COM PLE­

TION instruction. The thread must first check that
no answers have been added that might unify with
any of its active subgoals. I f answers have been
added the process schedules their return on the
choice point stack. Otherwise, the predicate marks
its StateFlag as done and, if the thread is the root
of its SCC, it begins the completion check algo­
rithm to be described below.

This model requires synchronization between threads
when subgoals are created and when they are completed,
but not otherwise. Adding a new SLG subgoal to the ta­
ble will require a lock to prevent multiple threads from
simultaneously executing the N E W ACTIVE instruction
for the subgoal. In the SLG-WAM the table for each
predicate is structured as a tree, so that only a subtree
need be locked, allowing a great deal of concurrency.
Contention will be more likely to arise in the comple­
tion stack. For adding answers to the table, however,
no locking will be necessary as there is a single generat­
ing thread for each subgoal (although possibly multiple
consuming threads).

The issue of returning new answers to existing sub­
goals differs from the tuple-at-a-time method described

in [16], but resembles that of a sequential semi-naive
implementation (to be described fully in a forthcoming
paper). In the semi-naive implementation, an iteration
consists of all work that occurs between failures back to
the COMPLETION instruction for the root of an SCC. At
iteration i, the engine uses answers from iteration i — l
to determine a new set of answers. At the end of each
iteration the COMPLETION instruction checks whether
new answers have been added in iteration i or whether
the SCC has instead reached fixpoint6. The semi-naive
strategy can be incorporated into parallel execution: at
each COMPLETION the engine returns any new answers
added by other threads. Only in the case where no an­
swers have been added and there is no other work to do,
does the parallel algorithm differ from sequential semi-
naive. Rather than being able to determine fixpoint, the
consuming thread must coordinate with other threads to
determine if all answers have been derived for its active
subgoals. I f the thread is a root thread, it checks the flags
of the completion stack using an algorithm described be­
low. Otherwise, the thread must poll at intervals to see
whether new answers have been added.

Returning answers is summarized in the procedure
Iterate in Figure 6. The subgoal dependency list main­
tains information for subgoals which are active for each
thread. In order to make use of new answers at the end
of an iteration, the thread will exploit two properties for
an answer trie. A path from the root of the trie to a
leaf node constitutes an answer for the trie. The first
property exploited is that each leaf of the trie is linked
together in a list for sequential access. When answers
are added to a trie, the trie is extended, and the an­
swers are also added to the end of the list, using a global
listend pointer to the end of the trie. For each subgoal
in the dependency list the thread creates answer return
choice points, which contain, among other information,
a local listend value for iteration i and a local listend
value for iteration i — l. The answer return choice point
then backtracks through each active node for its subgoal
and returns each answer in the listend interval to the
node. O f course, there may be discrepancies between
global and local listend values: a generator thread may
add an answer as a consumer thread reads the listend.
While the discrepancy is probably not important while a

6Failure back to the root of an SCC does not always reclaim
space, since environments for SLG predicates are maintained be­
tween iterations.

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 9

Iterate
If subgoal dependency list is empty

A n sw erF la g = StateFlag = uncondjdone;
update subgoal stack;
exit;

Else
For each subgoal in list

If (subgoal is unconditionally complete
and there are no unexamined answers)

Remove subgoal from list
Else

If there are unexamined answers
lastJistend = local distend)
local distend = globalJistend',
create answer return choice point;

Figure 6: Algorithm for iterating computation

thread is in the process of iteration, it must be rectified
by the time the subgoals are completed.

When a thread wakes up to poll for answers it will
set its StateFlag undone. It will then run through its
subgoal dependency list and return the new answers from
the global table to the suspended nodes in its subtree and
continue its normal, sequential SLG, execution. When
it runs out of work, (or if there was no work to begin
with) it resets its StateFlag to done. I f in the course of
its execution, this thread generates new answers, it will
set its ColorFlag to black, indicating that other nodes
might have been activated. Finally, if the current thread
is not the leader of its SCC, it goes to sleep. Otherwise,
it will start the completion check.

