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Fig. 10. Colon 4. Number of points-45; cluster time-1.50 s. 

By taking into account the presence of a certain number of 
small triangular submatrices which do not merge with each other, 
(T;, ... , Ti ), an investigation is carried out to test whether 
this region could be a concavity set in the shape boundary. Let 
Pa,Pb be the endpoints of the region defined by T;,' .. , Ti 
on the shape. Let, furthermore, Z be the triangular submatrix 
of ML/ obtained by merging together T;, . .. , T; (i.e., Z is the 
submatrix of ML/(s, t) where a ";;s";; t, a";; t";; b) . The test is 
based on the evaluation of all the elements belonging to Z 
which do not belong to any T; , ' .. ,Tj . This region , called 
test region, is indicated in Fig. 2 by dotted lines. If all the 
elements in the test region are zeros, then the algorithm looks 
for a mirror of S; . The detection of such a region is made by 
looking for a square submatrix of MLI made of only ones, 
PRISM (s, t), in the band a + I ..;; s..;; b - I, I ..;; t";; a - I, or in 
the band b + I ..;; s..;; k, a + I ..;; t";; b - I, where k is the num­
ber of rows of the MLI matrix . 

If such a region does exist, we say that the points belonging 
to the "intrusion" [e .g., Pn , P2J , P Z4 , P zs , P26 , P27 in Fig . 
I (a) 1 can be considered as a whole set. By using this tech­
niq ue combined with the procedure described in the previous 
section, the algorithm divides the shape in the following sets : 

(PI,P2,P),P4,PS , P6 ,P7,PR), 

(P!; ,P9,PIO,PII , PI2,PIJ,Pt4) , 

(P 14 , PI S , P 16 , PI7 , PI S, P 19 , P20 , PH , P22 ), 

(P 22 , PH , P24 , P25 , P26 , P27 , PI)' 

The method described in [I) produces as a single elemen t of 
the decomposition that one formed by the points Ps , . .. , P 14 , 
P22 ,··· ,P27 , PI' The fact that our method groupsPs,"', 
P I4 and Pn , " . , P27 , PI separately suggests that our tech­
nique may be producing finer divisions than the previous one. 
The algorithm was implemented in Fortran and run on an IBM 
370-145. The execution time is, for Fig. I, 1.05 s. The value 
of the correlation factor is CORR I = 0.7 for the first itera­
tion, CORR 2 =CORR I - 0.12 for the second iteration, and 
CORR 3 = CORR 2 - 0 .12 for the third iteration. The same ap­
proach is used to carry out the following examples . 

V . SOME EXAMPLE AND TIME EVALUATION 

We report here the original boundary, the obtained decom­
position , and the CPU execution time in the cases listed in 
Figs. 5-10 . 

ACKNOWLEDGMENT 

The authors wish to thank Prof. Haralick and Dr. Shapiro for 
the interesting discussions about the problem described in this 

correspondence and the essential help in furnishing data for 
the experiments . 

REFERENCES 

[I) L. Shapiro and R. Haralick, "Decomposition of two-dimensional 
shapes by graph-theoretic clustering," IEEE Trails. Paltern Alla/. 
Machine Intel!. , vol. PAMI·I, Jan. 1979. 

Segmentation of Images Having Unimodal Distributions 

BIR BHANU AND OLIVIER D. FAUGERAS 

Abstroct-A gradient relaxation method based on maximizing a crite· 
rion function is studied and compared to the nonlinear probabilistic 
relaxation method for the purpose of segmentation of images having 
unimodal distributions. Although both methods provide comparable 
segmentation results, the gradient method has the additional advantage 
of providing control over the relaxation process by choosing three 
parameters which can be tuned to obtain the desired segmentation reo 
suits at a faster rate. Examples are given on two different types of 
scenes. 

