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Abstract 

We demonstrate a self-organized pattern formation on vicinal Si(111) surfaces that are miscut 

toward the (211] direction. All the patterns, consisting of a periodic array of alternating (7x7) 
reconstructed terraces and step-bunched facets, have the same periodicity and facet structure, 
independent of the miscut angle; while the width of the facets increases linearly with miscut 
angle. We attribute such unique pattern formation to a surface faceting transition that involves 
two transition steps: the first step forms a stress-domain structure defining the universal 
pcriodicity; thc second stcp forms thc low-cnergy facets controlling the facet width. 

Introduction 

Surface patterning is an important processing step in many device fabrication processes. 
The continued drive to make devices smaller and smaller has brought up the challenge to pattern 
surfaces in the nanometer scale where conventional lithographic techniques are no long 
applicable. Two different routes have been taken toward nanopatterning: one by developing new 
patterning techniques with nanometer resolution, such as scanning probes, the other by taking 
advantage of self-organization of surfacc patterns occurring naturally. The later approach has 
shown great promises because it offers an economic and parallel process for device fabrication. 

Surt'ace stress often plays an important role in driving surface structural and 
morphological ordering, in particular, through the sUlface stress-induced spontaneous formation 
of ordered patterns of stress domains [I J. An effective way to create the stress-domain patterns is 
by step motion and/or by surface faceting transition on vicinal surfaces, as demonstrated on a 
variety of different materials surfaces, such as the Si(OOI) [2], Si(111) [3-5], GaAs(OOI) [6], 
Au(111) [7], and Pt (001) [8] surfaces. 

Ideally, one would like to create a desirable surface pattern with controllable length 
scales. The characteristic length scales of the stress-domain patterns are generally determined by 
the competition between elastic relaxation energy and domain boundary energy. Therefore, in 
principle, it should be possible to control the length scales of such patterns by manipulating these 
energy terms. However, such kind of control is difficult to achieve in real practice. For example, 
the domain size of a stress domain can be changed by applying external strain [2], but the domain 
will restore its original size upon relieving the external force. On a vicinal surface, the terrace 
size can be changed by tuning miscut angle, but different step structures [9,10] and facets [5] 
usually form at different miscut angles. 

Here we demonstrate the possibility of creating the same surface pattern of controllable 

length scales. We show that when the SiC 111) surfaces are miscut toward the [211] direction, 
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thermal annealing leads to formation of one-dimensional surface patterns consisting of a periodic 
array of alternating flat terraces and high-step-density facets, with very good long-range order. 
Most important, all the surface patterns exhibit the same atomic structure for both the terraces 
and the facets and the same periodicity, independent of rniscut angle; while the width of the 
facets increases linearly with increasing rniscut angle. We propose that such unique self
organized pattern formation is achieved by a surface faceting transition that involves two 
transition steps. The fust step, occurring at a higher temperature, is originated from a stress
induced instability [1 ,2]. It involves mass transport over the whole surface, forming tress
domain structures with a universal optimal periodicity and facet width (domain popUlation) that 
minimize the surface strain energy. The second step, occurring at a lower temperature, is 
dominated by energy difference in surface reconstruction and facet structure. It involves mass 
transport in a shorter range within each period defined in the first step, forming the lowest-energy 
facet. 

Experimental setup 

Using scanning tunneling microscopy (STM), we have investigated the faceting behavior 
of SiC 111) surfaces miscut toward the [2 11] direction over a wide range of miscut angles from 
0.3° to 6° . The surfaces are cleaned by a standard procedure: degassing at 700°C for several 
hours in a vacuum chamber (base pressure 2xlO- JO torr) followed by heating a few times to 
1250°C for - 10 seconds each. The cleaned surfaces are then annealed at 950°C for a couple of 
minutes followed by slow cooling to room temperature at a rate of 1°C/sec. For each vicinality a 
large number of STM images are acquired from different SiC 111) samples and from different 
cleaning-annealing cycles. 

