
UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

Performance Analysis Integration in the Uintah Software
Development Cycle

J. Davison de St. Germain1, Alan Morris1, Steven G. Parker1,

Allen D. Malony2, and Sameer Shende2

1 School of Computing,
University of Utah, Salt Lake City, Utah 84112

2 Department of Computer and Information Science,
University of Oregon, Eugene, Oregon 97403

Abstract.

The increasing complexity of high-performance computing environments and program­

ming methodologies presents challenges for empirical performance evaluation. Evolving

parallel and distributed systems require performance technology that can be flexibly con­

figured to observe different events and associated performance data of interest. It must

also be possible to integrate performance evaluation techniques with the programming

paradigms and software engineering methods. This is particularly important for tracking

performance on parallel software projects involving many code teams over many stages

of development. This paper describes the integration of the TAU and XPARE tools in the

Uintah Computational Framework (UCF). Discussed is the use of performance mapping

techniques to associate low-level performance data to higher levels of abstraction in UCF

and the use of performance regression testing to provides a historical portfolio of the evo­

lution of application performance. A scalability study shows the benefits of integrating

performance technology in building large-scale parallel applications.

Keywords: parallel, performance, software, applications

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

1 Introduction

Modern scientific simulations have become incredibly complex. It is not uncommon for

high-performance software systems to have large development teams involving person­

nel across a broad range of expertise who work simultaneously on different parts of the

system. In these programming environments, software developers increasingly turn to

industrial tools for managing the complex software process. Tools for revision control,

automated testing, and bug tracking are now commonplace. Unfortunately, tools to help

achieve the highest performance possible over a broad range of inputs and hardware con­

figurations are not commonly available. As a result, many software development efforts

leave performance evaluation and improvement until the end of a long, many-stage de­

velopment process. Even if performance is studied early in development, tracking the

performance of the system as new features are added is often too time-consuming. While

the complexity of the software development process may justify these engineering deci­

sions. increased sophistication in high-performance parallel software and platforms rarely

reduces performance complexity as development and use of the software proceeds.

Certainly, one very serious problem that arises is when developers of parallel scien­

tific software make design decisions without knowledge or understanding of the perfor­

mance ramifications. Any code decision, however localized, may have significant impact

on performance overall. These performance influences can be difficult to observe and

subtle to understand. If a performance engineering methodology is not incorporated in

the software design and development process, it will be extremely difficult to achieve the

high-performance goals of the project over its lifetime. Moreover, if the methodology is

not adequately supported by flexible and robust performance tools, it will be difficult to

address all performance problems that arise.

University of U tah Institutional Repository
Author Manuscript

2

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

In this paper, we report on our efforts to integrate performance analysis capabilities

into one such complex scientific software system: the Uintah Computational Framework.

These capabilities support a performance engineering methodology that augments Uin­

tah’s current software design process. We describe the Uintah system in sufficient de­

tail to highlight the challenges we have faced in performance measurement and analysis,

and in tracking, maintaining, and improving Uintah performance. The TAU and XPARE

tools we developed for Uintah performance engineering are then discussed in detail. We

demonstrate their benefits to Uintah performance analysis and improvement with several

examples. Finally, we outline our plans for future work.

2 Background and Motivation

In 1997, the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) [1]

was created at the University of Utah to focus specifically on providing state-of-the-art,

science-based tools for the numerical simulation of accidental fires and explosions, espe­

cially within the context of handling and storage of highly flammable materials. C-SAFE

was created by the Department of Energy’s Accelerated Strategic Computing Initiative’s

(ASCI) Academic Strategic Alliance Program (ASAP) [2].

C-SAFE’s objective is to build a problem-solving environment in which fundamental

chemistry and engineering physics are coupled fully with non-linear solvers, optimiza­

tion, computational steering, visualization and experimental data verification. Such a sys­

tem would allow better evaluation of the risks and safety issues associated with fires and

explosions. However, the software needed to model such real-world scientific and engi­

neering problems is very complex, and is further compounded when multiple simulation

codes must work together. Likewise, achieving high performance on large-scale computer

systems is a necessary, but non-trivial goal.

University of U tah Institutional Repository
Author Manuscript

3

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

C-SAFE’s Uintah Problem Solving Environment [3] is a massively parallel, compo­

nent-based, problem solving environment (PSE) designed to simulate large-scale scien­

tific problems, while allowing the scientist to interactively visualize, steer, and verify sim­

ulation results. Uintah is derived from the SCIRun3 PSE [4-7], adding support for a more

powerful component model on distributed-memory parallel computers. The Uintah PSE is

being developed specifically to study interactions between hydrocarbon fires, structures,

and high-energy materials (explosives and propellants), such as those shown in Figure 1.

In designing the Uintah software system, we focused on three guiding properties. First,

the complexities of code creation for parallel machines should (as much as possible) be

hidden from the scientist. Second, complex simulation components developed by third

parties should be tools available for scientists to employ. And third, the scientist should

be able to visually monitor and steer his or her simulation while it is running. A software

environment that efficiently integrates these properties into a usable system allows scien­

tists to effectively create and use complex simulations in an interactive, exploratory way.