Index Terms-Gradient relaxation, image segmentation. nonlinear 
relaxation, optimization, unimodal distribution. 

r. INTRODUCTION 

Various approaches based on thresholding have been used 
by many researchers for the segmentation of both monochrome 
and color pictures [I), [2). Normally, in the application of 
these techniques, the histogram shows two or more peaks in 
at least one of the spectral features corresponding to various 
homogeneous regions of an image. Very often preprocessing 
is done to improve the histograms, and local properties are 
used to compute the global, local , or dynamic thresholds. 
However, if the intensity (or color) histogram of the image is 
unimodal, then the application of such methods gives a poor 
segmentation and there are no criteria for automatic threshold 
selection. Unimodal distributions are typically obtained when 
the image consists mostly of a large background area with 
other small but significant regions. For example, in the bio­
medical area, the ex traction of the boundaries of various types 
of cells is complicated by the fact that the cells are very close 
together , their boundaries are poorly defined, and the gray 
level histogram is unimodal. Similarly , in scenes wi th many 
different objects as in the case of aerial photographs. the histo­
gram may have only one peak because the range of intensities 
for each object will probably overlap with the ranges of other 
subjects. Jain et at. [3) consider the segmentation of muscle 
cell pictures using ten low level operators which are very time· 
consuming and require the selection of five thresholds. Rosen­
feld and Davis [41 and Peleg [5) use iterative methods to 
modify the histogram. Their methods do not take into ac· 
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count the possibility that small regions in an image may have 
significance even though they may not show significant peaks 
in the histogram of the image. Rosenfeld [6 J considers thresh­
olding by relaxation. In this correspondence, we study a gra­
dient relaxation method based on maximizing a criterion func­
tion and compare it to the nonlinear probabilistic relaxation 
method [6], [7] for the purpose of segmenting images having 
unimodal gray level distributions. Results are illustrated with 
the aid of two different types of scenes. 

II. SEGMENTATION SCHEMES 

Fig. I shows two 128 X 128 pixel 8-bit images. The back­
ground of the image in Fig. I(a) consists of a confluent mono­
layer of human skin cancer cells, and the small circular-shaped 
objects are human lymphocytes and red blood cells. The ob­
jective is to get the boundaries of all the cells. The image in 
Fig. I (b) is part of an aerial photograph. Here the objective 
is to detect significant features such as roads, etc. Gray level 
histograms of these images are shown in Fig. 2. Note that the 
histograms are almost unimodal, and as a consequence, there 
is no reliable way of automatically choosing a threshold for 
segmenting these pictures. Although one could argue that the 
gray level intensity 16 in Fig. 2(b) migh t be a valley, threshold­
ing the image at this value produces a very poor segmentation. 

Commonly used difference operators such as gradient, 
Laplacian, and Sobel were applied to the images shown in Fig. 
I. For example, Fig. 3(a) shows the Laplacian of the cell 
image obtained by convolution of the cell image by a 3 X 3 
mask. The gray level histogram of the image in Fig. 3(a) is 
shown'in Fig. 3(b). We also considered the methods based on 
thresholding the histogram of the picture where the gradient, 
Laplacian, and edge values are high [11. However, the pictures 
so obtained have a unimodal histogram and lack the criterion 
for segmenting them at the valley of two peaks. Threshold­
ing at the gray level corresponding to the mode or mean of the 
filtered histogram gave very poor results. Edge detection has 
also been done by convolving the images in Fig. I with 5 X 5 
masks corresponding to the ideal step edges in six directions 
[81. Thresholding of the magnitude image does not show 
good segmentation. A number of bar masks of various sizes and 
orien tations have also been used, but the results were poor (for 
the image shown in Fig. l(a) the width of an edge is about 
5-6 pixels). 

III. SEGMENTATION USING RELAXATION METHODS 

'.1. Gradient Relaxation Algorithm 

In [91, Faugeras and Berthod proposed a relaxation algo­
rithm which is based upon the explicit use of consistency and 
ambiguity to define a global criterion upon the set of units. 
This criterion has the inherent problem that the consistency 
and ambiguity tend to go in opposite directions. Therefore, 
in the present study. we consider a simpler criterion [101 
based on the inner prod uet of probability vector Pi and com­
patibility vector qi. N is the number of pixels in the image, qj 
is a function of p/s as discussed below, and we defined the 

patibility function c such that 

cO, Ab;, At);: 0, k '* I, in v· I 
C(i,Ak,;,Ak)= I, k = 1,2 in Vi 

The compatibility vector qj is then defined as 

2 

qj(Ak)=i L L c(i,Ak,j,A')Pj(A,), 
jE Vi 1=1 

for all 

for all i. (2) 

k = 1,2, i = I, ... ,N. (3) 

In effect, qi(Ak) is the mean neighborhood probability of 
the ith pixel for the class under consideration, i.e., qj( Ak) = 
(i) ~;E v· Pj( Ak)' The choice of compatibility function in (2) 
will give the desired result in the interior of the region, but on 
the border of a region, the pixel label may be ambiguous be­
cause of two different classes of neighbors and may cause a 
little distortion of the boundary. 

