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provided excellent programming support and many ideas. In 

add ition , D. McKeown, S. Shafer, and D. Sm ith  have provided 

useful com m ents and criticism.
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Representation and Shape Matching of 3-D Objects

B1R BHANU

Abstract—A three-dimensional scene analysis system tor the shape 

matching of real world 3-D objects is presented. Various issues related 

to representation and modeling of 3-D objects are addressed. A new 

method for the approximation of 3-D objects by a set of planar faces is 

discussed. The major advantage of this method is that it is applicable 

to a complete object and not restricted to single range view which was 

the limitation of the previous work in 3-D scene analysis. The method 

is a sequential region growing algorithm. It is not applied to range images, 

but rather to a set of 3-D points. The 3-D model of an object is obtained
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by combining the object points from a sequence of range data images 

corresponding to various views of the object, applying the necessary 

transformations and then approximating the surface by polygons. A 

stochastic labeling technique is used to do the shape matching of 3-D 

objects. The technique matches the faces of an unknown view against 

the faces of the model. It explicitly maximizes a criterion function 

based on the ambiguity and inconsistency of classification. It is hier

archical and uses results obtained at low levels to speed up and improve 

the accuracy of results at higher levels. The objective here is to match 

the individual views of the object taken from any vantage point. Details 

of the algorithm are presented and the results are shown on several un

known views of a complicated automobile casting. The results of par

tial shape recognition are used to determine the orientation of the 

object in 3-D space.

Index Terms-Face matching, hierarchical relaxation, optimization, 

planar approximation, range data analysis, region growing, stochastic 

labeling, surface representation, 3-D object modeling, 3-D scene analysis, 

3-D shape matching.

I. I n t r o d u c t io n

In the development o f robots w ith vision capability , repre

sentation, and shape recognition of 3-D objects are o f crucial 

im portance. It is well known that the recognition o f even 

simple objects is not easy, if the object is allowed to rotate and 

have arbitrary view in 3-D space. Recognition of real objects 

is required in the process o f autom atic  selection, inspection, 

m an ipu la tion , and assembly o f industrial parts, tor example, 

parts going over a conveyor belt, picking the parts from  a bin, 

au tom ation  o f assembly line operations, etc. Motivated by 

such practical applications, in this paper we consider the rep

resentation, modeling and shape matching aspects o f 3-D 

scene analysis. Our interest is to match ind iv idual views o f a 

3-D object (taken from  any arbitrary viewing angle) against 

the 3-D model. A m ethod based on a laser triangulation to 

acquire 3-D data will be described. The problems related w ith 

3-D data acquisition and geometric processing will be addressed. 

A technique for representing a 3-D object by a set o f planar 

convex faces will be presented. These faces are determ ined by 

sequentially choosing three very close noncollinear points and 

investigating the set o f po ints lying in the plane of these points. 

Two simple tests, one for convexity and the other for narrow

ness ensure that the set o f points is an object face. This set of 

points is approxim ated by polygons. The method is used to 

generate a 3-D model o f an object by com bin ing  the object 

points from  a sequence of range images. A hierarchical sto

chastic labeling technique is used for shape matching. The 

technique explicitly maximizes a criterion function  based on 

the am biguity  and inconsistency of classification. We have used 

a similar technique to solve the “ segment m atch ing” problem 

in two dimensions [ 1 ], [ 2 ]. Here we extend this technique to 

solve the “ face m atch ing” problem , which is defined as the 

recognition o f a partial 3-D shape as an approximate match to 

a part o f a larger 3-D shape. The results o f matching are used 

to determine the orientation of the object in three-space. Ex

amples are presented using a complex autom obile  part.

I I .  T h r e e -Dim e n s io n a l  Sc e n e  A n a l y s is  Sy st em  

a n d  D a t a  A c q u is it io n

Fig. 1 shows the schematic diagram o f the 3-D scene analysis 

system im plem ented in this work. First we acquire 3-D data 

using a laser ranging system shown in Fig. 2. The acquisition 

system is based on the principle o f active stereoscopy. A laser 

emits a beam o f ruby red light which is reflected by a m iiror 

which rotates and sweeps the beam along the .v-axis to produce 

one scan line. The beam is reflected from  the object, and the
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Fig. 1. The schematic diagram of 3-D scene analysis system.

bank of detectors

z-distance is calculated from  the location o f the m ax im um  re

sponse in each bank o f detectors. The platform  on which the 

object rests can be raised or lowered (this is the v-axis) and can 

also be rotated (around the v-axis). The sampling distances 

used here are 3.0 m m  in the .v-axis, 2.0 m m  in the v-axis, and 

an accuracy o f 0.5 m m  in the z-distance is achieved. Objects 

o f sizes up to 750 X 750 X 600 m m  can be digitized using this 

system. Further details about the 3-D sensor can be found in 

[3],

The data so obtained are in the observer centered coordinate 

system (the one in which the observer or camera receives the 

image). While creating a 3-D model of the object, object cen

tered representation (a system centered about the object which 

allows all po ints on the surface of the object to be referred 

w ith respect to this system) is required. This is com puted by 

marking the zero position for .v- and v-axis and obta in ing  a ref

erence value for z-axis on the platform  in Fig. 2. The actual 

position or orientation  o f the object on the platform  does not 

matter when acquiring the data related to an unknow n view o f 

an object. As an example Fig. 3 shows a complicated casting 

o f an au tom ob ile  piece. Notice that this object does not con

tain any major horizonta l or vertical surface. In order to create 

a 3-D model o f the object, a range data image was produced 

for every 30 rotation  of the object around the ^v-axis in the 

.y -z  plane. F inally , top and bottom  views of the object were 

taken. These two views were put in correspondence w ith the 

other views by having three control points in each o f these 

views which were also visible in the 0 view (requiring six con

trol points in the 0 view) o f the object and com puting  the 

transformations. The 14 views obtained using the range data 

acquisition system are shown as gray scale images in Fig. 4. 

In this figure the lighter points are farther away from  the o b 

server and the darker ones are closer. After thresholding the 

background points, each indiv idual view shown in Fig. 4 had 

approx im ately 2000 points except for the 90° and 270° 

views which had about 900 points. The surface points for the 

complete object were obtained by follow ing in sequence the 

views starting from  the 30 view and ending w ith the top view 

and com puting  the distance between the transformed po int 

and the points which are already in the list (in the beginning 

just the 0° view points). If the m in im um  difference is less 

than a certain threshold related to the sampling distance, we 

discard this po in t; otherwise the po in t is added to the list. For 

the sampling distances as mentioned above, using a distance 

threshold o f 3.87 m m , the complete object has 8314 points 

which are stored as a list. From  the set of 3-D points we obtain  

a higher level representation o f surface and finally the unknow n

Fig. 3. Automobile piece analyzed.

scene is matched against the model to obtain  the description 

of the scene.

I II . R e p r e s e n t a t io n  a n d  Mo d e l in g  o f  3-D O bjec t s

Representation: A direct model o f a 3-D object as a 3-D array 

can easily exhaust the memory capacity o f a system (for ex

ample a 3-D array of size 128 will require 1 283 = 2 097 1 52 

bits o f m em ory). Moreover, this array is sparse. Therefore, we 

are interested in a suitable representation, not for storage pur

poses on ly , but for recognition and description as well. R ep

resentation o f a 3-D object by means o f oct-trees may make 

space array (trip ly  subscripted binary array) operations more 

econom ical in terms o f memory space [4].

A simple approach to analyzing 3-D objects is to model them 

as polyhedra. This requires a description o f the object in terms 

of vertices, edges, and faces. Modeling 3-D objects in this m an

ner results in substantial compression o f the data. In  order to 

handle curved and more complex objects, other representations 

and models have been investigated [5J — [7] . B inford [5] pro

posed the concept of a generalized cylinder (or cone) to repre

sent curved 3-D objects. These are defined by a 3-D space curve, 

know n as the axis, and cross section o f arbitrary shapes and 

sizes along the axis. There are an infin ite  num ber of possible 

generalized cones representing a single object. More constraints 

are needed to get a unique description. A lthough generalized 

cones or volume representations im ply some surface descrip

tion , they fail to describe the junctions or surface peculiarities 

[8] . Also one detects surfaces first from partial views, and only 

after several different views of the object we have enough data 

to obtain  volume properties. Hence the need to find a suitable 

surface representation. It is possible to represent arbitrary 

shapes w ith generalized cones by making them arbitrarily com 

plex, but their com putation  is d ifficu lt. The generalized cone 

prim itives used in [6] are not sufficient to represent the com 

plicated casting, as has been used in this work. Badler and 

Bajcsy [7] present a good discussion o f the relative merits of 

surface and volume representation.