The Uintah PSE is such a system. It allows scientists and engineers to focus on algorithm

development and data analysis rather than details of the underlying software architecture,

without sacrificing the ability to realize the full potential of large parallel computers.

While Uintah is provides a general framework in which a wide variety of large scale,

massively parallel simulations can be conducted, the specific problem that has driven its

creation is the modeling of the interactions between hydrocarbon fires, structures and

high-energy materials (explosives and propellants), as shown in Figure ??. In order to

produce realistic simulations of these problems, we must utilize large-scale parallel com­

puters at maximum efficiency. For the largest simulations, we use DOE ASCI computing

3 Pronounced “ski-run.” SCIRun derives its name from the Scientifi c Computing and Imaging (SCI) Institute at the
University of Utah.

University of U tah Institutional Repository
Author Manuscript

4

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

resources consisting of thousands of processors. A typical simulation consists of billions

of degrees of freedom or more.

During simulation software development at C-SAFE, the need for performance anal­

ysis became very apparent. In particular, performance measurement and analysis tools

were required for three main tasks:

1. Optimization of code kernels for maximum serial performance (micro tuning).

2. Analysis of parallel execution bottlenecks (scalability tuning).

3. Understanding the performance impacts of code modifications over the course of de­

velopment (performance tracking).

By integrating tools to address these tasks in the Uintah PSE development process, we

have created a scalable simulation environment for C-SAFE problems where performance

of the overall environment is high and will not diminish unexpectedly due to evolution of

the Uintah code.

3 Uintah Architecture

The Uintah PSE provides a component-based environment for developing parallel sci­

entific applications. Uintah is based on the component architecture being developed by

the Common Component Architecture (CCA) Forum. The CCA Forum [8] was estab­

lished to specify a software component architecture that could address the needs of high-

performance computing. The CCA architecture aims to provide higher performance, ex­

plicit support for multi-dimensional arrays, and support for parallelism. Uintah is a re­

search vehicle for implementing these ideas and for exercising their efficacy on complex

scientific applications, such as the C-SAFE simulations.

Solving a typical C-SAFE problem involves running multiple large-scale physically

coupled simulations. For example, to investigate the effects of fire on metal structures,

University of U tah Institutional Repository
Author Manuscript

5

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

a fluid-dynamics-based combustion model might be coupled with a particle-based solid

mechanics simulation. The simulation models may involve representations of size 109 fi­

nite volume cells and 108 solid material points. To handle the large number of operations

necessary to process such immense datasets, we have designed the Uintah Computational

Framework (UCF). The UCF is the foundation upon which all C-SAFE simulation com­

ponents are developed.

The UCF is a set of components and classes that build on the Uintah component

model, adding capabilities such as semi-automatic parallelism, automatic checkpoint/restart,

load-balancing mechanisms, resource management, and scheduling. The UCF exposes

flexibility in dynamic application structure by adopting an execution model based on

software or “macro” dataflow. Computations are expressed as directed acyclic graphs of

tasks, each of which consumes some input and produces some output (input of some fu­

ture task). These inputs and outputs are specified for each patch in a structured grid. Tasks

are organized in a UCF data structure called the task graph.

In natural agreement with the functional nature of its pure macro-dataflow execution

model, the UCF presents developers with an abstraction of a global single-assignment

memory, with automatic data lifetime management and storage reclamation. Storage is

abstractly presented to the scientific programmer as a dictionary mapping names to val­

ues. The value associated with a name can be written only once, and once written is com­

municated by UCF to all tasks awaiting that value. Values are typically array-structured.

Communication is scheduled by a local scheduling algorithm that approximates the true

globally optimal communication schedule. Because of the flexibility of single-assignment

semantics, the UCF is free to execute tasks close to data or move data to minimize future

communication.

University of U tah Institutional Repository
Author Manuscript

6

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

The UCF storage abstraction is sufficiently high-level that it can be mapped efficiently

onto both message-passing and share-memory communication mechanisms. Threads shar­

ing a memory can access their input data directly; single-assignment dataflow semantics

eliminate the need for complex locking of values. The UCF is free to optimize allocation

of physical memory to minimize remote memory accesses. Threads running in disjoint ad­

dress spaces communicate by message-passing protocol, and the UCF is free to optimize

such communication by message aggregation. Tasks need not be aware of the transports

used to deliver their inputs and, thus, the UCF has complete flexibility in control and data

placement to optimize communication both between address spaces and within the shared

ccNUMA memory hierarchy of the Origin 2000 (or other SMP-based distributed memory

supercomputers). Solving this optimization problem for C-SAFE simulations is difficult

and is a subject of ongoing investigation.