The maximization of the global criterion (I) means that we 
are seeking a local maximum close to the initial labeling p;'O) 
(i I,"', N) subject to the constraints that the Pi'S are the 
probability vectors. The maximization of (I) results in a re­
duced inconsistency and ambiguity, Inconsistency is defined 
as the error between Pi and qj. Intuitively, this means the 
discrepancy between what every pixel "thinks" about its own 
labeling (Pi) and what its neighbors "think" about it (qj), 
Ambiguity is measured by the quadratic entropy and results 
from the fact that initial labeling plo) is ambiguous (p/ o) are 
not unit vectors). We are therefore trying to align the vectors 
Pi and qi while turning them into unit vectors. Indeed, it can 
be easily seen that each lerm Pi 'qj is maximum for Pi = qi 
(maximum consistency) and Pi = qi = unit vector (maximum 
unambiguity). 

The initial assignment of probabilities to every pixel is very 
important. It affects the convergence rate and the resul ts of 
relaxation schemes. The simplest way to compute the initial 
probabilities [6] , [Ill is to define 

IU 
P'(Al) = /. G I (4) 

where Hi) is the intensity at the ith pixel and G is the number 
of possible gray levels (0;;;;;; Iii);;;;;; G - I). This has the prob­
lem of completely ignoring any a priori information that we 
may have about the contents of the image, It is possible to 
include <l rough knowledge the relative number of white 
pixels versus black pixels, If denotes the mean of the image, 
we may have an approximate idea of the value of the number 
of white versus black pixels (the ratio,o = flwhitc/llblack). If 
we estimate this ratio for the image, we obtain 

r= (5) 

criterion as If we know a priun that there are more white than black pixels 
in the image, we may want to modify the distribution of gray 

(I) levels so as to make the ratio r closer to the known value roo 
One very simple way to do so is to define 

and carry out its maximization using the gradient projection 
approach. 

Suppose we have a set of N pixels i = 1, 2, ... ,N which fall 
into two classes AI and Ai corresponding to the white (gray 
value = 255} and black (gray value;: 0). The relaxation pro­
cess is specified by choosing a model of interaction between 
pixels. We attach to every pixel i the set Vi of its eight nearest 
neighbors. Assuming that objects of interest in the picture are 
continuous, we will make like reinforce like and define a com-

I' = I ACT * (I - I) + 10 (6) 

where 10 is a desired mean and FACT is a fUllction of the inten­
sity which is taken to be equal to 1 if I> I and less than 1 if 
1<1. In our experiments, the initial assignment of probabili­
ties has been obtained by 

(
/(i) - I) 

Pj(AJ) = FACT * + 0.5. 
255 

(7) 
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(a) 

(b) 

Fig. I. Two typic;( 128 X 128, 8-bit images. (a) Cell image. (b) An 
aerial image. 

When l(i) < 1. FACT has usually been taken between 0.7 and I. 
Of course, if the first term of (7) happens to be greater than 
0.5 or less than -0.5, then a probability of one or zero, respec­
tively, is assigned to that pixel. 

The gradient of the criterion C in (I) is obtained as 

ac 
ap;o.'1) =2q;Oq) 

ac 

and the iteration of the p;'s is given by 

Pj(n+l) 0.,,) = pln) 0\1) + p(n) p;(n) [ap~(~l )] 

p/n +1) 0\2) = Pj(n) (A2) + p(n) p/n) [ap~(~2)] 
where p (n) is a positive step size. 

In order to have p/n
+ I)(Ad+p/n +

I )(A2)= I, 
tion of the gradient should be such that 

(8) 

(9) 

(10) 

(11 ) 

the projec-

P/n)[ap~~AIJ =2qj(AI)- + [ap;~~l) + -a-p~-t-A2-J (12) 

and 
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Fig. 2. Gray level histogram of the images in Fig. I. (a) Histogram of 
the cell image. Mean = 163.76. (b) Histogram of the aerial image. 
Mean = 26.47, 
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Fig. 4. Variation of criterion (I) with the iteration number for various 
values of 0< I and 0<2 for the cell image. 0'1/012 = FACT = 1 in all cases. 