M ethods for segmentation o f range data can be classified as 

“ reg ion” or “edge” based just as in the segmentation o f in ten 

sity images. Many researchers adopted a m ethod which is most 

suitable for the input device. For example, Duda et al. (9 ] 

describe a sequential procedure for determ ining planar surfaces 

in a scene from  registered range and intensity data. The ver

tical and horizonta l surfaces are obtained directly from  the 

range image by a histogram analysis. Slanted surfaces are as

sumed to have constant intensity and are obtained from  the 

reflectance image. M ilgram and B jorklund [10J find planar 

surfaces in a range image by fitting  a least squares plane in the 

small neighborhood of each pixel. Underwood and Coates 

[11] describe a system for inferring 3-D surface description for
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Fig. 4. The 14 range data views of the automobile piece shown as gray scale images. The lighter points are away from the

observer and the darker ones are closer.

planar convex objects from  a sequence o f reflectance images, 

but the faces are determ ined from  edge in fo rm ation . Ishii and 

Nagata [ 1 2] obtained the contour o f an object by contro lling 

a laser spot. Agin [13] fitted quadratic curves to the images 

o f sheets o f a laser beam. Shirai [14] and co-workers have 

used region and edge based methods to represent polyhedrons 

and simple curved objects. Popplestone et al. [15] dealt w ith 

polyhedrons and cylinders. Inokuch i and Nevatia [16] and 

Zucker and H um m el [17J presented techniques for obtain ing  

surface edges. The drawback of these techniques is that the 

edge responses must be grouped, th inned , and linked in order 

to produce a reasonable object description in terms of coherent 

regions. O n the other hand, once the line segments are found , 

the theory o f 3-D line semantics can be directly applied. It is 

possible to extract planar surfaces from  single view range data 

images by extending the iterative endpoint fit m ethod from 

two dimensions to three [ 1 ], [18]. This may work well since 

the range z can be considered as a function  o f tw o spatial co

ordinates x and y. A ll the above past techniques except [ 1 8] 

use one range image only . Com bin ing  results from  several views 

is a major problem .

O ur approach to the analysis o f a 3-D range data image is to 

first extract the relevant 3-D object as sets o f 3-D points and 

then work directly on these sets w ithout regard to the original 

image. This approach frees one from  a particular image when

a complete description (3-D m odel) o f the surface o f a 3-D ob 

ject is desired. To obtain  a 3-D model o f the object, a repre

sentation should be complete, that is, it should sample the en

tire surface o f the object, and allow for matching o f indiv idual 

views taken from  any arbitrary viewing angle. An object is 

thus defined by a finite number of selected points in three- 

space. However, only  the geometrical position o f each po int is 

know n; no topological in form ation  is available.

Modeling: Representation and models are in tim ate ly  con

nected. Since most o f the work in scene analysis has been the 

interpretation of a 2-D intensity image as a 3-D scene, 2-D 

models have been com m only  used in the analysis w ith con

straints on the configuration o f 3-D objects by making use of 

the a priori in form ation  about the objects. Such an approach 

has some inherent problems in that the image of a 3-D object 

changes w ith the perspective, it is sensitive to shadows, time of 

day, weather cond itions, and specularity; when several objects 

occlude each other only  parts of some objects are visible in the 

image and the occluding objects need to be separated from  each 

other. The direct measurement o f range simplifies many of 

these problems considerably.

McKee and Aggarwal [19] recognize partial views of 3-D 

curved objects like cup or hammer by m atching the edge descrip

tion  w ith the stored model. Their m ethod requires good input 

o f the surface boundaries. Chien and Chang [20] take as input
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Fig. 5. Two step process to approximate surface by polygons.

a list o f vertices in the 2-D line drawing of a 3-D scene of curved 

objects. The curved edges o f a body are represented piecewise 

linearly and the curved surfaces are represented as a list of 

vertices w ith various restrictions. Recognition is accomplished 

by a model in the form  of a tree. Fischler and Elschlager [21 ] 

decompose a hum an face into  subparts and construct the 

model w ith intensity arrays o f subparts, and their configura

tion . Recognition is performed by matching an input picture 

to the intensity arrays placed at the best position. Model o f 

subparts can be easily generated, but the matching is sensitive 

to the scale and shading. Perkins [22] uses 2-D models to 

recognize nonoverlapping industrial parts on a flat surface. 

These models can handle some occlusion, but ob lique viewing 

angle problem  requires 3-D models.

A tradeoff is involved between representation and modeling.

2-D models make the representation easier at the expense o f a 

complex m odeling task. 3-D models are more general, but the 

representation must take care of mapping it to view-domain. 

They are very powerful for 3-D shape analysis. Horn [23] 

uses powerful 3-D surface models of terrains for registration o f 

aerial images. Hierarchical models which involve both 2-D and

3-D models have been used 124], In this work we generate a 

3-D model o f the object in terms of planar faces approximated 

by polygons. The control structure used in shape matching is 

hierarchical and described in the next section.

Algorithm for Surface Approximation by Polygons: Repre

senting a 3-D object as a set o f planar faces approximated by 

polygons is a two-step process (Fig. 5). In the first step we find 

the set o f points that belong to various faces of the object using 

a three po in t seed algorithm  [ 1 ] , [ 25] and in the second step, 

approxim ate the face points obtained in step 1 by polygons.

The three-point seed m ethod for the extraction o f planar 

faces from  range data isa model fitting  m ethod. It can be viewed 

as a special case of the Random  Sample Consensus (R A N S A C ) 

paradigm [26]. It is a sequential region growing algorithm . It 

is not applied directly to range images, but rather to a set o f 

points. It is not restricted to single view range data image, but 

applicable to a complete object and does not require the order

ing o f points. It finds the convex faces o f the object, but the 

in form ation  exists to merge convex parts o f nonconvex faces. 

A lthough the algorithm  is applied to a set o f 3-D points, it is 

not directly related to how these points are obtained . The 

method is u ltim ately  tied to the sampling distance 'between 

points on the object.

The 3-Point Seed Method: In a well-sampled 3-D object, any 

three points lying w ith in  the sampling distance o f each other 

(called a 3-point seed) form  a plane (called the seed plane) 

which: a) coincides w ith that o f the object face containing the 

points, or b) cuts any object face contain ing any of the three 

points. A seed plane satisfying a) results in a plane from  which 

a face should be extracted, while a seed plane satisfying b) 

should be rejected. Two simple conditions that suffice to de

termine if a plane falls in to  category b) are: convexity and nar

rowness. For a given set o f points S, the convexity cond ition  

requires that for any two points x and y o f S , the m idpo in t of 

the straight line segment from  x to y also lies in S [27]. The 

characteristic o f the set o f points obtained after app ly ing the 

convexity cond ition  is such that when b) occurs, its po ints all 

lie essentially on the line passing through two most distant 

points in the set. Narrowness cond ition  makes a check to de

termine if it does not happen. The algorithm  involves the fo l

low ing steps [ 1 ] , [25].

1) From  the list o f surface points select three points which 

are noncollinear and near relative to sampling distances.

2) O bta in  the equation o f the plane passing through the three 

points chosen in step 1 .

3) F ind the set o f points P which are very close to this plane.

4) A pp ly  the convexity cond ition to the set P to obtain  a 

reduced convex set P'. This separates faces lying in the 

same plane.

5) Check the set P' obtained in step 4 for narrowness.