An example UCF taskgraph is shown in Figure ??. Ovals represent tasks, each of

which is a simple array algorithm and easily treated by traditional compiler array opti­

mizations. Edges represent named values stored by the UCF. Solid edges have values de­

fined at each material point (Particle Data) and dashed edges have values defined at each

grid vertex (Grid Data). Variables denoted with a prime (’) have been updated during the

time step. The figure shows a slice of the actual Uintah Material Point Method (MPM)

task graph concerned with advancing Newtonian material point motion on a single patch

for a single timestep.

4 Performance Technology Integration

The Uintah PSE and the UCF present interesting challenges to performance analysis tech­

nology and its integration. The diversity of the Uintah software, including the UCF mid­

dleware and simulation code modules, and Uintah’s portability objectives requires per­

University of U tah Institutional Repository
Author Manuscript

7

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

formance instrumentation and measurement tools that are both cross-language and cross­

platform. The performance system must also work at large scales, and be able to analyze

performance data captured for the different execution modes (shared-memory, message

passing, mixed-mode) that Uintah supports. Perhaps the most important concern is be­

ing able to relate multi-level performance data to the high-level task abstractions used

within Uintah for simulation programming and during execution by the UCF for task

graph scheduling and storage management. Without this capability, it would be extremely

difficult to piece apart performance effects across UCF levels and to identify the simula­

tion components responsible for different performance behaviors.

4 .1 T a u Performance System

Performance technology integration in the Uintah PSE is based on the T a u performance

system [9,10]. T a u provides robust technology for performance instrumentation, mea­

surement, and analysis for complex parallel systems. It targets a general computation

model consisting of shared-memory computing nodes where contexts reside, each pro­

viding a virtual address space shared by multiple threads of execution. The model is

general enough to apply to many high-performance scalable parallel systems and pro­

gramming paradigms. Because T a u enables performance information to be captured at

the node/context/thread levels, this information can be mapped to the particular parallel

software and system execution platform under consideration.

As shown in Figure ??, Tau supports a flexible instrumentation model that applies at

different stages of program compilation and execution. The instrumentation targets mul­

tiple code points, provides for mapping of low-level execution events to higher-level per­

formance abstractions, and works with multi-threaded and message passing parallel com­

putation models. Automatic source instrumentation for C, C++, and Fortran languages

University of U tah Institutional Repository
Author Manuscript

8

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

is implemented using the Program Database Toolkit (PDT) [11]. Instrumentation code

makes calls to the T a u measurement API. The T a u measurement library implements

performance profiling and tracing support for performance events occurring at function,

method, basic block, and statement levels during execution [12]. Performance experi­

ments can be composed from different measurement modules (e.g., hardware performance

monitors) and measurements can be collected with respect to user-defined performance

groups. The T a u data analysis and presentation utilities offer text-based and graphical

tools to visualize the performance data as well as bridges to third-party software, such as

Vampir [13] for sophisticated trace analysis and visualization.

4 .2 T a u Performance Mapping in Uintah

To evaluate the performance of Uintah applications, we selectively instrument at the

source level and the message passing library level. Source-level instrumentation occurs at

subroutine and method boundaries, as well as at important code sections using T au user-

defined timers (with start/stop semantics) to highlight the time spent in groups of state­

ments. Message passing instrumentation (using a MPI interposition library based on PMPI

[14]) shows both execution time spent in message communication and messaging behav­

ior with respect to application level routines. Figure ?? shows two profiles of the execution

time of different tasks within the UCF’s parallel scheduler for an MPI-only run. The dis­

plays were created by TAU’s parallel profile visualizer, Racy, which can show full profile

details across all threads of execution. Here, the right views show the detailed perfor­

mance profile on “n,c,t (node,context,thread) 0,0,0” (i.e., MPI process with rank 0). The

left views show performance for all of the MPI processes in bargraph form.

To generate the top two views, we placed instrumentation in the MPIScheduler class

and the MPI library. Clearly, Task execution [MPIScheduler:execute()] (green bar) takes

University of U tah Institutional Repository
Author Manuscript

9

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

up a significant chunk of the overall execution time, 79.91% of the total (exclusive) on

MPI process 0. The time spent in MPI .Waitall() and MPISchedule:: gatherParticles is also

of significance, but the other routines are of less consequence. Unfortunately, these top

two views give only a rough breakdown of UCF performance. While it is important to see

a high percentage of time being spent executing tasks, what the scientist wants to know

additionally is the distribution of the overall task execution time among the different types

of tasks performed. While more detailed instrumentation (using user-defined events and

tracing) can show each instance of task execution, standard instrumentation mechanisms

have no means to identify task semantics (i.e., from what simulation component the tasks

were produced). To understand TAU’s solution to this problem, we need to describe how

UCF operates in more detail.

During the computation, many individual particles are being partitioned across pro­

cessing elements (processes or threads) and worked on by the simulation components rep­

resented in the task graph. As work is performed on the particles, a task instance is created

and scheduled. Each task instance corresponds to some simulation operation (task), such

as interpolating particles to the grid in the Material Point Method, and its execution is

controlled by its task graph dependencies. We can give each task instance a name (e.g.,

SerialMPMr.interpolateParticlesToGrid) that identifies its domain-specific character in

the computation (i.e., its specific simulation task relationship). The the number of task

types is finite and is typically less than twenty in Uintah applications. In contrast, there

are a large number of task instances created and executed during the computation. The

association of a task type with a task instance occurs at a time different from when the

task instance is finally scheduled and executed.