Figure 1 shows STM images of four typical ordered patterns formed on surfaces with a 
miscut angle of ] 0, 2°, 4° and 6°, respectively, consisting of a periodic array of alternating (7x7) 
terraces and step-bunched facets. To quantitatively characterize the length scales of the patterns, 
the periodicity (terrace width + facet width) and the facet width are measured as a function of 
miscut angle. The value for a given miscut angle is derived from the peak position of the 

Fig. I Swface morphology of four well annealed vicinal Si(\ 11 ) samples. The surfaces display 
an ordered pattern consisting of alternating (7x7) reconstructed terraces and high step-density 
facets . All four images have the same size of 2400 A x 2400 A. The downstairs direction runs 
from left to right. The derivative mode is used to emphasize the step structure in the facet. 
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Fig. 2 Dependence of faccting pcriodicity on miscut angle. All thc ordcrcd pattcms adopt a 
univcrsal periodicity of -635 A, independent of miscut angle. Values (solid dots) for a given 
miscut are obtained from the peak positions of Gaussian fits to the measured data. The dashed 
line showed the dependence of periodicity on miscut angle if a one-step faceting transition had 
occurred (Please see text). 

Gaussian distribution fit to the experiment data. The measured periodicities are 673, 593, 612, 
and 662 A at miscut angles of to 10 ,20 ,40

, and 60
, respectively, with an average value of 635 A. 

All the pattems have the same periodicity independent of the miscut angle (Fig. 2); while 
the facet width increascs lincarly with miscut angle. Such a length-scale relationship implics that 
the facet in all the patterns must have the same facet angle, i.e., facet structure. This is indeed 
confirmed by high-resolution STM images of the facet. From those images we conelude that all 
the facets have an average step-step separation of 28 A and a step height of 6.3 A, amounting to a 
facet angle of 12.7 0

• The 6.3 A equals to a double bi-Iayer step height in Si(ll!), so a transition 
from single bi-layer step to double bi-layer step must have occurred in addition to the bunching 
of steps during faceting. The same facet structure seems to be a special feature associated with 
azimuthal orientation of the [211] direction. If the Si(l!l) surface is miscut toward other 
directions, different facets usually fonn at different miscut angles [5]. 

Discussions 

We believe that these unique self-organized length-scale features are originated from a 
faceting transition in which surface stress plays an important role in addition to surface (facet) 
energy [3]. We propose that the periodicity and facet width is determined respectively by 
minimization of elastic energy and facet energy at two different steps of a faceting transition. 
Figure 3 shows schematically such a two-step faceting transition. At a temperature Tl above 
transition, the surface consists of a staircase of (lxl) terraces separated by single bi-layer steps 
(Fig.3a). As temperature is lowered below the transition temperature T2, the surface starts 
nucleation of individual domains of the reconstructed (7x7) terraces and then self-organizes into 
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Fig.3 Schematics of a two-step faceting transition process. (a) Surface morphology above the 
thcrmodynamic phase transition temperature, consisting of equally spaced single bi-Iayer steps. 
(b) Morphology of a stress-domain structure fanned below the first faceting transition 
temperature T2, consisting of alternating of (7x7) reconstructed terraces and single-step-bunched 
(1 xl) unreconstructed tcrraces. L is the faccting period and I=Ll2 is the facet width. (c) Final 
stable morphology, formed below the second transition (a single-to-double step transition within 
the facets formed in the first transition step), consisting of (7x7) terraces and stable double-step
bunched facets with <1>=12.7°.8 is the surface miscut angle. 

a periodic stress-domain structure [1,2], consisting of alternating (7x7) terraccs and stcp-bunched 
(Ixl) terraces (facets) (Fig. 3b). The change of total surface free energy per unit area is 

I c L. I 2y 
M(T,L,I) = 4f(T)(l--) --In[-sm(-7r)]+-, 

LLrca L L 
(1) 

where T is the temperature, L is the periodicity, I is the facet width, !1f(T) = IOX7) - I(IXI) is the 

energy difference of thc reconstructed (7x7) and thc unreconstructed (Ix\) terraces, c is a 
constant related to the difference of surface stress between the (7x7) terrace and the step-bunched 
facet and elastic constants, r is the cnergy cost forming thc cdgc of the facet, and a is a cutoff 
constant on the order of the (7x7) unit-cell lattice constant. 

and 

Minimization of M(T,L,I) with respect to both Land I leads to the following conditions: 

lfC I 
!1/(T)=-r:cot(L7r), (2) 

(3) 

where ao = aexp(l + 2
y

). Equations (2) and (3) define the conditions and the length scales of the 
c 

stress domains. !1f(T) decreases with decreasing temperature; it is positive above the (lxI)-to

(7x7) thermodynamic phase transition temperature and negative below. The elastic relaxation 
drives the individual (7x7) terrace of finite size to nuclcate at a temperature where 
4f(T) = c j(L -I) [3], above the (lxl)-to-(7x7) themlOdynamic phase transition temperature 

where !1f(T) vanishes. The ordering occurs at the lower temperatures defined by Eqn. (2). 

