
Single Sample Soft Shadows

Steven Parker Peter Shirley Brian Smits
University of Utah

October 27, 1998

Abstract

A simple extension to ray tracing is presented that creates visually plausible
"soft" shadows with little extra computation. Although these soft shadows are
approximate, they are robust and have penumbra widths that behave in a believable
way, including accurate placement of singularities where penumbra width is zero.
The method has continuous behavior in space and time, so it is appropriate for both
static and dynamic image generation.

1 Introduction

As processing power increases, ray tracing becomes increasingly popular because of
its clean mechanisms for shadowing and specular reflection. The basic algorithm has
remained largely unchanged since it was introduced by Whitted [4]. One ofray trac
ings' chief limitations is the hard edges it computes for shadows. Soft edged shadows
are preferred to hard shadows independent of aesthetics because soft shadows aid in
accurate spatial perception [3]. Ray tracing methods that produce accurate soft shad
ows such as ray tracing with cones [1] or probabilistic ray tracing [2] stress accurate
soft shadows, so they dramatically increase computation time relative to hard shadow
computation. In this paper we introduce an inexpensive algorithm for soft shadows
that can be plugged into a conventional ray tracer. The algorithm sacrifices accuracy to
attain speed, but the important qualitative features of soft shadows are preserved, and
only one shadow sample is needed per pixel.

2 Algorithmic Constraints

Our basic goal is to get the perceptual benefits of soft shadows without significantly
increasing the runtime compared to Whitted-style shadow ray testing. This goal is
achievable if some accuracy is sacrificed. However, to be both convincing and fast,
approximate shadows must have three basic characteristics:

• Only one sample should be used per pixel/light.

• Shadow penumbra width should behave in a believable way, starting at zero at
the occluder and increasing linearly with distance from the occluder.

1

• The algorithm should be visually smooth for both static and dynamic scenes.

It is generally accepted that it is hard for observers to tell the difference between shad
ows cast by differently shaped lights. For this reason we assume roughly spherical
lights. We do a rough calculation at each illuminated point of what fraction 8 of the
light is visible, and attenuate the unshadowed illumination by 8. Thus our goal is to
estimate 8 in way that is efficient and is consistent with the three requirements above.

3 Algorithm

Rather than creating a correct soft-edged shadow from an area source, the algorithm
creates a shadow of a soft-edged object from a point source (Figure I). The penum
bra is the shadow of the semi-opaque (outer) object that is not also shadowed by the
opaque (inner) object. The transparency of the outer object increases from no trans
parency next to the inner object to full transparency at the boundary of the outer object.
For an isolated object, we can use inner and outer offsets of the real object to achieve
believable results. We also need to make the intensity gradicnt in the penumbra nat
ural. This can be achieved by computing a variable 7 that begins at 7 = 0 on the
penumbra/umbra boundary (the surface of the inner object) and increases linearly with
distance to 7 = 1 on the outer boundary of the penumbra (the surface of the outer ob
ject). This can control an interpolation of the illumination attenuation function 8. For
diffuse spherical lights and occIuders with a straight edge, the attenuation is a sinusoid:
s = (1 + sin(7rT - 7r/2))/2. To mimic this behavior with a polynomial we use the
Bernstein interpolant: s = 372 - 273 , which has the same values and derivatives as the
sinusoid at 7 = 0 and 7 = 1.

While almost any inner and outer surfaces are practical for an isolated object, we
would like our algorithm to remain simple and robust for multiple objects. For ex
ample, if a point is in the penumbra region for two objects we can make a composite
attenuation factor based on the individual factors 81 and 82. Obvious candidates are
addition: 8 = 1 - ((1 - 8d + (1 - 82)), multiplication: 8 = 8182, and thresholding:
8 = min(.'i2' 82). All will yield continuous intensity transitions and visually pleas
ing results for the shadow of two objects. However, thresholding is more conservative
when many distinct objects are grazed by a shadow ray, resulting in shadows that are
never darker than they should be.

