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Abstract.

The increasing complexity of high-performance computing environments and program­

ming methodologies presents challenges for empirical performance evaluation. Evolving 

parallel and distributed systems require performance technology that can be flexibly con­

figured to observe different events and associated performance data of interest. It must 

also be possible to integrate performance evaluation techniques with the programming 

paradigms and software engineering methods. This is particularly important for tracking 

performance on parallel software projects involving many code teams over many stages 

of development. This paper describes the integration of the TAU and XPARE tools in the 

Uintah Computational Framework (UCF). Discussed is the use of performance mapping 

techniques to associate low-level performance data to higher levels of abstraction in UCF 

and the use of performance regression testing to provides a historical portfolio of the evo­

lution of application performance. A scalability study shows the benefits of integrating 

performance technology in building large-scale parallel applications.
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1 Introduction

Modern scientific simulations have become incredibly complex. It is not uncommon for 

high-performance software systems to have large development teams involving person­

nel across a broad range of expertise who work simultaneously on different parts of the 

system. In these programming environments, software developers increasingly turn to 

industrial tools for managing the complex software process. Tools for revision control, 

automated testing, and bug tracking are now commonplace. Unfortunately, tools to help 

achieve the highest performance possible over a broad range of inputs and hardware con­

figurations are not commonly available. As a result, many software development efforts 

leave performance evaluation and improvement until the end of a long, many-stage de­

velopment process. Even if performance is studied early in development, tracking the 

performance of the system as new features are added is often too time-consuming. While 

the complexity of the software development process may justify these engineering deci­

sions. increased sophistication in high-performance parallel software and platforms rarely 

reduces performance complexity as development and use of the software proceeds.

Certainly, one very serious problem that arises is when developers of parallel scien­

tific software make design decisions without knowledge or understanding of the perfor­

mance ramifications. Any code decision, however localized, may have significant impact 

on performance overall. These performance influences can be difficult to observe and 

subtle to understand. If a performance engineering methodology is not incorporated in 

the software design and development process, it will be extremely difficult to achieve the 

high-performance goals of the project over its lifetime. Moreover, if the methodology is 

not adequately supported by flexible and robust performance tools, it will be difficult to 

address all performance problems that arise.
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In this paper, we report on our efforts to integrate performance analysis capabilities 

into one such complex scientific software system: the Uintah Computational Framework.

These capabilities support a performance engineering methodology that augments Uin­

tah’s current software design process. We describe the Uintah system in sufficient de­

tail to highlight the challenges we have faced in performance measurement and analysis, 

and in tracking, maintaining, and improving Uintah performance. The TAU and XPARE 

tools we developed for Uintah performance engineering are then discussed in detail. We 

demonstrate their benefits to Uintah performance analysis and improvement with several 

examples. Finally, we outline our plans for future work.

2 Background and Motivation

In 1997, the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) [1] 

was created at the University of Utah to focus specifically on providing state-of-the-art, 

science-based tools for the numerical simulation of accidental fires and explosions, espe­

cially within the context of handling and storage of highly flammable materials. C-SAFE 

was created by the Department of Energy’s Accelerated Strategic Computing Initiative’s 

(ASCI) Academic Strategic Alliance Program (ASAP) [2].

C-SAFE’s objective is to build a problem-solving environment in which fundamental 

chemistry and engineering physics are coupled fully with non-linear solvers, optimiza­

tion, computational steering, visualization and experimental data verification. Such a sys­

tem would allow better evaluation of the risks and safety issues associated with fires and 

explosions. However, the software needed to model such real-world scientific and engi­

neering problems is very complex, and is further compounded when multiple simulation 

codes must work together. Likewise, achieving high performance on large-scale computer 

systems is a necessary, but non-trivial goal.
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C-SAFE’s Uintah Problem Solving Environment [3] is a massively parallel, compo­

nent-based, problem solving environment (PSE) designed to simulate large-scale scien­

tific problems, while allowing the scientist to interactively visualize, steer, and verify sim­

ulation results. Uintah is derived from the SCIRun3 PSE [4-7], adding support for a more 

powerful component model on distributed-memory parallel computers. The Uintah PSE is 

being developed specifically to study interactions between hydrocarbon fires, structures, 

and high-energy materials (explosives and propellants), such as those shown in Figure 1.