6) If  the face is obtained correctly (i.e., convexity and nar

rowness conditions are satisfied), remove the set o f points 

belonging to this face from  the list and proceed to step 1 
with the reduced number o f points in the list.

After the surface points belonging to a face have been o b 

tained, all the points which have been previously associated 

w ith various faces are checked for the possible inclusion in the 

present face. This provides the points which belong to more 

than one face. This in form ation  in turn provides the knowledge 

about the neighbors o f a face and relations am ong them . The 

m ethod is applied in stages; the largest faces (in terms of the 

number o f points in the face) are found first, then smaller faces 

on down to some m in im um  size. The app lication o f the 

m ethod in stages is necessary in order to lim it the fragm enta

tion o f large faces near their extremes. The m ethod requires 

four thresholds: seed point selection thresho ld , po int to plane 

threshold, convexity threshold, and narrowness threshold. 

These thresholds are tied to the sampling distances. The peculi

arities o f the object to be modeled can be accounted for by 

the proper choice o f these thresholds and the tradeoff involved 

between the number o f faces and the quality  o f representation 

can be balanced. After the surface points have been associated 

w ith various planar faces some edge points and vertices will be 

know n, however, an independent step is required to obtain  

polygonal faces. The polygonal approx im ation  of a face is 

obtained by find ing  the (,v, v, z) coordinates o f the boundary 

points o f the face and detecting the points o f high curvature

[27] .

The overall com plex ity of the 3-point seed algorithm  is 0 (n2 
log n). Considering isotropic neighborhood o f 26 points in 

3-D, there are O(n) 3-point seeds. (Note that in a plane each 

object po int can be grouped in 1 2 ways w ith its 8 nearest neigh

bors to produce a seed.) Since in practice the com plex ity is 

more dependent on the number of faces than the num ber of 

points and the points which have been associated with a face 

are no longer considered except for find ing the points com m on 

in d ifferent faces, the number o f 3-point seeds considered is of 

the order o f num ber o f faces. For each 3-point seed considered , 

the largest cost is in the convexity test. A straightforward im 

plem entation o f this test as described in the above is o f (Hn2). 
However, it can be simplified by using a k-d tree [ 28] . (A k-d 
tree structure will also aid in the selection of 3-point seed.) 

A k-d tree is a binary tree of A'-dimensional keys (here k = 3) 

which is organized such that at each subdivision step, the data 

are split at the median along the axis having greatest spread in 

vector element values along that axis. The data can be organized 

in a tree structure in Oin log n) time and it allows the deter

m ination  o f in -nearest neighbors of a given query in 6>(log/; ). 

Using this tree convexity test can be performed in 0 (n2 log n). 
This is because for each point in the convex set (in the begin

ning just the 3-point seed), we have to find m idpo in t ot each 

of the points in the test set and check if there is a po int in the 

convex set which is near to the m idpo in t. Since the number of

3-point seeds is proportional to the number of faces, the total 

com plex ity o f the 3-point seed method is 0 (n2 log n).
An alternate approach to find ing  planar faces could be a 

“clustering” type approach [ l j  which may involve the fo llow 

ing steps. 1) Find the reasonable planes. 2) Select the individual 

faces using connectivity . 3) Consider left over and bound,ny 

points etc. This approach has the advantage in that all the fates
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Fig. 6. Faces found in the view shown in Fig. 4(a). There are 22 laces 
in this view and they are labeled in the order they are found using the 

algorithm described. The rejected points and the points common to 

two or more faces are shown in brown and white color, respectively.

TABLE 1
L i s t  o f  F a c e s  in  t h e  0°  V i e w  [ F i g . 4 (a ) ] ,  / 1 ,12. a n d  / 3  A r e  t h e  I n d e x e s , 

in  t h e  L i s t  o f  P o i n t s  f o r  t h i s  V i e w , w h i c h  M a k e  Up a  F a c e

FACE 11 1 2 13 No. of Points

1 2 3 1 1 103
2 69 89 90 84
3 140 1 4 1 170 176
4 565 625 626 93
5 573 574 634 94
6 797 798 856 84
7 904 960 96 1 1 05
8 7 82 839 897 64
9 816 817 875 70

1 0 1 3 1 0 1350 1391 83
1 1 17 18 17 19 1751 67
12 328 329 367 52
13 338 376 377 60
14 597 657 658 43
15 1139 1 1 93 1241 50
16 1725 1758 1759 49
17 38 49 50 35
1 8 83 84 105 30
1 9 1 165 1 166 1213 23
20 1409 1443 14 44 36
21 1589 1590 1621 24
22 1766 1767 1799 31

(convex or nonconvex) are found at the same time. However, 

the connectivity used in step 2 ) w ill require an ordering o f 

points and if the object does not contain  major horizonta l or 

vertical surfaces, step 1) based on Hough transform or ob ta in 

ing the histogram o f z distance or some other local features 

may be quite expensive.

Surface Approximation Results: The 3-point seed m ethod 

was applied to the 14 ind iv idual views shown in Fig. 4 and to 

the complete object. Fig. 6 shows the faces found for 0 view. 

In  this figure various faces are shown in different colors. The 

rejected points and the points com m on to two or more faces 

(edge points) are shown in brown and white color,respectively. 

They are labeled in the order they are found  using the 3-point 

seed algorithm . The points that could not make up a face 

having at least 20 points were rejected. The area o f rejected 

points fall either on ju m p  points resulting from  large z-distance 

change w ith  correspondingly little x or y change, or they occur 

in extremely uneven parts o f the surface o f the object. A  re

jected po in t lies inside some of the faces because it has been 

missed in the process o f data acquisition. Also some o f the 

rows have been shifted because of the continuous nature o f 

the data. Table I gives the properties o f faces in the 0 view.

Fig. 7. Faces found in the 90° view [Fig. 4(d)]. There are 14 faces in 

this view and they are labeled in the order they are found using the 

algorithm described. The rejected points and the points common to 

two or more faces are shown in brown and white color, respectively.

TABLE II

L i s t  o f  F a c e s  in  t h e  9 0 °  V i e w  [ F i g . 4 ( d ) ] .  / I ,  12, a n d  / 3  A r e  t h e  

I n d e x e s , in  t h e  L i s t  o f  P o i n t s  f o r  t h i s  V i e w , w h i c h  M a k e  U p a  F a c e

FACE 11 12 13 No. of Points

1 1 6 1 4 82
2 432 455 456 88
3 674 695 7 1 8 1 1 1
4 143 159 177 60
5 284 303 324 62
6 51 6 1 75 72
7 385 386 408 43
8 734 757 758 43
9 1 52 153 170 38

1 0 227 228 244 42
1 1 316 317 338 28
1 2 377 399 400 32
13 531 555 576 37
1 4 81 8 8 1 9 845 58

S im ilarly , Fig. 7 shows the faces obtained in the 90° view and 

Table II lists the properties of these faces. Table III shows the 

neighbors o f a face in the 0° and 90° views. These neighbors 

are arranged in the descending order o f the num ber of points 

that they possess. Note that a face may have no neighbors, 

because a face that could not possess more than a certain m in 

im um  num ber o f po ints was rejected. D ifferent faces have d if

ferent num bers o f neighbors. For example, face I in 0 view 

has face 12 and face 17 as neighbors, and face 1 1 in 90 view 

has no neighbors. The m ethod was applied to the complete 

object to get the 3-D model. In the model 85 faces were found. 

The num ber o f faces found , and their d istribution fits well with 

the results from  the ind iv idual views.