Thus, to provide the desired performance view, we must map the performance of each

individual task instance to the task type to which it belongs and then accumulate the per­

University of U tah Institutional Repository
Author Manuscript

10

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

formance data at the task level. Using T a u ’s Semantic Entity, Association, and Attributes

(SEAA) model of performance mapping [15], we form an association during initialization

between a timer for each task (the task semantic entity) and the task name (its semantic

attribute). Then, while processing each task instance in the scheduler, a method to query

the task name (stored within the task instance object) is invoked and the address of the

task name (a static character string) is returned. Using this address, we do an external map

lookup (implemented as a hash-table) and retrieve the address of the timer object (i.e., a

runtime semantic association). Once the timer is known, it can be started and stopped

around the code segment that executes the task instance.

The bottom two views in Figure ?? show the results of this task mapping performance

analysis in Uintah. Clearly, there is a significant benefit of the SEAA approach in present­

ing performance data with respect to high-level semantics of the Uintah application. The

performance of all five simulation model components (i.e., tasks) are now clearly distin­

guished in the profile. With the generation of event traces, the benefits are even more dra­

matic as this task mapping allows distinct phases of computation to be highlighted based

on task semantics. This can be seen in the trace visualization in Figure ??. Although we

are looking at individual task instances being executed, the color-coded mapping allows

us to view their performance data at a higher level.

4.3 Performance Experiment Reporting and Alerting

With the integration of performance measurement support in the Uintah software sys­

tem comes the ability to analyze performance throughout Uintah’s development lifetime.

Typically, performance analysis is done ad hoc, at the convenience of the developer, and

only when time permits. When such performance practice is applied across a large, multi­

person effort such as C-SAFE, the resulting “performance portfolio” becomes scattered

University of U tah Institutional Repository
Author Manuscript

11

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

and tends to report performance information only after significant stages of development

have been accomplished and software committed. The downside of such a performance

methodology is a disengagement of performance knowledge from key software design

decisions. The goal of our work is to more tightly couple the reporting of performance

experimentation results with timely software testing and alerting to performance prob­

lems. We have created the XPARE (eXPeriment Alerting and REporting) system for this

purpose.

The Uintah software system was engineered with a regression testing harness to regu­

larly evaluate correctness. At these times, minimal performance benchmarking would be

conducted to determine if total execution time was seriously degraded. If so, the tester

would notify software developers, but left it up to them to manually run specific instru­

mented tests to investigate where the performance problems lay. The XPARE system aug­

ments the regression tester to conduct a range of performance experiments with fully-

instrumented code modules. Multiple experiments can be conducted with different instru­

mentation layouts to exercise different code regions and behaviors. The Tau performance

tools are used for measurement and analysis, allowing execution time and hardware statis­

tics to be used to construct a complete performance portrait.

Once the performance experiments have been conducted, XPARE will automatically

interrogate the performance data to determine not only if the overall code has run for

longer than expected, but also which tasks and profiled procedures are potential suspects.

XPARE accomplishes this by applying alerting “rulesets” (performance difference thresh­

olds) to a historical, multiple experiment performance database. Experiment sets can be

selected by the user from the database for evaluation. For each experiment set, specific

performance data can be chosen for analysis. Performance regression testing is then done

University of U tah Institutional Repository
Author Manuscript

12

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

by comparing the current performance with that in the experiment set, using the alerting

rulesets constructed by the user to determine performance violations worthy of report.

The XPARE system architecture is shown in Figure ??, with images of the web-based

interfaces for experiment selection, performance data selection, and ruleset definition.

As also shown, results of regression analysis are automatically reported to the software

developers, who can explore the performance data more fully through the performance

reporter, whether or not significant performance shifts have been detected. Because the

performance database contains prior performance history, a panoramic view of perfor­

mance change can be scrutinized based not only on code alteration, but also platform,

choice of compiler, different optimizations, and other performance factors.

By scheduling regular performance regression tests, performance knowledge can be

closely linked with the Uintah software development cycle. Currently, we use XPARE to

run weekly performance tests of small to medium-scale experiments, and monthly evalua­

tions of full-scale experiments. The general construction of XPARE will allow it to easily

extend to changes in the Uintah code base and to incorporate new simulation components

as they become available.

5 Performance Studies

Contemporary efforts in gathering performance data have focused on function by func­

tion analysis. C-SAFE has taken the somewhat novel approach of gathering performance

statics on an algorithmic basis. This approach provides four major benefits.

1. Due to the use of the task abstraction in the UCF, it is straightforward to manually

insert the profiling code at one location in the code to capture data on the performance

of all tasks.

University of U tah Institutional Repository
Author Manuscript

13

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

2. The performance characteristics of each of the algorithmic tasks is clearly displayed

in relation to the other simulation tasks.