The COMPLETION instruction uses the algorithm in
Figure 7. In the case where a thread depends only on
subgoals which are unconditionally done, and where all
answers have been examined, the thread marks its ta­
ble as unconditionally complete and exits. Otherwise, if
a thread traverses the subgoal dependency list and finds
no new answers, its AnswerFlag is effectively done, so it
sets its StateFlag to done in the completion stack (Since
we assume only one thread per subgoal there will be no
confusion). I f a new answer is added for a subgoal upon
which other subgoals depend, the subgoal dependency
lists and AnswerFlags will reflect this change. The
thread generating a new answer also resets its ColorFlag

CheckCompletion(S)
If Iterate exits

exit;
if S depends on a subgoal which is not complete

if any choice point has been added
StateFlag = A n sw erF la g = undone;
fail; {backtrack through the choicepoints}

Else
if S belongs to the youngest SCC

StateFlag = A n sw erF la g = done;
if S is the leader

for each r; 6 S’s SCC such that r; is
not uncond_done

wait ((r i .S ta te F la g = = d o n e) and
(r i .S ta teF la g==d on e))\

\f(ri.Co lorF lag==b\a ck)
set the C olorF la gs for all
subgoals in the SCC to white;
suspend and restart completion later;

complete tables for all subgoals in SCC;
Else

sleep;
Else fail; {not youngest SCC}

Figure 7: Pseudo-code for COMPLETION instruction

to black.

During completion check the leader will check all sub­
goals in its SCC, that are not unconditionally done. If
any subgoal has either Answ erFlag or StateFlag un­
done, the leader will wait until both are set to done. I f
both flags are done, the leader will check the ColorFlag.
I f the ColorFlag is white, the leader will proceed to the
next subgoal. Whenever the leader reaches its own frame
in the completion stack, by Theorem A .I, all subgoals
in the SCC are completely evaluated, and its is safe to
mark the tables complete, pop the completion stack, and
terminate. After the root subgoal, or leader, completes
all tables, it notifies the threads that it is safe to exit
and exits itself. Otherwise, if the leader finds some black
subgoal, a subgoal may have generated new answers that
have not been consumed. The leader then fails and com­
pletion check will be restarted later.

The root thread thus enters a loop where it traverses
the subgoal dependency list and either returns answers

10 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

or checks for completion, while the non-root threads ei­
ther return answers or mark themselves as conditionally
complete, by setting its flags to done. Since a given
SCC may grow as new dependencies are added, different
threads may become root at different times. I f invari­
ants 1 and 2 hold, the algorithm handles this situation.
Suppose that thread Ti is root and thread T2 later be­
comes root. Ti would only complete after it was deter­
mined that there were no unresolved answer or program
clauses in the SCC. On the other hand, T2 would have
been made root only if some subgoal in the SCC rooted
at Ti discovered a dependency on T2. But this cannot
occur after all answer and program clauses have been
resolved.

By formalizing the algorithm outlined in this section,
it is provable that:

• Threads term inate i f f the ir subgoals have been com ­
pletely evaluated;

• There w ill be no deadlock o r starvation.

The formal statement of these results and their proof are
contained in the Appendix.

6 Conclusion

Tabling adds the ability to evaluate programs according
to the well-founded semantics; it adds important ter­
mination properties to evaluations, whether or not the
program contains negation; and it computes queries with
polynomial data complexity, again whether or not nega­
tion is present in the program that evaluates the query.
Depending on one’s point of view, tabling is thus a desir­
able addition or a necessary addition to an evaluation.
This paper constitutes a first step in the design of a
parallel SLG-WAM for definite programs. Its implemen­
tation intended to be a continuation of the semi-naive
sequential model, as indicated in Section 5. While im­
plementation results are not yet available, the forego­
ing discussion indicates that only instructions for tabled
predicates are to be changed by the design. As a re­
sult, for sequential SLD the times for the parallel engine
should equal the sequential SLD times for the sequential
engine: about a 10-15% overhead added to the WAM.