IV . Sh a p e  M a t c h in g  o f  3-D O b jec t s

In 3-D scene analysis we have a model for 3-D objects and a 

m ethod for matching unknow n  objects w ith the model. Mil- 

gram and B jorklund [10] m ention prelim inary efforts o f 3-D 

matching by using a guided search procedure. The number of 

flat surfaces in their study is usually small. Fourier descriptors 

and m om ents have been used for the recognition o f 3-D shapes

[29] -[31]. However, moments or Fourier descriptors are glo

bal features and cannot solve the im portant class o f problems 

which require the partial recognition o f the shape, because the 

descriptors o f the entire shape do not bear any simple lel.nion- 

ship w ith the descriptors o f a part o f a shape. A lthough u .illace
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TABLE III

N e i g h b o r s  o f  a  F a c e  in  0°  a n d  90°  V i e w s . T h e y  A r e  A r r a n g e d  in  t h e  

D e s c e n d i n g  O r d e r  b y  S i z e , ( a )  0° V i e w  [ F i g . 4 (a ) ] .  ( b )  90°  V i e w  

[ F i g . 4 (d ) ] ,

F A C E  FACE
N U M B E R  N E I G H B O R S  N U M B E R  N E I G H B O R S

? 1 2 17 0 1 6 9 0
2 3 13 1 8 2 7 13 0
3 2 9 0 3 14 8 0
4 5 0 0 n 1 2 0 Q
5 n 9 0 5 0 0 0
6 15 0 0 6 1 1 0 9
7 10 8 1 3 7 2 1 0 0
8 7 1 0 0 8 3 14 0
9 3 5 0 9 1 6 1 0

1 0 7 8 2 1 10 6 7 9
1 1 16 21 0 1 1 0 0 0
1 2 1 17 0 12 4 0 0
13 7 2 1 8 13 2 0 0
1 4 19 0 0 14 3 8 0
15 6 20 0
16 1 1 22 21
17 1 \ 2 0
18 2 1 3 0
1 9 in 0 0
20 15 0 0
21 10 11 16
22 16 0 0

(a) ( b )

Fig. 8. Block diagram of the 3-D shape matching algoriilim.

et al. [29] consider shape analysis o f 3-D objects using local 

shape descriptors, their techniques need major m odifications 

inorder to handle the partial shape recognition problem . Fur

thermore like D udani et al. [31J these authors are not dealing 

w ith the 3-D data, but rather w ith projections o f a 3-D object. 

Since the image of a 3-D object changes w ith the viewing angle, 

they have a large library o f three-dimensional projections cor

responding to a single object. For example, D udan i et al. [31] 

in the iden tification  o f six different aircraft use a train ing sam

ple set o f over 3000 projected images. Oshima and Shirai [32] 

use range in form ation  for the recognition o f blocks and simple 

machine parts by m atching the feature and relation based de

scription o f the scene w ith the stored model. The Hough trans

form  technique of Ballard and Sabbah [33] to detect the pres

ence o f a 3-D object is based on the fact that all the planar 

regions be adjacent to each other in the object representation. 

However, in practice it may not be always feasible. For the 

complex au tom ob ile  part used here and the simple parts used 

by Oshima and Shirai [32J , there are faces which are not sur

rounded by other faces.

Representation and modeling are closely related and the con 

trol structures norm ally depend on the choice of representation. 

C ontro l structures are defined as the strategy o f utiliz ing  the 

available knowledge to e ffic iently obtain  the goal descriptions. 

In 3-D scene analysis work bo ttom  up, top dow n, and a m ix 

ture o f these two have been used [24], The hierarchical con

trol structure is a popular choice since it elim inates unnecessary 

search during the recognition process. Our approach for 3-D 

shape m atching uses planar faces as prim itives and matches an 

unknow n view w ith the structural 3-D model. Since our rep

resentation and m odeling are based on the prom inent actual 

physical faces o f the object, consistency of the segmentation 

process is assured. This is o f importance in shape matching. 

The contro l structure o f the 3-D shape matching algorithm  is 

hierarchical in the sense that at higher levels ot hierarchy more

contextual in fo rm ation  is used to accomplish the partial shape 

m atching task.

Shape Matching Algorithm: Fig. 8 shows a block diagram of 

the two stage hierarchical stochastic labeling technique for the 

shape matching o f 3-D objects. Shape matching is performed 

by m atching the face description o f an unknow n view w ith the 

stored model using the available contextual in form ation . The 

same set o f descriptors is used for the description o f both the 

faces o f the model and an unknow n view.

Let T = (T ! , T2 , 1 ' ' , T\i) and 0  = (O x, 0 2, ' ' ' , 0 /, - i ) be 

the face representation o f an unknow n view and the model re

spectively, where 77 and Uj are planar faces, i - I , • • \ A’ and 

./' = 1 - I . The elements of the unknow n view will be re

ferred to as units and elements o f the model as classes. We 

want to identify  an unknow n view w ith in  the model. We are 

therefore, trying to label each o f the faces o f an unknow n view 

Tj (i = 1, • ■ •, /V) either as a face 0y (/'=  1 - 1) or as not

belonging to the model O (label UL = nil). Each face 77 o f an 

unknow n view therefore has !. possible labels.

To each o f the units 77, we assign a probability  p, (/), / =

1, * ■ *, I. (using a technique described subsequently) that the 

unit belongs to class Ok . This is conveniently represented as 

a probab ility  vector p,- =[/;,■( I ) , • • • ,  p, (/<)] 1 . The set of all 

vectors Pi (i = /V) is called a stochastic labeling o f the set

o f units. Units are related to one another through their neigh

bors. The set o f units related to 77 is denoted by 17 . In order 

to compare the local structure o f T and O , the world model is 

specified by the com patib ility  functions C\ and C2 , which arc 

defined over a subset S, C  (/V X I.)2 and S2 £  (/V X / .)J lor 

the first and second stage o f the hierarchy, respectively. 1 m  

sim plic ity , we shall denote com patib ility  functions C\ (7',. Ok 

Tj, Of), 7 ) 6  ('.-and C 2 (77, Ok , 77t , O ,, , T,2 , 0 , 2 ), 77, . 7 ,. ■. 

Vj as (;, k , /, /) and C2 (/, k, i , ,/[ , i 2 , l2), respectively. < , 

and C2 take values between 0 and 1. C, ( 77, Ok , Tj, ()/1 an.! 

C2 (Ti, Ok . T , Oi , Tj , 0 / ) measure the resemblance •■! 1
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set {77, Tj} with the set {Ok , O/} and {77, , 772} with the 

set {Ok , O / j , 0 /2 }, respectively. We also define a compatibil

ity vector = [qt (1), • • •, qt (A)] T for all the units at each of 

the stages of hierarchy. Intuitively, this tells us what p; should 

be given Pj at the related units and the compatibility function. 

Mathematically,

q ^  (fc) =
Q\n  (k)

Z e P  (o
l = 1

where, at the first stage,

Q(P W =  £  Z  c , 0'.*./.0p/(0
/e vt 1 = 1 

i = 1, ■••,7V, 

k=\,---,L 

and at the second stage,

J
j(a)

h< h -1 

i= l ,

k = and z'i, i2 €  T,-.

= X  Pi ' Q i ’ i= *’ 2-

consists of area, perimeter, length of the maximum, m inimum 

and average radius vectors from the centroid of a face, number 

of vertices in the polygonal approximation of the boundary of 

a face, angle between the maximum and m inimum radius vec

tors, and ratio of area/perimeter2 of a face. Let P be the number 

of features used. We measure the quality of correspondence 

between the faces 77 and Ok as

(1) M(T,,Ok)= X
p  = 1

| ftp fo p  I (5)

(2)

(3)

As discussed in [ 1 ], [2], two global criteria that measure the 

consistency and ambiguity of the labeling over the set of units 

are given by

(4)

where

ftp = pth  feature value for the face of an unknown view 

fop ~ pth feature value for the face of the model 

Wp = weight factor for the pth feature.

Weights of the features are used to account for their impor

tance and range o f values. The initial probabilities are chosen 

proportional to 1/(1 + M(Tj, Ok)) and normalized so that they 

sum to 1.

Computation o f Compatibilities: The compatibility function 

determines the degree by which two or three neighboring units 

are compatible with each other. At the first stage the compu

tation of C1 ( i , k , j ,  I) involves binary relations and at the 

second stage C2 (i , k,i^ , l x , i 2, l2) involves a subset of ternary 

relations. The compatibility of a face of an unknown view 

with a face in the model is obtained by finding transformations, 

applying them and computing the error in feature values. At 

the first stage, we find two transformations TR 1 and TR 2 such 

that

TR 1: Tt -*■ Ok and TR2: 7) -*■ O,.