In designing the Uintah software system, we focused on three guiding properties. First, 

the complexities of code creation for parallel machines should (as much as possible) be 

hidden from the scientist. Second, complex simulation components developed by third 

parties should be tools available for scientists to employ. And third, the scientist should 

be able to visually monitor and steer his or her simulation while it is running. A software 

environment that efficiently integrates these properties into a usable system allows scien­

tists to effectively create and use complex simulations in an interactive, exploratory way.

The Uintah PSE is such a system. It allows scientists and engineers to focus on algorithm 

development and data analysis rather than details of the underlying software architecture, 

without sacrificing the ability to realize the full potential of large parallel computers.

While Uintah is provides a general framework in which a wide variety of large scale, 

massively parallel simulations can be conducted, the specific problem that has driven its 

creation is the modeling of the interactions between hydrocarbon fires, structures and 

high-energy materials (explosives and propellants), as shown in Figure ??. In order to 

produce realistic simulations of these problems, we must utilize large-scale parallel com­

puters at maximum efficiency. For the largest simulations, we use DOE ASCI computing

3 Pronounced “ski-run.” SCIRun derives its name from the Scientifi c Computing and Imaging (SCI) Institute at the 
University of Utah.
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resources consisting of thousands of processors. A typical simulation consists of billions 

of degrees of freedom or more.

During simulation software development at C-SAFE, the need for performance anal­

ysis became very apparent. In particular, performance measurement and analysis tools 

were required for three main tasks:

1. Optimization of code kernels for maximum serial performance (micro tuning).

2. Analysis of parallel execution bottlenecks (scalability tuning).

3. Understanding the performance impacts of code modifications over the course of de­

velopment (performance tracking).

By integrating tools to address these tasks in the Uintah PSE development process, we 

have created a scalable simulation environment for C-SAFE problems where performance 

of the overall environment is high and will not diminish unexpectedly due to evolution of 

the Uintah code.

3 Uintah Architecture

The Uintah PSE provides a component-based environment for developing parallel sci­

entific applications. Uintah is based on the component architecture being developed by 

the Common Component Architecture (CCA) Forum. The CCA Forum [8] was estab­

lished to specify a software component architecture that could address the needs of high- 

performance computing. The CCA architecture aims to provide higher performance, ex­

plicit support for multi-dimensional arrays, and support for parallelism. Uintah is a re­

search vehicle for implementing these ideas and for exercising their efficacy on complex 

scientific applications, such as the C-SAFE simulations.

Solving a typical C-SAFE problem involves running multiple large-scale physically 

coupled simulations. For example, to investigate the effects of fire on metal structures,
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a fluid-dynamics-based combustion model might be coupled with a particle-based solid 

mechanics simulation. The simulation models may involve representations of size 109 fi­

nite volume cells and 108 solid material points. To handle the large number of operations 

necessary to process such immense datasets, we have designed the Uintah Computational 

Framework (UCF). The UCF is the foundation upon which all C-SAFE simulation com­

ponents are developed.

The UCF is a set of components and classes that build on the Uintah component 

model, adding capabilities such as semi-automatic parallelism, automatic checkpoint/restart, 

load-balancing mechanisms, resource management, and scheduling. The UCF exposes 

flexibility in dynamic application structure by adopting an execution model based on 

software or “macro” dataflow. Computations are expressed as directed acyclic graphs of 

tasks, each of which consumes some input and produces some output (input of some fu­

ture task). These inputs and outputs are specified for each patch in a structured grid. Tasks 

are organized in a UCF data structure called the task graph.

In natural agreement with the functional nature of its pure macro-dataflow execution 

model, the UCF presents developers with an abstraction of a global single-assignment 

memory, with automatic data lifetime management and storage reclamation. Storage is 

abstractly presented to the scientific programmer as a dictionary mapping names to val­

ues. The value associated with a name can be written only once, and once written is com­

municated by UCF to all tasks awaiting that value. Values are typically array-structured. 