3. Scientific programmers are allowed to focus on making performance improvements at

an algorithmic level.

4. Uintah Computational Framework developers can easily find performance bottlenecks

that are not directly associated with application codes (e.g.; MPI communications, task

scheduling overhead, and data I/O).

The first step in optimizing Uintah software was to manually instrument the code

base with hooks to the Tau system. The event-traces generated were converted to the

Vampir trace data format and visualized using Vampir. Figure ?? depicts one of the first

visualizations of an early version of the Uintah code running an MPM simulation on 32

processors. The figure shows six time steps with the black lines between the time steps

depicting the large MPI communications necessary to transmit boundary data. Listed on

the right hand side of the window are each of the specific tasks, delineated by major

software component (e.g.; SerialMPM, MPMICE, DataArchiver, Contact, etc.) followed

by specific task name (e.g.; computeStressTensor, relocateParticles, etc.) Each task can

be color coded to easily view its location in the time line. On the left hand side are rows

displaying time lines for each process, running in parallel on individual processors in this

simulation run.

When first viewed, this diagram provided a number of “Aha!” insights about the gen­

eral behavior of the simulation. These insights included understanding:

1. the load imbalances we were experiencing with a rudimentary load balancer;

2. that the computeStressTensor task constituted a large portion of the execution time;

and

University of U tah Institutional Repository
Author Manuscript

14

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

3. that there was a significant amount of MPI overhead distributed throughout the com­

putation.

Figure ?? is a zoomed-in view of a single time step in the MPM Simulation. This view

provided insight into the parallelization of each of the tasks in a single time step. It also

provided us with a visual feedback for how the processors where lining up and how much

work each was doing.

Similarly, Figure ?? depicts five time steps of the “Arches” fire simulation within

the UCF. This figure portrays explicitly how much time is being spent in the “pressure

solving” portion of the simulation. (The pressure solve calculation utilizes a PETSc linear

solver.) Figure ?? is a close up view of the PressureSolver task within the time step and

reveals that a major portion of the solver’s time is spent in MPI calls. This visualization

has led to focusing performance enhancement resources on determining the best way to

use PETSc solvers (including exploring different pre-conditioners).

Once candidate tasks are identified as potential performance bottlenecks, the tasks are

inspected from both an algorithmic view and from an implementation view. At this point,

it is sometimes necessary to perform additional functional instrumentation of the code. We

used this method of performance analysis from late 2000 through the first half of 2001 to

investigate performance problems in the Uintah software. This lead to the parallel scaling

improvements seen in Figure ??. Successive lines on the graph show the performance

improvements after finding and fixing performance bottlenecks.

After directing our efforts at improving the Unitah scalability up to 2000 processors,

our focus changed to other aspects of code development. It was at this point that we rec­

ognized the need for the XPARE system. Once implemented, it has allowed us to monitor

the performance of individual simulation pieces in addition to the overall performance.

University of U tah Institutional Repository
Author Manuscript

15

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

XPARE has been developed with the goal of keeping the Uintah system efficient as we

expand the system and add new features.

6 Lessons Learned and Future Work

The integration of performance measurement in the UCF scheduling component has been

extremely useful in exposing bottlenecks and inefficiencies. While the performance anal­

ysis thus far has mainly been done post-mortem, Uintah applications will be increasingly

adaptive in the future and will require UCF to implement dynamically adjusting schedul­

ing policies. We plan to develop online performance query and feedback capabilities in

Tau that will support adaptive Uintah execution. Also, to enhance online performance

analysis, we are developing a runtime infrastructure to visualize dynamic, large-scale per­

formance data using the SCIRun visualization environment.

We will also continue to build on the success of performance mapping in Uintah to

attribute execution costs from the simulation component parts. We have recently encoun­

tered the need for more flexible performance mapping specification that allows multiple

mappings attributions (e.g., for mapping execution costs from component parts to higher-

level tasks and patches) to be active simultaneously. The current rudimentary means to

support these mappings will be implemented in more robust forms in the near future.

Not only is the UCF a target for performance integration, but the individual simulation

components can benefit from performance analysis. We will begin to work more closely

with the developers of C-SAFE simulation component software to integrate performance

measurement, analysis, and regression testing in their codes.

With the completion of a mixed-mode UCF implementation will come the need for

performance analysis of integrated multi-threaded and message-based execution. While

preliminary tests have demonstrated Ta u ’s ability to observe thread and communication

University of U tah Institutional Repository
Author Manuscript

16

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

events in mixed-mode Uintah execution, it will be important to develop techniques for

cross-mode sharing of instrumentation information so that integrative performance map­

ping and analysis is possible.

We will greatly enhance the existing prototype XPARE system to play an increasingly

important role in Uintah software performance engineering in the future. In particular,

we will concentrate on XPARE’s performance database which is currently implemented

in an ad hoc manner. The Tau project is building a performance database framework

(PerfDBF) that will be employed by XPARE for more flexible cross-experiment data

query and analyses. PerfDBF will allow for the set of analysis operations to be easily

extended by UCF and simulation component developers. XPARE’s alerting and reporting

tools can then incorporate these expanded analysis options to construct more sophisticate

threshold functions and performance data processing for generating performance reports.