Now TR 1 is applied to Tj giving matching error M(TRl(Tj), 
0{) and TR2 is applied to 77 giving matching error M(TR2 

(77), Ok), where matching error is given by

The maximization of (4) results in a reduced inconsistency and 

ambiguity. Inconsistency is defined as the error between 

and Intuitively, this means the discrepancy between what 

every unit “ thinks” about its own labeling (p,) and what its 

neighbors “th ink” about it (q^ ) .  Ambiguity is measured by 

the quadratic entropy and results from the fact that initial 

labeling p ^  is ambiguous ( p ^  are not vectors). Note that 

each term Pj'q\^ is maximum for Pj = qW  (maximum 

consistency) and p ( = q j1̂  = unit vector (maximum unambigu

ity). The problem of labeling the units 77 is equivalent to an 

optim ization problem: given an initial l a b e l i n g = 1, • • •,N, 

find a local maximum of the criteria (/' = 1, 2) closest to 

the original labeling p j° )  subject to the constraints that p(-’s are 

probability vectors. Since C2 is a better measure than Cx of 

the local match between T and O, we are actually interested in 

finding local maximum of the criterion A 2\ On the other 

hand, maximizing is easier from the computational stand

point. We therefore use the following hierarchical approach: 

starting with an initial labeling pj°\ we look for a local max

imum p(*) o f the criterion This labeling is less ambiguous 

than in the sense that many labels have been dropped 

(their probabilities P j ( k )  are equal to zero). We then use the 

labeling p as an initial labeling to find a local maximum of 

the criterion y*'2'*. The computational saving comes from the 

fact that the values C2 corresponding to probabilities pt (/t ) 

or pi2 (l2) equal to zero are not computed. The problem of 

maximizing (4) is efficiently solved using the gradient projec

tion method [ 1 ].

Initial Assignment o f Probabilities: The initial probabilities 

are computed using the features of a face. The features set

M(TR(Tm ) ,O n)=  £  | f t 'p - fop (6)

where f t’p = p t h  feature value for the transformed unit, and 

other quantities are similar to those defined in (5). Features 

used in computing (6) are (x ,y ,z )  centroid, area, orientation, 

and rotation.

The average of these two errors is obtained and

Q  («,*,/,/)= ------ -------.
1 + average error

At the second stage instead of finding two transformations, 

we find three transformations and the average error will be the 

average of six error terms and the compatibility

1
^2 ( i, k, ;'i , /1 , i2 , l2) -

1 + average error 

The transformations used in computing C  ̂ and C2 are based

1) scale, the ratio of area of two faces;

2) translation, difference in the centroidal coordinates of 

the two faces;

3) orientation, difference in the orientation of two faces so 

that they are in the same plane;

4) rotation, to obtain maximum area of intercept, once the 

two faces are in the same plane; it is found with an ac

curacy of 45°.

The problem of defining Pj (nil), Ct and C2 when some of 

the faces in the unknown view are matched to the nil class is 

solved as follows [ 1 ]. p (- (nil) is assigned a small constant value,
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TABLE IV

L a b e l s  a t  D i f f e r e n t  I t e r a t i o n s  f o r  t h e  F a c e s  S h o w n  i n  F i g . 6. 

E x a m p l e  1.

FACE FIRST STAGE SECOND STAGE
NUMBER ITERATION NUMBER ITERATION NUMBER

0 1 3  1 3  6

1 86 ( . 10) 86 C.22 ) 1(.37) T(.41 ) 1 ( 1 . 0) 1(1 . 0)
2 86 C. 10) 86 ( .13) 2 C .19) 2 ( . 28) 2 ( .48) 2(1 . 0)

3 3( .35) 3 ( . 80 ) 3( 1 . 0) 3( 1 . 0 ) 3( 1 . 0 ) 3( 1. 0)
4 86 ( . 10) 86( . 22 ) 86(.29) 86 C .33) 86( . 36) 4(1 . 0)
5 86 ( . 10) 86 C.21 ) 5 ( . 3 3 ) 5(.42 ) 5 ( .61 ) 5(1 . 0)
6 86 ( . 10 ) 86 ( .24) 6( . 36) 6 ( .46) 6( 1 . 0) 6 ( 1 . 0)
7 7 ( . 1 1 ) 7 C. 62) 7(1 .0 ) 7( 1 . 0 ) 7( 1 . 0) 7 ( 1. 0)
S 21 ( .19) 21 ( .60 ) 2 1 ( 1 . 0 ) 2 1 ( 1 . 0 ) 2 1 ( 1 . 0 ) 21(1 . 0)
9 86 C. 10 ) 22C.38) 22( 1 . 0) 22 ( 1 . 0 ) 22( 1 . 0) 22(1 . 0)

10 24( . 18) 24 ( .60 ) 24 (1.0) 24(1.0) 24( 1 . 0) 24 ( 1. 0)
1 1 25 <.14) 25 ( .37) 25(.53) 25 ( .69) 25( 1 -0 ) 25(1 . 0)
12 86 <. 10 ) 86 ( .26) 86 C .33) 86(.41 ) 86( . 78) 86 ( 1 . 0)
13 86 ( . 10 ) 3 3 <.61 ) 33(1.0) 33(1.0) 33 (1 .0) 33 ( 1. 0)
1 4 86 ( . 10 ) 86 ( .35) 86 ( . 35 ) 86(.34 ) 34(.58) 86 ( 1 . 0)
15 86 ( . 10 ) 86 ( .33) 86( .  40 ) 86(.52 ) 86( 1 . 0 ) 86 ( 1 . 0)
16 86 ( . 10 ) 53 <. 18) 53(-36) 53(-52) 53( 1.0) 53(1 . 0)
17 86 ( . 10 ) 86 ( .34) 86( . 44 ) 45 ( . 53 ) 45 (1 . 0) 45 ( 1. 0)
18 46 ( . 10 ) 46 ( . 22 ) 46(.53) 46(.67) 46( 1 .0) 46 ( 1. 0)
19 86 ( . 10 ) 8 6 ( .27) 86( . 30) 86( .27 ) 67(.39) 50 ( 1. 0)
20 86 ( .. 10 ) 86 ( • 32) 86(.35) 86( .34 ) 34(.59) 34(1 . 0)
21 86 ( .. 10 ) 86 ( .16) 56(.34) 50 (. 53 ) 50(1.0) 50 (1 . 0)
22 86 ( . 10 ) 86 ( .26 ) 86( .34 ) 86( . 34 ) 7 9(. 39) 79(1 . 0)

Value of 
Criterion

1 .091 8.09*1 9.419 13.463

,<•20

20.857

depending upon  the a priori in fo rm ation , between 0.05 to

0.30. Its actual value is not critical, however, it affects the 

convergence o f probabilities, hence the num ber o f iterations. 

C om patib ilities involving nil class are assigned as follows:

C[ (/', k , / ,  nil) = C2 (i, k, i l , n il, i2 , n il) = p,- (k)

C ( (/, n il , / ,  /) = C2 0 ,  n il, i { , / j , i2 , l2) = Pj (n il)

C2 (i, k, ij , n il, i 2 , l2) = C , O', fc, i2 , 12)

C2 0 , k, i\ , l i  , h  . n il) = C’i ( i ,k , i

Examples and Comments: In  testing the shape m atching a l

gorithm  we consider three unknow n views shown in Fig. 4 (a),

(b ), and (1) corresponding to 0°, 30°, and 330°, respectively. 