Communication is scheduled by a local scheduling algorithm that approximates the true 

globally optimal communication schedule. Because of the flexibility of single-assignment 

semantics, the UCF is free to execute tasks close to data or move data to minimize future 

communication.
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The UCF storage abstraction is sufficiently high-level that it can be mapped efficiently 

onto both message-passing and share-memory communication mechanisms. Threads shar­

ing a memory can access their input data directly; single-assignment dataflow semantics 

eliminate the need for complex locking of values. The UCF is free to optimize allocation 

of physical memory to minimize remote memory accesses. Threads running in disjoint ad­

dress spaces communicate by message-passing protocol, and the UCF is free to optimize 

such communication by message aggregation. Tasks need not be aware of the transports 

used to deliver their inputs and, thus, the UCF has complete flexibility in control and data 

placement to optimize communication both between address spaces and within the shared 

ccNUMA memory hierarchy of the Origin 2000 (or other SMP-based distributed memory 

supercomputers). Solving this optimization problem for C-SAFE simulations is difficult 

and is a subject of ongoing investigation.

An example UCF taskgraph is shown in Figure ??. Ovals represent tasks, each of 

which is a simple array algorithm and easily treated by traditional compiler array opti­

mizations. Edges represent named values stored by the UCF. Solid edges have values de­

fined at each material point (Particle Data) and dashed edges have values defined at each 

grid vertex (Grid Data). Variables denoted with a prime (’) have been updated during the 

time step. The figure shows a slice of the actual Uintah Material Point Method (MPM) 

task graph concerned with advancing Newtonian material point motion on a single patch 

for a single timestep.

4 Performance Technology Integration

The Uintah PSE and the UCF present interesting challenges to performance analysis tech­

nology and its integration. The diversity of the Uintah software, including the UCF mid­

dleware and simulation code modules, and Uintah’s portability objectives requires per­
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formance instrumentation and measurement tools that are both cross-language and cross­

platform. The performance system must also work at large scales, and be able to analyze 

performance data captured for the different execution modes (shared-memory, message 

passing, mixed-mode) that Uintah supports. Perhaps the most important concern is be­

ing able to relate multi-level performance data to the high-level task abstractions used 

within Uintah for simulation programming and during execution by the UCF for task 

graph scheduling and storage management. Without this capability, it would be extremely 

difficult to piece apart performance effects across UCF levels and to identify the simula­

tion components responsible for different performance behaviors.

4 .1  T a u  Performance System

Performance technology integration in the Uintah PSE is based on the T a u  performance 

system [9,10]. T a u  provides robust technology for performance instrumentation, mea­

surement, and analysis for complex parallel systems. It targets a general computation 

model consisting of shared-memory computing nodes where contexts reside, each pro­

viding a virtual address space shared by multiple threads of execution. The model is 

general enough to apply to many high-performance scalable parallel systems and pro­

gramming paradigms. Because T a u  enables performance information to be captured at 

the node/context/thread levels, this information can be mapped to the particular parallel 

software and system execution platform under consideration.

As shown in Figure ??, Tau supports a flexible instrumentation model that applies at 

different stages of program compilation and execution. The instrumentation targets mul­

tiple code points, provides for mapping of low-level execution events to higher-level per­

formance abstractions, and works with multi-threaded and message passing parallel com­

putation models. Automatic source instrumentation for C, C++, and Fortran languages
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is implemented using the Program Database Toolkit (PDT) [11]. Instrumentation code 

makes calls to the T a u  measurement API. The T a u  measurement library implements 

performance profiling and tracing support for performance events occurring at function, 

method, basic block, and statement levels during execution [12]. Performance experi­

ments can be composed from different measurement modules (e.g., hardware performance 

monitors) and measurements can be collected with respect to user-defined performance 

groups. The T a u  data analysis and presentation utilities offer text-based and graphical 

tools to visualize the performance data as well as bridges to third-party software, such as 

Vampir [13] for sophisticated trace analysis and visualization.