While we have introduced the model of table-paralle-
lism, due to space limitations, we have only discussed its

most basic model. As a first instance, the model paral­
lelizes all tabled evaluation — clearly this is not always a
wise strategy. A clear first extension would allow the user
to parallelize only certain tabled predicates. As a second
extension, SCCs could be analyzed statically and threads
matched to SCCs rather than to subgoals. A third ex­
tension might be to make the completion stack into a
tree, so that SCCs could complete early. While this last
extension might cause some overhead in determining the
root of the SCC, it would be expected to be reduce the
synchronization needed for completion. These three ex­
tensions are straightforward, but their worth can only
be ascertained in the context of an implemented system
for which work is now underway.

Acknowledgem ents: We are indebted to Phil Lewis
for useful discussions on the concurrency issues of the
completion algorithm.

References

[1] K.M. Aii and R. Karlsson. The Muse or-parallel
Prolog model and its performance. In Proceedings
o f the N o rth A m erican Conference on Logic P ro ­
gramming, pages 757-776. M IT Press, 1990.

[2] Krzysztof R. Apt. Correctness proofs of distributed
termination algorithms. A C M Transactions on P ro ­
gram m ing Languages and Systems, 8(3):388 - 405,
July 1986.

[3] F. Banchilhon and R. Ramakrishnan. An amateur’s
introdution to recursive query processing strate­
gies. In Proc. o f S IG M O D 1986 C o n f, pages 16-52.
ACM, 1986.

[4] A.D. Birrel. An introduction to programming with
threads. Technical report, Digital - Systems Re­
search Center, Palo Alto, California, 1989.

[5] R. Bol and L. Degerstedt. Tabulated resolution for
the well-founded semantics. In P roc. I L P S ’93 W ork­
shop on Program m ing with Logic Databases. M IT
Press, 1993.

[6] W. Chen, T. Swift, and D.S. Warren. Efficient im­
plementation of general logical queries. J. Logic
Program m ing. To Appear.

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 11

[7] W. Chen and D. S. Warren. Query evaluation under
the well-founded semantics. In Proc. of 12th PODS,
1993.

[8] E.W. Dijks tra, W.H.J Feijen, and A.J.M. van
Gasteren. Derivation of a termination detection al­
gorithm for distributed computations. Information
Processing Letters, pages 217 - 219, June 1983.

[9] Nissim Francez. Program Verification. Addison-
Wesley, 1992.

[10] Gupta,G., Ali,K.M., Carlsson,M., and M. Herme-
negildo. Parallel Logic Programming: A Survey.
Unpublished manuscript, 55 pages. Available by
anonymous ftp at ftp.cs.nmsu.edu.

[11] E. Lusk, R. Butler, T. Disz, R. Olson, R. Over-
beek, D.H.D. Warren, A. Calderwood, P. Szeredi,
S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,
and B. Hausman. The Aurora or-parallel Prolog
system. New Generation Computing, (7):243-271,
1990.

[12] R. Ramakrishnan and J. Ullman. A survey of re­
search on deductive database systems. Journal of
Logic Programming, 1994. To appear.

[13] P. Rao, I.V. Ramakrishnan, T. Swift, and D.S. War­
ren. Dynamic argument reduction for in-memory
queries. In 2nd IC L P Workshop on Logic Program­
ming and Deductive Databases, 1994.

[14] H. Seki. On the power of alexandrer templates. In
Proc. of 8th PODS, pages 150-159. ACM, 1989.

[15] P. Stuckey and S. Sudarshan. Well-founded ordered
search. In 13th conference on Foundations of Soft­
ware Technology and Theoretical Computer Science,
pages 161-172, 1993.

[16] T. Swift and D. S. Warren. An abstract machine for
SLG resolution: definite programs. In Proceedings
of the Symposium on Logic Programming, 1994. To
Appear.

[17] T. Swift and D. S. Warren. Analysis of sequential
SLG evaluation. In Proceedings of the Symposium
on Logic Programming, 1994. To Appear.

[18] H. Tamaki and T. Sato. OLDT resolution with tab­
ulation. In Third In t’l Conf. on Logic Programming,
pages 84-98, 1986.

[19] L. Vieille. Recursive query processing: The power of
logic. Theoretical Computer Science, 69:1-53, 1989.