A lthough the m odel is obtained w ith these views included, the 

m odel, as previously explained, does not contain  all the faces 

corresponding to each unknow n  view. This is due to the pro

cedure by which the surface points corresponding to  the com 

plete object were obtained . Therefore, the use o f these u n 

know n views is justified  for the evaluation o f the shape matching 

technique. It is noted that the shape matching algorithm  does 

not assume that the unknow n view was among the set o f the 

model bu ild ing  views. It can be any arbitrary view. The n um 

ber o f faces in an unknow n view o f the autom obile  piece varied 

from  10 to 25 and the num ber o f faces in the model is 85. In 

m atching, only  the best 29 faces o f the model are considered, 

in order to reduce the com plex ity  o f the matching task. The 

evaluation o f the com patib ility  vector q ^  (/' = 1 , 2 ) requires 

the knowledge about the neighbors o f a face [see (1 )] . The 

larger neighbors are given preference over the smaller neighbors, 

when a un it has several neighbors and only a subset o f them  

are considered in the com putation  o f compatib ilities. Normally 

we have considered the num ber o f neighbors to be 1 in the 

com pu ta tion  o f q ^  and 2 neighbors in the com putation  o f 

^ P ) for all the units. If  a un it has only one neighbor while 

com puting  then com patib ility  C, is used instead of C2.

If  a un it has no neighbors, then this un it is tirm ly assigned to 

the best matched class at the tim e of com putation  o f in itial 

probabilities.

Example I:  Fig. 6 shows the faces found  in the 0° view

shown in Fig. 4 (a ). Table III (a) shows the neighbors o f the 

faces. The neighbors are arranged by size in descending order. 

Table IV  shows the results o f labeling at different iterations. 

O n ly  the label w ith the highest probab ility  o f assignment is 

shown. In  the bracket we have indicated this probab ility . Label 

86 is the n il class. One way of checking the results o f labeling 

is to com pute  the relative orientation o f the object using the 

final assignment o f units. To com pute the o rientation , we need 

to com pute the transform ation matrix T in

Tx ■

where

(7)

ll 2̂ 13 X .V

T = >n 1 in 2 m 3 > *  =
t

V , b = y

« i n2 n 3 f
z -7

and , rn i , n \ ). (l2 , in 2 , n 2), and (/3 , m 3 , n 3 ) are the direc

tion  cosines o f the x ',y ', z\ axis (unknow n  view) relative to 

x,y  , z coordinates (m ode l), respectively.

From  the results o f matching the transform ation matrix T is 

obtained by selecting three units, (called a triple o f units) which 

are not assigned to the nil class, and solving a set o f nine linear 

equations to evaluate the nine coefficients o f the matrix T. The 

(* , v , z) and (.v*, v ',z ') o f any triple are taken as the centroids 

o f the matched model face and an unknow n  view face, respec

tively. From  the results shown in Table IV  several triple of 

units such as (1 , 2, 3), (1 , 3, 4), (1, 13, 16), (16 , 17, 18), (5 , 

6 , 7), (2 , 3, 4), (2 , 17, 18) produce the coefficients o f the 

matrix T very accurately. For example, the triple (5 , 6 , 7) 

solves the matrix T as

1.00000 -0.00305 -0.01102 

-0 .00534 1.00000 0.00586

-0.00916 0 .00000 1.00000

The arc cos o f coefficients (1, 1) or (3 , 3) (ro tation  in the.v-z 

plane around y axis) give 0° as the relative orientation  o f the 

unknow n  view w ith respect to the model. This is in agreement
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Fig. 9. Faces found in the view shown in Fig. 4(b). There are 24 faces 
in this view and they are labeled in the order they are found using the 

algorithm described. The rejected points and the points common to 
two or more faces are shown in brown and white color, respectively.

w ith the true orientation for this view. Note that the coeffi

cients ( 1 ,3 )  and (3 , 1) o f the transform ation matrix should 

ideally be equal to zero. Translation can be obtained by find ing 

the difference in the centroids o f the matched faces. The total 

com putation  time for surface approx im ation , matching and 

the determ ination o f orientation for this view is 566.4 s.

Whenever using the local matching results to obtain  a global 

in form ation  such as the determ ination o f orientation , a funda

mental problem  arises in that how we can use the m atching re

sults to come up w ith a unique answer. In general, it is possible 

that the matching results o f any three units may not give the 

correct direction cosines as indicated by the values o f the co

efficients o f the matrix T. A ll the coefficients o f the matrix 

T should be w ith in  ±1. So if the labeling o f any o f the three 

selected units happens to be wrong, the direction cosines will 

be errorneous. Moreover, since we are interested only  in the 

approxim ate matches not the exact matches as they may not 

exist and measurement errors are possible, it is quite likely 

that some triples do not lead to the valid direction cosines. 

Also d ifferent triples may lead to slightly different solutions. 

There are several approaches to obtain  the solution for this prob

lem . For example an average of several valid solutions (co 

efficients o f T w ith in  ±1) can be taken or more precisely the 

problem could be form ulated as a least square problem  sub

ject to the constraints that T is a rotation matrix. For the re

sults presented in this paper the three units needed for the 

com pu ta tion  o f the transform ation matrix T have been arb i

trarily chosen provided none of them  is assigned to the nil class 

and their values are w ith in  the interval [- 1 , 1 ].

Example 2: Fig. 9 shows the faces found in the 30° view 

shown in Fig. 4(b). There are 24 faces in this view and they 

are labeled in the order they are found . Table V shows the 

neighbors o f the faces. Com paring Figs. 6 and 9, it can be seen 

how some o f the facesof Fig. 9 should be labeled. For example, 

faces 1 1 ,7 , and 21 in Fig. 9 correspond to faces 8 , 1 0, and 21 

in Fig. 6 , respectively. S im ilarly the correspondence for some 

other faces can be obtained and the matching results can be 

verified by using Tables IV  and V I. As in the Example 1, var

ious triple o f units allow  us to com pute the transform ation 

matrix T. For example, using the triple (4, 7, 8), matrix T is 

obtained as

”  0 .88383 0 .09058 0.46854~

-0.20947 1.00000 -0.19653 .

-0.45183 0.01863 0.86441

TABLE V

N e i g h b o r s  o f  t h e  F a c e s  S h o w n  in  F i g . 9. T h e y  a r e  A r r a n g e d  i n  t h e  

D e s c e n d i n g  O r d e r  b y  S i z e .

FACE
NUMBER NEIGHBORS

1 a 1 u 0 0
2 4 16 0 0
3 1 8 15 0 0
4 5 2 1 8 0
5 4 i a 19 20
6 22 17 21 0
7 1 1 0 0 0
8 1 9 17 0
9 ~ 8 0 0 0

1 0 20 0 0 0
1 1 7 0 0 0
1 2 22 23 0 0
1 3 23 0 0 0
1 u 1 0 0 0
15 3 1 8 0 0
16 2 0 0 0
17 6 8 0 0
1 8 5 3 15
1 9 5 0 0 0
20 5 10 0 0
21 6 22 0 0
22 6 1 2 21 0
23 1 2 13 0 0
24 0 0 0 0

Note that the matrix T is not strictly a rotation  matrix. For 

example, the coefficients (1, 1) and (3, 3) are not equal and 

the' m agnitude o f the coefficients (1, 3) and (3 , 1) is not iden

tical. This is because of the inherent measurement errors and 

the exact matches may not exist and we have not explicitly 

constrained T to be a ro ta tion  m atrix. However, the average of 

the coefficients ( 1 ,1 )  and ( 3 ,3 )  can be taken and we can use 

its arc cos to ob ta in  a reasonable estimate o f the rotation  in 

form ation . Follow ing this the relative rotation in the x-z plane 

o f about 30 is obtained for the view shown in Fig. 9. The 

to ta l com pu ta tion  time for this view is 425.6 s.

Example 3: Fig. 10 shows the faces obtained in the 330 

view shown in Fig. 4(1). There are 24 faces in this view and as 

before they are labeled in the order they are found . Neighbors 

o f the faces are shown in Table V II. Comparing Figs. 6 , 9, and 

10 one can observe how  the face description has changed. Also 

it can be inferred how the faces o f Fig. 10 should be labeled 

w ith respect to the labeling of the faces in Figs. 6 and 9. For 

example, face 1 3 o f Fig. 6 and face 1 1 o f Fig. 1 0 match with 

the model face 33. Face 22 of Figs. 9 and 10 match w ith the 

model face 77. A few labels such as for faces 13 and 21 appear 

only in this view. Such labels have been verified independently 

w ith the model. Table V III  shows the results of the stochastic 

labeling. Most o f the labels are correct, but a few of them are 

wrong because of the higher degree o f sim ilarity of the local 

structure o f the incorrect match w ith the model. An example 

o f such an incorrect label is for the face 18 which matches 

w ith the model face 79. Actually , face 22 of Fig. 6 matches 

w ith the model face 79. As in the previous examples, triples 

o f units can be used to com pute the transformation matrix T. 
For example, using the triple (2, 5, 6 ), matrix T is obtained as

~ 0 .89699 -0.02619 -0.58716"

-0.14116 1.00000 -0.01034 .