4 .2  T a u  Performance Mapping in Uintah

To evaluate the performance of Uintah applications, we selectively instrument at the 

source level and the message passing library level. Source-level instrumentation occurs at 

subroutine and method boundaries, as well as at important code sections using T au  user- 

defined timers (with start/stop semantics) to highlight the time spent in groups of state­

ments. Message passing instrumentation (using a MPI interposition library based on PMPI 

[14]) shows both execution time spent in message communication and messaging behav­

ior with respect to application level routines. Figure ?? shows two profiles of the execution 

time of different tasks within the UCF’s parallel scheduler for an MPI-only run. The dis­

plays were created by TAU’s parallel profile visualizer, Racy, which can show full profile 

details across all threads of execution. Here, the right views show the detailed perfor­

mance profile on “n,c,t (node,context,thread) 0,0,0” (i.e., MPI process with rank 0). The 

left views show performance for all of the MPI processes in bargraph form.

To generate the top two views, we placed instrumentation in the MPIScheduler class 

and the MPI library. Clearly, Task execution [MPIScheduler:execute()] (green bar) takes
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up a significant chunk of the overall execution time, 79.91% of the total (exclusive) on 

MPI process 0. The time spent in MPI .Waitall() and MPISchedule:: gatherParticles is also 

of significance, but the other routines are of less consequence. Unfortunately, these top 

two views give only a rough breakdown of UCF performance. While it is important to see 

a high percentage of time being spent executing tasks, what the scientist wants to know 

additionally is the distribution of the overall task execution time among the different types 

of tasks performed. While more detailed instrumentation (using user-defined events and 

tracing) can show each instance of task execution, standard instrumentation mechanisms 

have no means to identify task semantics (i.e., from what simulation component the tasks 

were produced). To understand TAU’s solution to this problem, we need to describe how 

UCF operates in more detail.

During the computation, many individual particles are being partitioned across pro­

cessing elements (processes or threads) and worked on by the simulation components rep­

resented in the task graph. As work is performed on the particles, a task instance is created 

and scheduled. Each task instance corresponds to some simulation operation (task), such 

as interpolating particles to the grid in the Material Point Method, and its execution is 

controlled by its task graph dependencies. We can give each task instance a name (e.g., 

SerialMPMr.interpolateParticlesToGrid) that identifies its domain-specific character in 

the computation (i.e., its specific simulation task relationship). The the number of task 

types is finite and is typically less than twenty in Uintah applications. In contrast, there 

are a large number of task instances created and executed during the computation. The 

association of a task type with a task instance occurs at a time different from when the 

task instance is finally scheduled and executed.

Thus, to provide the desired performance view, we must map the performance of each 

individual task instance to the task type to which it belongs and then accumulate the per­
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formance data at the task level. Using T a u ’s Semantic Entity, Association, and Attributes 

(SEAA) model of performance mapping [15], we form an association during initialization 

between a timer for each task (the task semantic entity) and the task name (its semantic 

attribute). Then, while processing each task instance in the scheduler, a method to query 

the task name (stored within the task instance object) is invoked and the address of the 

task name (a static character string) is returned. Using this address, we do an external map 

lookup (implemented as a hash-table) and retrieve the address of the timer object (i.e., a 

runtime semantic association). Once the timer is known, it can be started and stopped 

around the code segment that executes the task instance.

The bottom two views in Figure ?? show the results of this task mapping performance 

analysis in Uintah. Clearly, there is a significant benefit of the SEAA approach in present­

ing performance data with respect to high-level semantics of the Uintah application. The 

performance of all five simulation model components (i.e., tasks) are now clearly distin­

guished in the profile. With the generation of event traces, the benefits are even more dra­

matic as this task mapping allows distinct phases of computation to be highlighted based 

on task semantics. This can be seen in the trace visualization in Figure ??. Although we 

are looking at individual task instances being executed, the color-coded mapping allows 

us to view their performance data at a higher level.

4.3 Performance Experiment Reporting and Alerting

With the integration of performance measurement support in the Uintah software sys­

tem comes the ability to analyze performance throughout Uintah’s development lifetime.

Typically, performance analysis is done ad hoc, at the convenience of the developer, and 

only when time permits. When such performance practice is applied across a large, multi­

person effort such as C-SAFE, the resulting “performance portfolio” becomes scattered
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and tends to report performance information only after significant stages of development 

have been accomplished and software committed. The downside of such a performance 

methodology is a disengagement of performance knowledge from key software design 

decisions. The goal of our work is to more tightly couple the reporting of performance 

experimentation results with timely software testing and alerting to performance prob­

lems. We have created the XPARE (eXPeriment Alerting and REporting) system for this 

purpose.