[20] D.H.D. Warren. Or-parallel models of Prolog.
In Proceedings of the International Conference on
Theory and Practice of Software Development.
Springer-Verlag, 1987.

A Appendix: Correctness of Com ­
pletion Algorithm

Th eorem A .l (Completion Algorithm) Given a set S
of mutually dependent tabled subgoals, the completion al­
gorithm of Figure 8 will mark as complete the subgoals
in S iff y A £ S , A is completely evaluated. Also, it is
guaranteed that there will be no deadlocks or starvation.

Proo f: In order to prove Theorem A .l, we need to
prove the following:

1. The completion algorithm will mark as complete
the subgoals in S iff VA £ S, A is completely eval­
uated.

2. Deadlock is prevented. In other words, it will al­
ways be the case that either completion detection
or subgoal computation can occur.

3. There will no be starvation. In other words, during
completion detection, if the subgoals in the SCC
are not completely evaluated, subgoal computation
will resume.

Program verification techniques, such as the ones de­
scribed in [9, 2], are needed for formal proof of the above
four properties. The proof here is based on the dis­
tributed completion proof presented in [8].

When synchronizing threads for completion we may
abstractly assume that the threads of the SCCs enter
one of three procedures: wakeup to look for new answers;
completion to check for completion of the nodes in the
SCC; or terminate.

Using the structure of Section 5, the wakeup choice
will be executed each time a tabled predicate starts to

ftp://ftp.cs.nmsu.edu

12 ILP S ’94: Design and Implementation of Parallel Logic Programming Systems

wakeup:
r.S tateF lag = undone;
reads the tables of all active subgoals in its tree;
r. A n sw erF la g = done;
if (r generates new answers)

writes the answers into r ’s table;
r.color = black;

r.S tateF lag = done;
sleep;

term inate:
exit;

com pletion :
if subgoal is not the root

exit;
for (i= n -l; i>0; i-----)

while ((r i .S ta te F Zag==undone)
or (r { . A n sw er F la g = = u n d on e)) ;

if (r i.co lor = = black)
for (i= n -l; i>0; i-----)

ri.color = white;
suspend and restart completion later;

broadcast to r „ _ i ,..., ri to terminate;
exit;

Figure 8: Non-deterministic choices for tabled predi­
cates.

execute the check_complete instruction. At this point
it will check whether there are new answers to the active
subgoals in its SLG tree, and if that is the case, return
the answers to these subgoals. If, while executing, this
tabled predicate itself generates new answers, it will set
its ColorFlag to black, since it might have awakened
some other tabled subgoals in its SCC.

Only the root (leader) of an SCC will execute the
com pletion choice. During com pletion, the root will
check whether all subgoals in the SCC have completed,
and if that is the case, it will complete the tables, signal
the other threads to exit, and terminate. I f some subgoal
in the SCC is either executing program or answer clauses,
the root will wait until this subgoal is done to resume
the checking. If, while scanning the completion stack
the root finds any subgoal whose ColorFlag is black, it
whitens the ColorFlags for all subgoals in its SCC and
suspends the completion check.

While executing the completion alternative, the root

of the SCC, root (ro in Figure 8) checks the status of
threads rn_ i , ..., ri, root, in this order. The necessary
condition for the completion of root’s SCC is that root
succeeds the checking for all ri. Let t denote the number
of the thread whose flags are currently being checked by
the root, then completion checking ends with t = 0.

The system’s state will be captured by an invariant,
which we call P . In the sequel, P will be constructed
in a number of steps, each step consisting of an exten­
sion of the state space considered and of an appropriate
adjustment of P .

As a first step, we solve the problem in the absence
of wakeups: in that case an undone (active) thread can
become done (passive), but a done thread cannot become
undone. The conclusion that all threads are done has to
follow from (i) the invariant (Po as shown below); (ii)
t = 0; and (iii) the fact that the flags of the root itself
are done. Furthermore, the invariant (P o) has to hold,
independently of the value of t, when thread root has
initiated the completion checking, i.e., when t = n — 1.