0 .49117 -0.02597 0.79737

Using the discussion presented above in the Examples I Jnd

2, a relative orientation  o f about 330 in the .v-z plane is ob

tained. The total com utation  time for this view is 1022 s.

V. C o n c l u s io n s

In  this paper we presented representation, modeling anJ 

m atching techniques incorporated in a 3-D scene analy^i- 

tem . A  geometric technique is used to approxim ate m iiU ^
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TABLE VI
L a b e l s  a t  D i f f e r e n t  I t e r a t i o n s  f o r  t h e  F a c e s  S h o w n  i n  F i g . 9. 

E x a m p l e  2.

FACE FIRST STAGE SECOND STAGE
NUMBER ITERATION NUMBER

0 1 3
ITERATION NUMBER 

1 4 7

1 86 ( .08) 86 ( .0 8 ) 86 ( .19) 86 ( .21 ) 1( . 56 ) 1(1 .0)
2 86 ( .08) 86 ( .17) 86 ( .21 ) 2( .25) 2(.7 4 ) 2(1 .0)
3 86 ( .08) 8 6 <.18) 2 ( .27) 86 ( .26) 2(1.0) 2(1 .0)
4 86 ( .08) 8 6 ( .16) 5 (.21 ) 5 ( .32) 5(1.0) 5(1..0)
5 06 ( .08) 86 ( .17) 86 ( . 20 ) 86 ( .31 ) 5(.49) 5(1..0)
6 86 ( .08) 86 ( .18) 96 ( .21 ) 86 ( ,30) 86( 1 .0) 86 ( 1 ..0)
7 86 ( .08) 86 ( .17) 86 ( . 20 ) 86 ( .25) 24(.57) 24(1..0)
0 86 ( .08) 86 ( .16) 20 ( .20 ) 20 ( .27) 2 0 ( . 8 0 ) 20 ( 1 ,.0)
9 86 ( .08) 86( .24 ) 34( .34) 34 C-39) 34(1.0) 34 C1.0)

1 0 86 ( .08) 86 ( .23) 35 ( .30) 35 ( .35) 45(1 .0) 45(1 .0)
1 1 86 ( .0 8 ) 86 ( .22) 34( .30) 3*»( . 40 ) 3 4 < . 6 1 ) 53 ( 1.0)
1 2 86 ( .08) 86 ( .19) 26 ( .23) 26 ( .31 ) 26 ( . 4 9 ) 53 ( 1.0)
13 86 ( .0 8 ) 86 ( .30) 86 C.33) 40 ( .33) 53(1.0) 53 ( 1.0)
1 4 86 ( .08) 86 ( .24) 86 C.31 ) 64 ( .41 ) 86( 1 .0) 86 ( 1.0)
15 86 ( .08) 86 ( .20 ) 86 ( .25) 86 ( .31) 86( .54 ) 86 ( 1.0)
16 86 ( .08) 86 ( .23) 86 ( .27) 41 ( .29) 86( 1.0) 8 6 ( 1.0)
17 86 ( .08) 86 ( . 20 ) 86 ( • 25) 86 ( .28) 62(.39) 62 ( 1.0)
10 86 ( .0 8 ) 86 ( . 28) 77 ( .38) 06 ( .54) 86( 1 .0) 86 ( 1.0)
19 86 ( .08) 86 ( .16) 86 ( . 20 ) 65 ( .25) 65(1.0) 65(1 .0)
20 86 ( .08) 86 ( .16) 86 ( .22) 86 ( .22 ) 50 ( . 54 ) 52(1 .0 )
21 86 ( .08) 06 ( .17) 7 0 ( . 22 ) 86 ( .26) 86(.36) 5 0 ( 1.0)
22 86 ( .08) 06( .23) 77 ( .39) 77 ( .50 ) 77( 1 .0) 77 ( 1.0)
23 86 ( .08) 86( .19) 86 ( .23) 52( .27) 52(.39) 52(1 .0)
24 86 ( 1.0) 86( 1 .0) 86 ( 1.0) 8 6 ( 1 .0) 86( 1.0) 86( 1.0)

Value of 
Criterion

1.87* 3.647

..o)

H.327 12 .606 23 .017

jW

TABLE VII

N e i g h b o r s  o f  t h e  F a c e s  S h o w n  i n  F i g . 10. T h e y  A r e  A r r a n g e d  

i n  t h e  D e s c e n d i n g  O r d e r  b y  S i z e .

face
NUMBER NEIGHBORS

1 9 16 0 0
2 3 4 17 15
3 4 2 1 2 0
4 3 2 1 2 1 3
5 7 20 1 8 0
6 7 1 0 1 1 1 9
7 6 5 20 1 8
8 21 23 0 0
9 1 16 0 0

1 0 6 22 0 0
1 1 6 0 0 0
1 2 3 4 0 0
13 4 0 0 0
1 4 24 22 0 0
15 2 0 0 0
1 6 1 9 0 0
17 2 0 0 0
1 0 7 5 0 0
1 9 6 0 0 0
20 7 5 2 1 0
21 8 20 0 0
22 1 0 24 14 0
23 0 0 0 0
24 1 4 22 0 0

by planar faces. The results o f shape matching are good. A 

few incorrect assignments result because the structure and de

scription o f a un it w ith its neighbors matches better w ith incor

rect m atch than the correct match. Also if the object has some 

sym m etry , it is likely that there will be m ultip le  matches. The 

results o f shape matching depend upon the planar surface ap 

prox im ation , its consistency and neighborhood in form ation . 

An approx im ation  of the surface of an object which includes 

planar and curved faces which are contiguous (there are no re

jected points) and which provides complete ne ighborhood in 

form ation  w ill be desirable since then contextual in fo rm ation  

will be more effective. The number o f views to obtain  a model 

depends upon the com plex ity  o f the object. The com pu ta tion

time for surface approx im ation  o f an unknow n  view, matching 

and the determ ination o f orientation varied from  about 7-20 

m in. on a PDP-10 (KL-10 processor). Over 95 percent o f this 

time is spent in the com putation  o f rotation needed in the 

com patib ility  com putation . This is because we store only the 

boundary o f the image o f a face. Also we do not store the 

com patib ility  values, and recompute them  when the gradient 

is required [1], By storing the images o f the faces and the 

com patib ility  values, com putation  time will be much smaller. 

It can be further cut in certain situations by assuming that the 

object is rigid and it can have only a fin ite  num ber o f stable 

positions. The results o f labeling allow  us to obtain  the orient j-

Fig. 10 .  Faces found in the view shown in Fig. 4(1 ) .  There are 2 4  faces 

in this view and they are labeled in the order they are found using the 

algorithm described. The rejected points and the points common to 

two or more faces are shown in brown and white color, respectively.
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TABLE VIII
L a b e l s  a t  D i f f e r e n t  It e r a t i o n s  f o r  t h e  F a c e s  S h o w n  i n  F i g  10. 

E x a m p l e  3.