The Uintah software system was engineered with a regression testing harness to regu­

larly evaluate correctness. At these times, minimal performance benchmarking would be 

conducted to determine if total execution time was seriously degraded. If so, the tester 

would notify software developers, but left it up to them to manually run specific instru­

mented tests to investigate where the performance problems lay. The XPARE system aug­

ments the regression tester to conduct a range of performance experiments with fully- 

instrumented code modules. Multiple experiments can be conducted with different instru­

mentation layouts to exercise different code regions and behaviors. The Tau performance 

tools are used for measurement and analysis, allowing execution time and hardware statis­

tics to be used to construct a complete performance portrait.

Once the performance experiments have been conducted, XPARE will automatically 

interrogate the performance data to determine not only if the overall code has run for 

longer than expected, but also which tasks and profiled procedures are potential suspects.

XPARE accomplishes this by applying alerting “rulesets” (performance difference thresh­

olds) to a historical, multiple experiment performance database. Experiment sets can be 

selected by the user from the database for evaluation. For each experiment set, specific 

performance data can be chosen for analysis. Performance regression testing is then done
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by comparing the current performance with that in the experiment set, using the alerting 

rulesets constructed by the user to determine performance violations worthy of report.

The XPARE system architecture is shown in Figure ??, with images of the web-based 

interfaces for experiment selection, performance data selection, and ruleset definition.

As also shown, results of regression analysis are automatically reported to the software 

developers, who can explore the performance data more fully through the performance 

reporter, whether or not significant performance shifts have been detected. Because the 

performance database contains prior performance history, a panoramic view of perfor­

mance change can be scrutinized based not only on code alteration, but also platform, 

choice of compiler, different optimizations, and other performance factors.

By scheduling regular performance regression tests, performance knowledge can be 

closely linked with the Uintah software development cycle. Currently, we use XPARE to 

run weekly performance tests of small to medium-scale experiments, and monthly evalua­

tions of full-scale experiments. The general construction of XPARE will allow it to easily 

extend to changes in the Uintah code base and to incorporate new simulation components 

as they become available.

5 Performance Studies

Contemporary efforts in gathering performance data have focused on function by func­

tion analysis. C-SAFE has taken the somewhat novel approach of gathering performance 

statics on an algorithmic basis. This approach provides four major benefits.

1. Due to the use of the task abstraction in the UCF, it is straightforward to manually 

insert the profiling code at one location in the code to capture data on the performance 

of all tasks.
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2. The performance characteristics of each of the algorithmic tasks is clearly displayed 

in relation to the other simulation tasks.

3. Scientific programmers are allowed to focus on making performance improvements at 

an algorithmic level.

4. Uintah Computational Framework developers can easily find performance bottlenecks 

that are not directly associated with application codes (e.g.; MPI communications, task 

scheduling overhead, and data I/O).

The first step in optimizing Uintah software was to manually instrument the code 

base with hooks to the Tau system. The event-traces generated were converted to the 

Vampir trace data format and visualized using Vampir. Figure ?? depicts one of the first 

visualizations of an early version of the Uintah code running an MPM simulation on 32 

processors. The figure shows six time steps with the black lines between the time steps 

depicting the large MPI communications necessary to transmit boundary data. Listed on 

the right hand side of the window are each of the specific tasks, delineated by major 

software component (e.g.; SerialMPM, MPMICE, DataArchiver, Contact, etc.) followed 

by specific task name (e.g.; computeStressTensor, relocateParticles, etc.) Each task can 

be color coded to easily view its location in the time line. On the left hand side are rows 

displaying time lines for each process, running in parallel on individual processors in this 

simulation run.

When first viewed, this diagram provided a number of “Aha!” insights about the gen­

eral behavior of the simulation. These insights included understanding:

1. the load imbalances we were experiencing with a rudimentary load balancer;

2. that the computeStressTensor task constituted a large portion of the execution time; 

and
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3. that there was a significant amount of MPI overhead distributed throughout the com­

putation.

Figure ?? is a zoomed-in view of a single time step in the MPM Simulation. This view 

provided insight into the parallelization of each of the tasks in a single time step. It also 

provided us with a visual feedback for how the processors where lining up and how much 

work each was doing.