Interestingly, the ordering actually starts at a temperature coincides with the thernlOdynamic 
phase transition temperature, forming a domain structure with an optimal half-filling domain 
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population, 1= L/2 [I]. Correspondingly, from Eqn. (3), the domain adopts a periodicity of 
Lo = Jiao' independent of miscut angle. Using a surface stress value of 0.1855 eV/A2 [11] and-

0.039 eV/A2 [12] for the (7x7) and the (Ix!) terrace, respectively, and a = 47 A, we estimate, 
from the observed periodicity (Lv = 635 A), a facet edgc energy to be - 0.0035 eV/A. This should 
be compared with the step free energy difference of - 0.004 eV/A [4] between a step on the 
[2111 azimuth in the (7x7) and the (Ixl) phase, which is determined independently from step 
meandering measurements, because the facet edge is formed by converting a (Ixl) step into a 
(7x7) step. The good agreement provides a quantitative supp0l1 of thc proposed model. 

As the temperature is lowered further, i1f(T) becomes negative and continues to 

decrease. Consequently, the (7x7) terraces in every period increase their sizes, decreasing I while 
maintaining the periodicity L" to reduce the surface energy at the expense of the elastic energy. It 
proceeds until the most favorable facet structure is fornled with a facet angle of 12.7°, as shown 
in Fig. 3c. Because the same facet structure is formed in all surface patterns, it is mandatory for 
the facet width to increase linearly with increasing miscut angle when the periodicity is fixed. 
The second transition step of fOlming the stable facet must be accompanied by a transition from 
single to double bi-Iayer step, as indicated by the final double-step-height of 6.3 A. The single-to
double step transition is also confirmed by an independent check on step density. The total 
number of steps in the final patterns with ordered facets is consistently found to be half of that in 
the original surface. 

Several additional evidence support the conclusion that there are two steps involved in 
the faceting transition, which define respectively two separate length scales, the periodicity and 
facet width of the ordered patterns. If the final patterns were formed directly without the first 
step, energy minimization with respect to periodicity (L) under the constraint of constant facet 
angle (¢ = 12.7°) would lead to the following relationship of periodicity and miscut angle (8), 

Lo = Jiao[sin( tan e ;r)rJ . Consequently, the periodicity would decrease drastically with 
tan¢ 

increasing miscut angle in the range from 0.3° to 6°, as shown in Fig. 2. The existence of two 
transition steps is also supported by the following experiment. The surfaces are first slowly 
cooled down to an intermediate temperature (-780°C) slightly below the first ordering 
temperature T2, and then rapidly quenched to low temperature. The final surfaces exhibit the 
same universal periodicity (resulting from the first tracsition step) but different facet structure. 
The fast quenching rate in the second stage makes the second transition, i.e., the single-to-double 
step transition, incomplete. The facets contain a mixture of single and double bi-Iayer-height 
steps. 

Conclusion 

We have demonstrated the self-organized pattern formation on vicinal Si(I 11) surfaces 
miscut toward the [211] direction. The patterns consist of a periodic array of alternating surface 
structural domains of the 7x7 reconstructed terraces and high-step-density facets. Most 
important, the length scales of the pattellls can be controlled with a universal periodicity and 
linearly increasing facet width with increasing miscul angle. Such well-ordered patterns may be 
used as templates for subsequent nanofabrication. We propose a two-step faceting transition 
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model to explain the self-organization process. The first step, dominated by minimization of 
elastic energy, defines the universal periodicity; the second, dominated by minimization of facet 
energy, produces a common facet structure and controls the facet width. Future real-time 
experiments (such as low energy electron microscopy) can be applied to reveal the detailed 
dynamics of such a two-step faceting transition. 
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