FACE FIRST STAGE SECOND STAGE
NUMBER ITERATION NUMBER ITERATION NUMBER

0 1 3 1 4

1 86 ( .08) 86 C.15) 5 ( .21 ) 86 C• 30) 86(.62) 86 ( 1 . 0)
2 2 ( .08) 2 ( .18) 2 ( .3*0 2 ( .46) 2 ( 1 . 0) 2(1 . 0)
3 86 ( .08) 86 ( .15) 86 C. 22 ) 86 ( . 24 ) 86 C. 28) 3(1 . 0)
14 86 ( . 08) 86 C.13) 5 ( . 20 ) 5 ( .25) 5( .50) 5(1 . 0)
5 86 ( .08) 8 6 ( .17) 6 C.24) 6 ( .35) 6( 1 . 0) 6( 1 . 0)
6 86 C.08) 8 6 ( .17) 7 ( • 32) 7 ( .41 ) 7( 1 . 0) 7 ( 1. 0)
7 86 ( .08) 86 ( . 16 ) 86 ( .22 ) 7 ( .32) 7( 1 . 0) 7(1.. 0)
8 86 C.08) 86 ( .21 ) 86 ( .25) 86 ( • 38) 86(.71) 86( 1 . 0)
9 86 C.08) 8 6 ( .18) 86 ( . 22 ) 86 ( .50) 86( 1 . 0) 86 ( 1 . 0)

10 86 ( .08) 86<.15) 8 6 ( . 20) 21) ( . 24 ) 24(.41 ) 24 ( 1 . 0)
11 86 ( .08) 8 6 <.21 ) 86 ( .25) 86 ( .26 ) 33(1.0) 3 3 ( 1. 0)
12 86 ( .08) 86 ( .19) 86 ( .25) 8 6 ( .36) 8 6 ( .61 ) 86 ( 1 . 0)
13 86 ( .08) 8 6 ( .21 ) 8 6 ( . 22) 86 ( .29) 27 ( . 53 ) 27(1 . 0)
14 86 ( .08) 86 ( . 211) 86 ( .27) 86 ( .39) 86(.59 ) 34(1 . 0)
15 86 ( .08) 8 6 ( .13) 86 ( .20 ) 86 ( .23) 4 6( . 58) 4 6 ( 1. 0)
16 86 ( .08) 86 C.23) 34( ■ 30) 86 ( .36) 34(1-0) 34(1 . 0)
17 86 ( .08) 46( .13) 46( .27) 46 ( .33) 46( .73) 4 6 ( 1. 0)
18 86 ( . 08) 86 ( .18) 86 ( . 21) ) 7 9 ( .35) 7 9(.60) 7 9 ( 1. 0)
19 86 ( .08) 86 C.21 ) 86 C.27) 86 ( .31 ) 70(.53) 70(1 . 0)
20 86 ( .08) 86 ( . 2*1 ) 86 t . 28) 86 ( .38) 86( 1 . 0) 86 ( 1 . 0)
21 86 ( .08) 86 ( .23) 86 ( • 30) 86 ( .29) 47(.36) 72(1 . 0)
22 86 ( .08) 86 ( .27) 77 ( . 68) 77 t 1 . 0) 77(1.0) 77 ( 1. 0)
23 86 ( . 08) 86 C.16) 86 ( .19) 67 ( .21 ) 86( .71) 86 ( 1 . 0)
an 86 ( .08) 86 ( .31 ) 86 ( .36) 86 ( .41 ) 36( 1 . 0) 36 C 1. 0)

Value of -- .9126 2.759 3.867 9.358 23.50
Criterion

tion  o f the object in three-space. Translation in form ation  can 

also be obtained . N orm ally , we used 3 iterations at the first 

stage and 4 to 8 iterations at the second stage. We found  that 

these two stages o f hierarchy are sufficient for m atching pur

poses, a lthough the m ethod generalizes to  include higher levels 

at the expense o f increased com pu ta tion . The first stage does 

not resolve all the am biguous labelings. The second stage helps 

in correcting these labelings. These matching results could be 

useful in contro lling a robot m anipulator on an assembly line 

or inspection stages of the production . The shape matching 

technique presented here can be extended to handle occlusion 

o f tw o  or more objects by fo llow ing the algorithm  discussed in 

[34],
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A Syntactic Approach to 3-D Object Representation

W. C LIN A N D  K. S. FU

Abstract—A 3-D object representation scheme which uses surfaces as 

primitives and grammatical production rules as structural relationship 

descriptors is proposed. Possible selections of surface primitives are 

discussed. Examples are given to illustrate the object description 

method.

Index Terms— Computer vision, origami world, primitive surface, 

syntactic approach, 3-D object representation, 3-D-plex grammar.

I . IN T R O D U C T IO N

Com puter representation o f three-dimensional (3-D) objects 

has attracted the attention  o f researchers o f scene analysis and 

com puter graphics in the past several years [ 1 ] -[3], [25 ]. In 

model-based approach of image recognition, a 3-D object 

m odel is constructed in order to match its 2-D perspective 

transform ation to a specific object in a 2-D picture. The 3-D 

object can also be displayed by projection methods for com 

puter graphics applications.

In  this paper, we propose a 3-D object description scheme 

using surfaces as prim itives and grammatical production rules 

as structural relationship descriptors. It is well know n that the 

syntactic approach to pattern recognition provides a capability 

for describing a large set o f complex patterns by using small 

set o f simple pattern prim itives and gramm atical rules [4]. As
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w ill be seen in Section I I I ,  one o f the most attractive aspects 

o f this capability is the use o f a recursive nature o f a grammar. 

A grammar (rewriting) rule can be applied any num ber o f tim e1', 

so it is possible to express in a very compact way some basi- 

structural characteristics o f an in fin ite  set o f sentences. A n 

other im portant feature o f this modeling scheme is that it 

unam biguously  specifies how the surface patches are assembled 

which facilitates surfaces identification  in com puter vision 

applications.

In the next section, we briefly review several different 

schemes proposed in the literature o f machine vision and 

computer-aided design. Then, in Section III , possible selec

tions o f surface prim itives are discussed. The m odeling gram- 

mar-3-D-plex gram m ar- is described. A n algorithm  to derive 

a sentence from  a left parse and a 3-D-plex grammar is pre

sented. Several examples are given to illustrate the modeling 

procedures. F inally , in Section IV , the representation scheme 

is evaluated based on general criteria fo rjudg ing  the effective

ness o f a m ethod of structural object representation.

II. D e s c r ip t io n s  o f  3-D O b je c t s

Depending on the types o f “ build ing blocks” used in the 

model construction process, there are three general classes o f 

representation for 3-D rigid solid: 1) surface or boundary , 2) 

sweep, and 3) volumetric.

A. Boundary Representations

W ith these methods, a 3-D solid object is represented by 

segmenting its boundary (or enclosing surfaces) in to  a finite 

number o f bounded subsets usually called “ faces” or “ patches” 

and describing the structural relationships between the seg

mented faces [5].

Designers involved in ship, autom ob ile , and airplane bu ild 

ing are using com puter graphics display to help visualize pro

to type shape and changes to existing designs [6 ], A number 

o f approaches, Coons patches, bicubic surface patches, Bezier 

methods, Herm ite methods, and B-splines, for example, have 

been devised [ 7] -[ 9].

Another approach to surface representation is to  express the 

surfaces as functions on the “Gaussian sphere” (the distance 

from the origin to a po int on the surface is a function  o f the 

direction o f the po in t, or o f its longitude and latitude if it 

were radially projected on a sphere w ith the center at the 

origin). This class o f surfaces, a lthough restricted, is useful in 

some app lication  areas, such as m odeling o f hum an heart [ 1 0 ], 

[111.
A n in fluentia l system for using face-based representations 

for planar polyhedral objects, is the “ winged edge” representa

tion [12], Such a representation can be made efficient for 

accessing all faces, edges, or vertices; for accessing vertex or 

edge parameters; for polyhedron build ing ; and for splitting 

edges and faces.

In [26], a set o f manipulative operations for boundary 

models o f solid objects has been presented to construct a solid 

modeling system. They are designed for C A D /C A M  environ

ments rather than com puter vision applications. The build ing 

block in the system are a set o f “ a tom ic” functions called the 

Euler operators which work on the topology o f a boundary 

m odel, that is, on the relative arrangement o f its faces, edges, 

and vertices. The destructive and the creative operations allow 

the system to perform arbitrary m odifications necessary for 

boundary representation models whose faces are planar 

polygons.

Since surfaces are what is seen, the boundary representations 

are im portant for com puter vision. For certain objects, prim ar

ily those constructed from  th in  sheet-like material, surface 

descriptions are natural for representation purposes. However, 

for conventional boundary representation schemes, correct
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