Similarly, Figure ?? depicts five time steps of the “Arches” fire simulation within 

the UCF. This figure portrays explicitly how much time is being spent in the “pressure 

solving” portion of the simulation. (The pressure solve calculation utilizes a PETSc linear 

solver.) Figure ?? is a close up view of the PressureSolver task within the time step and 

reveals that a major portion of the solver’s time is spent in MPI calls. This visualization 

has led to focusing performance enhancement resources on determining the best way to 

use PETSc solvers (including exploring different pre-conditioners).

Once candidate tasks are identified as potential performance bottlenecks, the tasks are 

inspected from both an algorithmic view and from an implementation view. At this point, 

it is sometimes necessary to perform additional functional instrumentation of the code. We 

used this method of performance analysis from late 2000 through the first half of 2001 to 

investigate performance problems in the Uintah software. This lead to the parallel scaling 

improvements seen in Figure ??. Successive lines on the graph show the performance 

improvements after finding and fixing performance bottlenecks.

After directing our efforts at improving the Unitah scalability up to 2000 processors, 

our focus changed to other aspects of code development. It was at this point that we rec­

ognized the need for the XPARE system. Once implemented, it has allowed us to monitor 

the performance of individual simulation pieces in addition to the overall performance.
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XPARE has been developed with the goal of keeping the Uintah system efficient as we 

expand the system and add new features.

6 Lessons Learned and Future Work

The integration of performance measurement in the UCF scheduling component has been 

extremely useful in exposing bottlenecks and inefficiencies. While the performance anal­

ysis thus far has mainly been done post-mortem, Uintah applications will be increasingly 

adaptive in the future and will require UCF to implement dynamically adjusting schedul­

ing policies. We plan to develop online performance query and feedback capabilities in 

Tau that will support adaptive Uintah execution. Also, to enhance online performance 

analysis, we are developing a runtime infrastructure to visualize dynamic, large-scale per­

formance data using the SCIRun visualization environment.

We will also continue to build on the success of performance mapping in Uintah to 

attribute execution costs from the simulation component parts. We have recently encoun­

tered the need for more flexible performance mapping specification that allows multiple 

mappings attributions (e.g., for mapping execution costs from component parts to higher- 

level tasks and patches) to be active simultaneously. The current rudimentary means to 

support these mappings will be implemented in more robust forms in the near future.

Not only is the UCF a target for performance integration, but the individual simulation 

components can benefit from performance analysis. We will begin to work more closely 

with the developers of C-SAFE simulation component software to integrate performance 

measurement, analysis, and regression testing in their codes.

With the completion of a mixed-mode UCF implementation will come the need for 

performance analysis of integrated multi-threaded and message-based execution. While 

preliminary tests have demonstrated Ta u ’s ability to observe thread and communication
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events in mixed-mode Uintah execution, it will be important to develop techniques for 

cross-mode sharing of instrumentation information so that integrative performance map­

ping and analysis is possible.

We will greatly enhance the existing prototype XPARE system to play an increasingly 

important role in Uintah software performance engineering in the future. In particular, 

we will concentrate on XPARE’s performance database which is currently implemented 

in an ad hoc manner. The Tau project is building a performance database framework 

(PerfDBF) that will be employed by XPARE for more flexible cross-experiment data 

query and analyses. PerfDBF will allow for the set of analysis operations to be easily 

extended by UCF and simulation component developers. XPARE’s alerting and reporting 

tools can then incorporate these expanded analysis options to construct more sophisticate 

threshold functions and performance data processing for generating performance reports.

7 Acknowledgments

This work was supported by the DOE ASCI ASAP Program. The work at Oregon was 

supported by a contract from the DOE 2000 program (Agreement No. DEFC 0398 ER 

259 986) and a sub-contract from the University of Utah’s DOE C-SAFE ASCI center 

(Agreement No. B341493). C-SAFE visualization images were provided by Kurt Zim­

merman and Wing Yee. Datasets were created by Scott Bardenhagen, Jim Guilkey, and 

Rajesh Rawat. The DOE ASCI ASAP program also provided computing time for the 

simulations shown.