The above requirements are met by Po:

Po : (Vi : t < i < N : thread ri is done)

We can now design the checking of Answ erFlag and
StateFlag of each thread so as to keep Po invariant. Ini­
tiation of completion checking establishes Po- Sequen­
tially checking the remaining threads, however, decreases
t by 1, and may falsify Po- Invariance of Po is achieved
by adopting:

Ru le A . I The root waits until the flags for thread r.;+ i
are done before its checks r i ’s StateFlag and AnswerFlag

In the completion alternative of Figure 8, Rule A .I cor­
responds to the statements:

while((7,j .StateFlag = = undone)
or (ri. Answer Flag = = undone))-,

When the flags of the other threads are done, the
checking of flags will in due time be reached by root;
when in addition thread root is done, termination can
be concluded. The above discussion comprises the rules
for checking flags.

Next to be taken into account is the possibility of
wakeup: Po is falsified when thread ri with t < i be­
comes undone on account of being waken up. Since only
undone threads wake up other threads, we deduce that

ILP S ’94: Design and Implementation of Parallel Logic Programming Systems 13

the waking up that falsified Po has been initiated by a
thread rj with j < t. In order to solve the situation
we adopt the weaker invariant Po V P u such that any
wakeup that may falsify Po establishes Pi.

To this end each thread is postulated to be either
black or white (represented by the ColorFlag of each
subgoal). For P i we choose:

Pi ■ (3j, 0 < j < t, such that thread rj is black)

Wakeup is prevented from falsifying Po V Pi by adopting
the following rule:

Ru le A .2 A thread wakes up another thread with a num­
ber higher than its own makes itself black 7.

We have to verify, however, that the information avail­
able at thread root combined with the weaker Po V Pi
can still suffice to conclude termination. Since

(t = 0 A thread root is white) = > -> P I

detection of termination has not been disabled.
With the possibility of a thread’s having the color

black, a new phenomenon has been introduced, viz. that
of the unsuccessful completion checking: when a black
thread is detected, the conclusion of termination cannot
be drawn. In a first instance this problem can be tackled
by adopting:

Ru le A .3 After failing the completion checking, thread
root reinitiates checking for completion.

This corresponds to the statement
suspend and re s ta r t completion la te r ;

in Figure 8.
Without the possibility of transitions from black to

white, such a rechecking may not be successful. There­
fore our next task is to assure that the whitenings do not
falsify the invariant Po V Pi.

In view of the fact that initiating a check for comple­
tion establishes Po, we can safely adopt:

Ru le A .4 Thread root initiates a completion checking
by making itself white and starting checking the status of
thread rn_ i.

The thread root can safely be whitened, and we turn
to the other threads. Since whitening a thread can fal­
sify only Pi, but does do so when that thread’s number
exceeds t, we can safely adopt:

Ru le A .5 When it restarts completion checking, the root
whitens all threads with number greater than t.

Since the restart of completion checking changes the
value of t to n — 1, which establishes Po, we can fur­
ther adopt:

Ru le A .6 When it restarts the completion checking, the
root whitens all threads from 0 to N — 1.

Rule A .6 assures the correctness of the entire fo r loop
in the com pletion choice of Figure 8.

The above whitening protocols suffice to prove that
when the algorithm terminates then all subgoals of the
SCC are completed. An iteration of completion checking
initiated after all subgoals are completely evaluated will
end with all threads white and hence, a reiteration of the
completion check is guaranteed to succeed.

The property that when all subgoals of the S C C are
completed then the completion algorithm will terminate
derives from the fact that the root will eventually check
for completion and it will restart completion later if it
fails this time.

The absence of deadlock can be easily seen from the
fact that the computation of subgoals (wakeup alterna­
tive of Figure 8) and the completion checking of the root
(com pletion alternative of Figure 8) need not wait for
each other.

In order to prove that there is no starvation, we note
that if during completion detection, there are subgoals
in the S C C which are not completely evaluated, these
subgoals will be awakened later. After a thread wakes
up to poll for answers, it will run through its subgoal
dependency list and return the new answers from the
global table to the suspended nodes in its subtree.

□

7For consistency w ith Section 5, a relaxed Rule 1 is used in
Figure 8. This relaxed rule effectively states that a thread waking
up another thread will blacken itself.