The remaining important issue is how the inner and outer objects are generated for
an input object. Figure 2 shows why the inner object must be at least as big as the
input object to prevent "light leaks": any gap between the inner objects would result in
a nonzero .'i and a lightening in the middle of the shadow. For this reason we use the
object itself as the inner object. For the outer object, we use an image of the input object
that is expanded in a direction natural for the particular primitive. For example, for a
sphere, we use a larger sphere. For a polygon, we use a larger polygon. Our rationale
for choosing the size of the outer object is shown in Figure 3. We would like the
penumbra width in the approximation to be approximately W. Since W ~ aD / (A - a)
and b/(A - a) = W/A, a reasonable penumbra size will occur when b = aD/A. Note
that the umbra region will be larger than in a physically-based computation, but when

2

I
I

I

I
I

I

• Point
• "Iuminaire

II \'
'/ \' " \',

I I ,
I , ,

, , , , , , , , , ,

Figure 1: The inner object is opaque and the outer object's opacity falls off toward its
outer boundary.

object 1

Point
-Iuminaire

object 2

Figure 2: For this case to work using local computations without light leaking between
the objects requires that the inner objects be at least as large as the objects themselves.

the occluder size is large relative to the light size, this should not be too noticeable. An
example of the mechanics of the algorithm is discussed in the Appendix.

4 Results

The algorithm was implemented in a matter of hours in an existing ray tracer. The
computations of b and the offset for the outer surface are only a few extra lines of code.
Values for T came out as a side-effect of the intersection computations. The ray tracer
was approximately 20% slower after the change. Most of this change in runtime is
caused by the increased number of shadow-ray/bounding-volume tests resulting from
the addition of the outer objects. The results are shown in Figure 4. One reasonable
concern about the algorithm is that its errors are highest for small objects whose real

3

@.

A

, ,
, ,

\
\

, ,
, ,

....

, ,

\
\

\
\

a \
\
\

~

W

Area
luminaire

Point
~ luminaire
, I
,I _--.......

,v '"
1 I . ,'/:8

-.., ,., ... 1 b I ". , .,,}

, , , , , ,
' ...

1=1

, \ I

" \.: ~ / 1---
I

~

W 1=0

Figure 3: Choosing the size of the outer object for a given configuration.

shadows would have no umbra. In Figure 4 this is the case for the small spheres. In
Figure 5 this is the case for the finely tesselated legs, and the shadows are too promi
nent. There are many plausible solutions to this problem, but even for the difficult cases
shown in the figures the naive algorithm produces reasonable images. Note that fine
tesselations only cause this problem if the entire tesselated object is small relative to
the light.

There are no obvious dynamic artifacts in a real-time implementation of the soft
shadow algorithm on a 30 processor Origin 2000. The visual improvement caused by
including soft shadows is even more apparent in the dynamic case. So although our
algorithm is not designed to be accurate, it has large utilitarian benefits, particularly
for animation and interactive applications. Because it does illumination and shading
computations in software, it is also straightforward to use our method as a previewer
with appropriate illumination levels and reflectance properties for global illumination
programs.

Appendix: Example occluders

For a shadow ray p = 0 + tv toward a light with position I and diameter D, and a
sphere with center c and radius R , we need to decide whether we are in the penumbra
region, and if so, what is the value of T, the fractional distance between umbra and
penumbra boundaries. We first compute the distance to to the point on the shadow ray
closest to c : to = (c - 0) . V. If to is negative, then s = 1. We then compute b by

4

Figure 4: Left: one sample per pixel with hard shadows. Right: one sample per pixel
with soft shadows.

Figure 5: Soft shadows on a tesselated model.

5

/
/
/ u

/

J~
o

• I /
/

v

b

Figure 6: a: geometry for spherical occulder. b) geometry for triangular occluder.

assuming a ~ to, A ~ 111- 011, so we use

b = Dto
111- 011

We compute the value of the minimum distance d from c to the ray:

d = II to v - c + 0 II.
If this distance is between Rand R + b then we compute 7 = (d - R)/b and then
compute S(7). If d < R, S = 0, and if d > R + b, S = 1. The radius of the bounding
volume for the sphere for shadow ray testing is R + bmax where bmax is a function of
the largest light and cannot be larger than Dmax.

For triangles, the outer object is a triangle with rounded corners. The offset is
different for each side of the triangle and is proportional to the cosine of projected
triangle normal and the vector V.

References

[1] J. Amanatides. Ray tracing with cones. Computer Graphics, pages 129-135, July
1984. ACM Siggraph '84 Conference Proceedings.

[2] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
Computer Graphics, 18(4):165-174, July 1984. ACM Siggraph '84 Conference
Proceedings.

[3] D. Kersten, D. C. Knill, Mamassian P, and I. Biilthoff. Illusory motion from shad
ows. Nature, 379:31, 1996.

[4] T. Whitted. An improved illumination model for shaded display. CACM,
23(6):343-349, June 1980.

6