University of U tah Institutional Repository
Author Manuscript

17



UU 
IR 

A
uthor M

anuscript 
UU 

IR 
A

uthor M
anuscript

References

1. Center for the Simulation of Accidental Fires and Explosions. 

http://www.csafe.utah.edu.

2. Academic Strategic Alliances Program, http://www.llnl.gov/asci-alliances.

3. Davison de St. Germain, J., McCorquodale, J., Parker, S.G., Johnson, C.R.: Uintah:

A Massively Parallel Problem Solving Environment. HPDC’OO: Ninth IEEE Interna­

tional Symposium on High Performance and Distributed Computing (2000)

4. Parker, S.G., Beazley, D.M., Johnson, C.R.: Computational steering software systems 

and strategies. IEEE Computational Science and Engineering, 4(4) (1997) 50-59

5. Parker. S.G., The SCIRun Problem Solving Environment and Computational Steering 

Software System. PhD thesis, University of Utah (1999)

6. Parker, S.G., Johnson, C.R.: SCIRun: A scientific programming environment for 

computational steering. Proc. Supercomputing ‘95. IEEE Press (1995)

7. Parker, S.G., Weinstein, D.M., Johnson C.R.: The SCIRun computational steering 

software system. In: Arge, E., Bruaset, A.M., Langtangen, H.P., (eds.): Modern Soft­

ware Tools in Scientific Computing, Birkhauser Press (1997) 1-44

8. Common Component Architecture Forum, http://www.cca-forum.org.

9. Malony, A., Shende, S.: Performance Technology for Complex Parallel and Dis­

tributed Systems. In: Kotsis, G., Kacsuk, P. (eds.): Distributed and Parallel Systems 

From Instruction Parallelism to Cluster Computing. Proc. 3rd Workshop on Dis­

tributed and Parallel Systems, DAPSYS 2000, Kluwer (2000) 37-46

10. Shende, S., Malony, A., Cuny, J., Lindlan, K., Beckman, P., Karmesin, S.: Portable 

Profiling and Tracing for Parallel Scientific Applications using C++. Proc. SIGMET- 

RICS Symposium on Parallel and Distributed Tools, SPDT’98, ACM, (1998) 134­

145

University of U tah Institutional Repository
Author Manuscript

18

http://www.csafe.utah.edu
http://www.llnl.gov/asci-alliances
http://www.cca-forum.org


UU 
IR 

A
uthor M

anuscript 
UU 

IR 
A

uthor M
anuscript

11. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Ras­

mussen, C.: Tool Framework for Static and Dynamic Analysis of Object-Oriented 

Software with Templates. Proceedings SC’2000, (2000)

12. Shende, S., Malony, A., Ansell-Bell, R.: Instrumentation and Measurement Strategies 

for Flexible and Portable Empirical Performance Evaluation. Proc. International Con­

ference on Parallel and Distributed Processing Techniques and Applications, PDPTA 

’2001, CSREA, (2001) 1150-1156

13. Pallas GmbH: VAMPIR: Visualization and Analysis of MPI Resources, 

http ://www.pallas .de/pages/vampir.htm.

14. Message Passing Interface Forum: MPI: A Message Passing Interface Standard. Inter­

national Journal of Supercomputer Applications (Special Issue on MPI) 8(3/4) (1994)

15. Shende, S.: The Role of Instrumentation and Mapping in Performance Measurement.

Ph.D. Dissertation, University of Oregon (2001)

University of U tah Institutional Repository
Author Manuscript

19

http://www.pallas


UU 
IR 

A
uthor M

anuscript 
UU 

IR 
A

uthor M
anuscript

University of U tah Institutional Repository
Author Manuscript

Fig. 1. Visualization of two different simulations from C-SAFE. On the left is a simula­

tion of a heptane fire. On the right is a simulation of stress propagation through a block of 

granular material. Each of these simulations were performed using the Uintah Computa­

tional Framework and were executed on 1000 processors.
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Figure 2: A Typical C-SAFE Problem
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Figure 3: An Example UCF Task Graph
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Figure 4: TAU Performance System Architecture
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Figure 5: TA\J Performance Profiles Without Mapping (top) and With Mapping (bottom)
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Figure 7: MPM Simulation Performance (TAU / Vampir)
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Figure 8: MPM Simulation (Single Time Step)
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