7 Acknowledgments

This work was supported by the DOE ASCI ASAP Program. The work at Oregon was

supported by a contract from the DOE 2000 program (Agreement No. DEFC 0398 ER

259 986) and a sub-contract from the University of Utah’s DOE C-SAFE ASCI center

(Agreement No. B341493). C-SAFE visualization images were provided by Kurt Zim­

merman and Wing Yee. Datasets were created by Scott Bardenhagen, Jim Guilkey, and

Rajesh Rawat. The DOE ASCI ASAP program also provided computing time for the

simulations shown.

University of U tah Institutional Repository
Author Manuscript

17

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

References

1. Center for the Simulation of Accidental Fires and Explosions.

http://www.csafe.utah.edu.

2. Academic Strategic Alliances Program, http://www.llnl.gov/asci-alliances.

3. Davison de St. Germain, J., McCorquodale, J., Parker, S.G., Johnson, C.R.: Uintah:

A Massively Parallel Problem Solving Environment. HPDC’OO: Ninth IEEE Interna­

tional Symposium on High Performance and Distributed Computing (2000)

4. Parker, S.G., Beazley, D.M., Johnson, C.R.: Computational steering software systems

and strategies. IEEE Computational Science and Engineering, 4(4) (1997) 50-59

5. Parker. S.G., The SCIRun Problem Solving Environment and Computational Steering

Software System. PhD thesis, University of Utah (1999)

6. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for

computational steering. Proc. Supercomputing ‘95. IEEE Press (1995)

7. Parker, S.G., Weinstein, D.M., Johnson C.R.: The SCIRun computational steering

software system. In: Arge, E., Bruaset, A.M., Langtangen, H.P., (eds.): Modern Soft­

ware Tools in Scientific Computing, Birkhauser Press (1997) 1-44

8. Common Component Architecture Forum, http://www.cca-forum.org.

9. Malony, A., Shende, S.: Performance Technology for Complex Parallel and Dis­

tributed Systems. In: Kotsis, G., Kacsuk, P. (eds.): Distributed and Parallel Systems

From Instruction Parallelism to Cluster Computing. Proc. 3rd Workshop on Dis­

tributed and Parallel Systems, DAPSYS 2000, Kluwer (2000) 37-46

10. Shende, S., Malony, A., Cuny, J., Lindlan, K., Beckman, P., Karmesin, S.: Portable

Profiling and Tracing for Parallel Scientific Applications using C++. Proc. SIGMET-

RICS Symposium on Parallel and Distributed Tools, SPDT’98, ACM, (1998) 134­

145

University of U tah Institutional Repository
Author Manuscript

18

http://www.csafe.utah.edu
http://www.llnl.gov/asci-alliances
http://www.cca-forum.org

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

11. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Ras­

mussen, C.: Tool Framework for Static and Dynamic Analysis of Object-Oriented

Software with Templates. Proceedings SC’2000, (2000)

12. Shende, S., Malony, A., Ansell-Bell, R.: Instrumentation and Measurement Strategies

for Flexible and Portable Empirical Performance Evaluation. Proc. International Con­

ference on Parallel and Distributed Processing Techniques and Applications, PDPTA

’2001, CSREA, (2001) 1150-1156

13. Pallas GmbH: VAMPIR: Visualization and Analysis of MPI Resources,

http ://www.pallas .de/pages/vampir.htm.

14. Message Passing Interface Forum: MPI: A Message Passing Interface Standard. Inter­

national Journal of Supercomputer Applications (Special Issue on MPI) 8(3/4) (1994)

15. Shende, S.: The Role of Instrumentation and Mapping in Performance Measurement.

Ph.D. Dissertation, University of Oregon (2001)

University of U tah Institutional Repository
Author Manuscript

19

http://www.pallas

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

Fig. 1. Visualization of two different simulations from C-SAFE. On the left is a simula­

tion of a heptane fire. On the right is a simulation of stress propagation through a block of

granular material. Each of these simulations were performed using the Uintah Computa­

tional Framework and were executed on 1000 processors.