(b) 
Fig.S. Effect of different values of 0<1 and 0<2 on the cell image. 

FACT = 1 in both cases. In each figure, the first row contains images 
for the fllst four iterations, and the second for the next four itera­
tions. This figure illustrates the biasing of a class. (a) 0< I = 0.4, 0<2 = 
0.2. (b) 011 = 0.2, 0<2 = 0.4 . 

but 

ac aC 
---+ =2 
ap;CAI) ap;o.'2) . 

So the iterations in (10) and (II) reduce to 

p/n+l) 0\,) = p/n) (A.) + p(n) [2q;(A.) - 11 (14) 

p;(n+l) (A2) = p/n) (A2) + p(n) [I - 2q;(A.)]. (15) 

Normally, p (n) is kept constant for all pixels during each itera­
tion, and it is determined to have the largest possible value such 
that the p;'s at the (n + I )st iteration still lie in the bounded 
convex region of the 2N-dimensional Euclidean space defined 

(a) 

(b) 

(c) 

Fig. 6. Results showing that for a fixed ratio of 0< I and 0<2. increasing 
both of them by a constant factor increases the speed of convergence. 
In each figure, FACT = I is taken. (a) 0<1 = "'2 = 0.2, iteration 8. (b) 
0<1 = "'2 = 0.5, iteration 4. (c) "'I = 012 = 0.9, iteration 3. 

by p;(A.)+p;(Ao)= I and p;(Ak)-;;'O, k= 1,2 and i= I, 
... ,N. However, in the two-class case considered, it is easier 
to compute a p/n) for each pixel. This leads to a faster conver­
gence rate. The maximum possible value for p/n) is obtained 
from (14) by setting p/n+l) (A.) = I when 2q;(A.) - I> 0 
andp/n+I)(A.)=Owhen2q;(A.)- I <0. Thus, 

{

I- p/n) (AI») 

(n) _ 2q;(AI)- I ' 

P;max - (p/n)(AI»), 

I - 2q;(AI) 

if 2q;(AI)-1>0 (16) 

if 2qj(A.) - 1<0. (17) 

Since we want to be able to control the rate of convergence 
and the number of pixels within each class, we actually took 

Pj(n+l) (Ak)=p/n) (Ak)+p/n) (2q/(Ak)- 11 (18) 

and 
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Fig. 7. Results of gradient relaxation method at various iterations and 
corresponding histograms for the eeU image. FACT = 0.9, ~I = 0.2. 
~2 = 0.1. (a) Iteration I. (b) Histogram of Fig. 7(a) . (e) Iteration 3. 
(d) Histogram of Fig. 7(e). (e) Iteration 4. (f) Histogram of Fig. 7(e). 
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Fig. II. Results of nonlinear relaxation method at various iterations 
and corresponding histograms for the cell image. FACT = 0.9. (a) 
Iteration 1. (b) Histogram of Fig. II(a). (e) Iteration 3. (d) Histo­
gram of Fig. Il(e). (e) Iteration 4. (0 Histogram of Fig. Il(c). 
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Fig. 12. Results of nonlinear relaxation method at various iterations 
and corresponding histograms for the aerial image. FACT = 1. (a) 
Iteration 1. (b) Histogram of Fig. 12(a). (c) Iteration 3. (d) Histo­
gramofFig.12(c). (e)lteration5. (f)HistogramofFig.12(c). 

as the compatibility coefficients. However, the results of 
relaxation can be sensitive to the choice of these coefficients. 

IV. CONCLUSION 

From the images and histograms shown in Figs. 7, 8, II, and 
12, two observations can be made . First, the gradient and 

nonlinear relaxation methods provide comparable segmenta­
tion results. Second, it is not possible to compare th,' s~ two 
methods directly because they do not converge to e xadly the 
same limit. However, as illustrated in Figs. 5, 6, anJ 10 . it is 
only the gradient method that provides the control OV\."r the 
relaxation process by choosing the (\(1 , (\(2, and F.'cr PJ ram-
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eters which can be tuned to obtain the desired segmentation 
results at a faster rate. The magnitude of the a's controls the 
degree of smoothing at each iteration and their ratio controls 
the bias. The magnitude of FACT controls the initial assign­
ment of probabilities. Although we have presented a two­
class problem for the segmentation of images having unimodal 
distributions, the method can be easily generalized to include 
more classes [ 141 . 
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A Medial Axis Transformation for Grayscale Pictures 

SHYUAN WANG, AZRIEL ROSENfELD.~'D ANGELA Y. WU 

Abstract-Blum's medial axis transformation (MAT) for binary pic­
tures yields medial axis points that lie midway between opposite borders 
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of a region or along angle bisectors. This note discusses a generalization 
of the MAT in which a score is computed for each point P of a grayscale 
picture based on the gradient magnitudes at pairs of points that have P 
as their midpoint. These scores are high at points that lie midway be­
tween pairs of anti parallel edges or along angle bisectors, so that they 
define a MAT~ike "skeleton," which we may call the GRADMAT. 
However, this skeleton is rather sensitive to the presence of noise edges 
or to irregularities in the region edges, and it also is subject to artifacts 
created by pairs of edges belonging to different objects. 

Index Tennr-Image approximation, image processing, medial axis 
transformation, region representation. 

I. INTRODUCTION 

In the early 1960's, Blum [11 introduced the medial axis 
transformation (MAT) of a set S; this is basically the set of cen­
ters and radii of the maximal disks that are contained in S, or 
equivalently, the set of points of S whose distances to the com­
plement S are local maxima, together with these distances. It is 
not hard to see that medial axis points tend to lie midway be­
tween opposite borders of S or along the bisectors of angles 
formed by the borders. Thus, these points constitute a kind 
of "skeleton" of S. For an introduction to the MAT, see [2 , 
sect. 9.2.31. 

Blum' s MAT is defined for a picture only after the picture 
has been segmented into Sand S. Several generalizations of the 
MAT to grayscale pictures have been suggested . We can define 
the gray-weighted length of a path as proportional to the sum 
of the gray levels at the points of the path ; the gray-weighted 
distance between two points can then be defined as the lowest 
gray-weighted length of a path between them. and the gray­
weighted MAT (GMA T) of a picture can be defined as the set 
of points whose gray-weighted distances to the set of O's in 
the picture are local maxima, together with these distances [3 J . 

Note that this definition still requires segmentation of the pic­
ture, since it treats O's as "background" and regions of nonzero 
values as objects. Another generalization is based on finding 
maximal homogeneous disks in the given picture; the set of 
centers. radii, and average gray levels of these disks defines a 
generalized MAT. called the SPAN (spatial piecewise approxi­
mation by neighborhoods), since this information can be used 
to generate approximations to the picture [4 J . 

This note discusses a generalization of the MAT in which 
a score is computed for each point P of the picture based on 
the gradient magnitudes at pairs of points that have P as their 
midpoint. These scores are high at points that lie midway be­
tween pairs of antiparallel edges or along angJt: biseLtors . so 
that they define a MAT-likt: "skeleton," which we may call the 
GRADMAT. However, this skeleton is rather sensitive to the 
presence of noise edges or to irregularities in the region edges . 
and it is also subject to artifacts created by pairs of edges be­
longing to different objects. !';ote that the GRAD\lAT scores 
are not thresholded; the GRADMAT is a "gray " skeleton . not 
a binary one. 

II. THE GRADMAT 

The basic idea of the GRADMAT is to compute a score for 
every P based on the gradient magnitudes at all pairs 01 poi nt s 
that have P as their midpoint. Evidently, this score will be 
very high at the center of a circle (or region that h;Js;J high do:­
gree of central symmetry); and it will also be high along tho: miJ­
line of a parallel-sided strip. There will be weaker rt' s ponsc' , at 
points that lie on local axes of symmetry. e. g . . on angic h i,,· c· 
tors, since such points are midway between at leas t O lh' pJIf ,.1' 
edges. 

These examples show that the GRADMAT is in m;Jn~ \\ .1\ '; 

analogous to the M AT. However, it should be real iLcJ IIIJ I : 1 I , 

analogy is only partial. To see this, consider the G R .·\ \)\1 \ I 
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