20

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anusc:

University of U tah Institutional Repository
Author Manuscript

Figure 2: A Typical C-SAFE Problem

21

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

► Particle Data
► Grid Data
M Mass
X Position
V Velocity
a Stress
CO Constituents

Figure 3: An Example UCF Task Graph

22

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

TAIJ Performance System
Instrumented

Source Pre- Source Object Executable Binary Rewrite
Code processor Code Compiier Code Linker Code t J Dynamic

TT T p fi SmT 'libraries ■ 1 'I M ach in e

■ V i T „
Lun-Time Library Modules I TRACE

I

•a
£

Run-Time Libraiy Modules

1 i b a a 4
Profiling
Data Files

Profile
Groups

Function
Database

Statistics

Function
Callstack

Hardware
Counters

User-Level
Timers

Q
Event Traces
Event Tables

Racy
jRacy pprof DASCII

Report
Trace
Logs

merge
convert 1/

►Vampir

Figure 4: TAU Performance System Architecture

23

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

L 1 ^
I

University of U tah Institutional Repository
Author Manuscript

File Configure Help

H n ,c ,t 0,0,0 p ro file “ 3̂1
File Value Order Mode Help

10.88% □ ;
3.97% [
0.95%
0.70%
0.69%

n,c,t 0,0,0
Task execution [MPIScheduler::executeQ]
MPI_Waitall()
MPIScheduler::gatherParticles
MPI_Finalize()
MPI_Probe()
MPI_Type_indexedQ

0.54%|mainQ void (int, char **)
0.50% Initial Send Recv [MPIScheduler::executeQ]
0.35% M PIScheduler::scatterParticles
0.34% MPLTestsomeQ
0.29% | MPIJsend()
0.19%| Recv Dependency [MPIScheduler::executeQ]
0.17% [MPI_Allreduce()
0.14% | Topological Sort [MPIScheduler::executeQ]

File Configure

n,c,t 0,0,0 |
n,e,t 1,0,0 j
n,c,t 2,0,0 j
n,c,t 3,0,0 j
n,c,t 4,0,0 j
n,c,t 5,0,0 j
n,c,t 6,0,0 j
n,e,t 7,0,0 j

h M
Help ; F ile Value O rder Mode Help |

n ,c,t 0,0,0 J ,
I

20.21% [Seria !M PM ::in terpolatePartic lesToG rid [M P IS chedu le r::execu te ()]
19.83% | S eria lM P M ::in te rpo la teToP artic lesA ndU pdate [M P IS chedu le r::execu teQ] 1

16.65% | S eria lM P M ::com pute ln terna lForce [M P IS chedu le r::execute ()]
13.02% | Seria lM P M ::com puteS tressTensor [M P IS chedu le r::execu te ()]
12.72% M PIW aita llQ

7.11% l
3.40% □

0.97% |
0.66% [
0.60% |
0.57% [
0.50%]

S eria lM PM ::com pute ln terna lH ea tR ate [M P IS cheduler::executeQ]
M PIScheduler: :gatherP artic les
MPI FinalizeQ
MPI_Probe()
M P I_TypeJndexed()
mainQ vo id (in t, char **)
Initia l Send Recv [M P IS chedu le r::execu te ()]

JJ
close

Figure 5: TA\J Performance Profiles Without Mapping (top) and With Mapping (bottom)

24

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

L ■ £
University of U tah Institutional Repository
Author Manuscript

Performance
Reporter

Alerting
Setup

Comparison
Tool

Regression
Analyzer

j Histogram: |--------— |

DataArchiver::outputReductioi

StdOev:

Histogram:

StdDev:

Histogram:

MPiScheduler::executeQ

r rrn'_. n i[--n"n
08-13-01 :
20:45:03

bigbar_250patch
08-13-01 :
20:45:03

StdDev:

_§5j__dill
MPIJsendQ

StdDev:

bigbar_250patch I*1
08-13-01 :
20:45:03

jf1

Figure 6: XPARE System Architecture and Tools

25

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

L ■ £
1

University of U tah Institutional Repository
Author Manuscript

Timeline
<5.0 us - 2 : 49 . 03 2 :49 .0 3)

T A U — D E F A U L T
■MPI
■ T A U _ U S E R
S e i i a l M P M : :,
I C E ::a c t u a]
I C E ::a c t u a l l y C o m p u t e S t a b l e T i m e s t e p

■ S e r i a l M P M : :i n t e r p o l a t e P a r t i c l e s T o G r i d
S M P M I C E : :i n t e r p o l a t e H C T o C C _ 0
■ M P M I C E : : c o input e E q u i l i b r a t i o n Pre s sure
■ ICE : : c output eF a c e C e n t e r e d V e l o c i t i e s
I C E : :a d d E x c h a n g e C o n t r i b u t i o n T o F C V e l

■ M P M I C E : :H E C h e m i s t r y
ICE: :c o m p u t e D e 1 P r e s s A n d Up d a t e P r e s s C C

■C ontact: :e x M o m l n t e r p o l a t e d
■S er i a 1 M P M : :c o m p u t e S t r e s s T e n s o r
M PMI C E: :in ter p o l a t e M a s s B u r n F r a c t i o n ToHC

■ICE: :c o mp u t eP r e s s F C
I C E : :a c c u m u l a t e M o m e n t u m S o u r c e S i n k s
I C E : :a c c u m u l a t e E n e r g y S o u r c e S i n k s
M P M I C E ::i n t e r p o l a t e P r e s s C C T o P r e s s H C

■ M P M IC E : :i n t e r p o 1 a t e P A n d G r a d P
c o m p u t e l n t e r n a l F o r c e
c o m p u t e l n t e r n a l H e a t R a t e
s o l v e E q u a t i o n s M o t i o n
s o l v e H e a t E q u a t i o n s

■ S e r i a l M P M
■ Se ri a 1 M P M
S e r i a l M P M
S e r i a l M P M
Seri a 1M P M
Sex'ialMPM: : i n t e g r a t e T e m p e r a t u r e R a t e

■ M P M I C E : :i n t e r p o l a t e N C T o C C
ICE: :c o mp u t e L a g r an g i an V a l ue s

■ M P M I C E : :d o C C M o m E x c h a n g e
M P M I C E : :i n t e r p o l a t e C C T o N C

■C ontact: :e x M o m l n t e g r a t e d
■ S e r i a l M P M : :i n t e r p o l a t e T o P a r t i c l e s A n d U p d a t e
■S e r i a 1 MP M: : c a r r y F o r w a r d V a r i a b l e s
I C E : :a d v e c t A n d A d v a n e e l n T i m e
R el oc a t e : :
D a t a A r c h i v e r : :o u t pu t

E 1 7

Figure 7: MPM Simulation Performance (TAU / Vampir)

26

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

■II

; ■ 1 ■
l : u

I ■ : 1 1 S
l : ■ 1 s
i m 1 ■

■ i m
! ■ ■ !

1 ■ ■
l ■ : i ■

! ■ i i ■
1 1 > i 1
■ : 1 1
1 : l 1 1 ■
■ : i i ■

! | ■
1 ! m i
1 i ■
I : ■ 1 ■
■ : I ■
■ : i 1 1 1

l : l ■
■ \ i m

1 H H
: l
: ■ I | |
: l l
: I
I
i I M i
! i ms

H I | M
! 1 H I

■ M P I
TAU_US ER
■ S e r i a l M P M : :i n t e r p o l a t e P a r t i c l e s T o G r i d
C o n t a c t : :e x M o m l n t e r p o l a t e d
■ S e r i a l M P M : :c o m p u t e S t r e s s Tens or
S e r i a l M P M : :c o m p u t e I n t e r n a I F o r e e
S e ri al MP M: :coittputelnternalHeatRate
C o n t a c t : :e x M o m l n t e g r a t e d

■ T A U _ R E C V _ M P I _ D A T A
M P M I C E : :i n t e r p o l a t e N C T o C C _ 0

■ M P M I C E : : c o m p u t e E q u i l i b r a t i o n P r e s s u r e
I C E : :coraputeFac e C e n t e r e d V e l o c i t i e s

■ I C E : :a d d E x c h a n g e C o n t r i b u t i o n T o F C V e l
M P M I C E : . H E C h e m i s t r y

■ICE: :c o mput eD e 1Pr e s s A n d U p d at ePr e s s CC
M P M I C E ::i n t e r p o l a t e M a s s B u r n F r a c t i o n T o N C
I C E : :c o m p u t e P r e s s F C
I C E ::accuraulateMomentufflSourceSinks
I C E ::a c c u m u 1 a t e E n e r g y S o u r c e S i n k s
M P M I C E ::i n t e r p o l a t e P r e s s C C T o P r e s s U C
M PMI CE : : interpolateEA*j<JGca^ p

■ M P M I C E : :d o C C M o m E x c h a n g e
M P M I C E : :i n t e r p o l a t e C C T o N C

■ I C E : :a d v e c t A n d A d v a n c e l n T i m e

Figure 8: MPM Simulation (Single Time Step)

27

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

INSTITUTIONAL REPOSITORY

THE UNIVERSl IY OF UTAH

University of U tah Institutional Repository
Author Manuscript

oc
0

s s
11II

20.0s
in.

40 . 0
■ H I

s
II

1
IJUI J

: OC
III

. 0 1
III.

: 20 . 0 mi
1 1■ IIIIS 5 i ^ B i '11iflH j! II 1
2 1■ II 1 !■ 111 i•••

•••
24| ii ^ ■ 1 II I II 1
25 |
2 6 j

I B 1 1 III 1 D 011 V 1 II II
■MPI

TAU_DEFAULT
ITAU_USER
■TAU_SCH EDUL ER
TAU_COMPILER

■TAU_R ECV_MPI_DATA
■SimControlRun
KTAU DATAWAREHOUSE

Properties::ComputeProps
ExplicitSolver: : initialGuess
Sc alarSolver: :BuildCoeffPred
Properties::ReComputeProps
Psolve::BuildCoeffPred
Psolve::BuildCoeffPPred

■P ressureSolver: :PressLinearSolvePred
Moment umSolver: :BuildCoeffPred
ExplicitSolver::interpECToCC

Figure 9: Arches Task Performance

2 8

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

15.0s 20.0s

■MPI
■TAU RECV MPI DATA
■P r e s s u r e S o l v e r : :Press Li ne arS olv eP r

Figure 10: Arches Task Zoomed In

29

UU
IR

A
uthor M

anuscript
UU

IR
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

Scalability
Material Point Method

of processors

Figure 11: Parallel Performance Evolution

30

