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Abstract. The importance of initial state and boundary forc­
ing for atmospheric predictability is explored on global to 
regional spatial scales and on daily to seasonal time scales. 
A general circulation model is used to conduct predictabil­
ity experiments with different combinations of initial and 
boundary conditions. The experiments are verified under 
perfect model assumptions as well as against observational 
data. From initial conditions alone, there is significant in­
stantaneous forecast skill out to 2 months. Different initial 
conditions show different predictability using the same kind 
of boundary forcing. Even on seasonal time scales, using 
observed atmospheric initial conditions leads to a substan­
tial increase in overall skill, especially during periods with 
weak tropical forcing. The impact of boundary forcing on 
predictability is detectable after 10 days and leads to mea­
surable instantaneous forecast skill at very long lead times. 
Over the Northern Hemisphere, it takes roughly 4 weeks for 
boundary conditions to reach the same effect on predictabil­
ity as initial conditions. During events with strong tropical 
forcing, these time scales are somewhat shorter. Over the 
Southern Hemisphere, there is a strongly enhanced influence 
of initial conditions during summer. We conclude that the 
long term memory of initial conditions is important for sea­
sonal forecasting.

1 Introduction

Atmospheric flow is sensitively dependent on initial condi­
tions. Lorenz (1969) showed how small scale errors grow 
progressively and ultimately affect the largest scales. Such 
small errors are unavoidable because of inaccuracies in the 
specification of initial conditions, boundary conditions, and 
various model approximations. The practical implication has 
been that daily weather events become unpredictable after 2­
3 weeks.
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However, seasonal forecasts are skillful (e.g. Roads et al., 
2001; Kanamitsu et al., 2002). The physical basis for making 
forecasts on such long time scales rests primarily on the sen­
sitivity of the atmosphere to anomalous structures at its lower 
boundaries, such as sea surface temperatures (SSTs), sea ice, 
soil moisture, or snow. Fluxes across these boundaries can 
excite large scale forced modes of variability in the atmo­
sphere. The conditions at these boundaries typically evolve 
on a much slower time scale than daily weather events. At­
mospheric predictability is therefore prolonged to the extent 
that the future evolution of these boundary conditions can be 
predicted.

It is well established that on interannual timescales, El- 
Nino Southern Oscillation (ENSO) induced heating anoma­
lies over the tropical Pacific are the dominant mechanism 
for predictability over both the tropics and the extratropics. 
Over the tropics, the response to ENSO forcing is strong and 
the internal variability is low, leading to a detectable shift 
in the atmosphere’s mean state during ENSO (Kumar and 
Hoerling, 1998). ENSO can also significantly impact the 
planetary-scale circulation over the extratropics (e.g. Lau 
and Nath, 1994). In fact, it has been found that ENSO events 
are the single most important source for extratropical bound­
ary forced predictability (e.g. Kumar and Hoerling, 1995) on 
seasonal time scales.

Besides the dominant ENSO signal, there may be other, 
less regularly occurring and weaker sources of boundary 
forced predictability. For example, it is reasonable to as­
sume that SST anomalies over the tropical Indian and At­
lantic oceans have similar effects as Pacific SST anoma­
lies. Although the SST variability between the three ocean 
basins is to some degree dependent, these basins also exhibit 
some variability on their own (e.g. Landman and Mason,
1999). There may also be some influences from midlatitude 
SST anomalies on the atmosphere, although the predominant 
opinion is that on time scales shorter than a decade the influ­
ences are small (e.g. Robinson, 2000). Low-frequency vari­
ations in the land surface boundary conditions like soil mois­
ture, snow cover and soil temperature over both the tropical
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and extratropical continents can also contribute to variations 
in predictability (e.g. Fennessy and Shukla, 1999; Hong and 
Pan, 2000; Dirmeyer, 2000).

If land or ocean models are coupled to GCMs, then their 
initial conditions also impact predictability. Because of the 
much slower boundary time scales, these initial states will 
influence the forecast during much of the integration. An­
derson and Ploshay (2000), for example, found a significant 
sensitivity in predictability by including observed land sur­
face initial conditions in a forecast.

Even though there is a general agreement that boundary 
forcing is the primary source of predictability at longer time 
scales, there is reason to believe that atmospheric initial con­
ditions also influence the evolution of the atmosphere on time 
scales longer than just a few days. First, it is quite likely that 
predictability is variable, and that it is also a function of ini­
tial conditions. For some initial states, predictability may ex­
tend well beyond the mean predictability limit. Other states 
may be virtually unpredictable, for example those, which are 
close to regime shifts (Palmer, 1993), but how to identify a 
priori those predictions with potential extended range skill 
is still unknown. Second, Shukla (1981) hypothesized that 
fast growing synoptic instabilities and slowly varying plan­
etary waves might possess different predictability character­
istics. There is in fact some evidence from modeling studies 
for an extended memory of the larger scales (e.g. Roads, 
1987). There are probably also regional differences in the 
importance for initial conditions. Shukla (1998), for exam­
ple, found that in the tropics the link of the atmosphere to 
the ocean, and thus the influence of boundary conditions, is 
too strong in order for initial conditions to have much im­
portance. However, it remains to be seen whether the initial 
condition effect is limited to the extratropics.

Tribbia and Baumhefner (1988) showed that the effect of 
initial conditions on daily unaveraged skill in a GCM lasts for 
roughly 2 months, which they interpreted as an indicator for 
certain long term predictable components of the atmosphere. 
They also found little skill in a one month mean forecast with 
climatological boundary forcing. Barsugli et al. (1999) found 
that effects of strong tropical boundary forcing appear 5-10 
days after initialization. Recently, several large experiments, 
e.g. “dynamical seasonal prediction” (DSP) (Shukla et al.,
2000), and “prediction of climate variations on seasonal to 
interannual time-scales” (PROVOST) (Palmer et al., 2000), 
investigated seasonal predictability, which included the ef­
fect of initial conditions. Chang et al. (2000), for example, 
found that initial conditions are the major factor leading to 
skillful extratropical forecasts at lead times of less than a 
month, while boundary forcing is the dominant factor at a 
seasonal time-scale.

Here, we again attempt to understand the relative role of 
initial and boundary conditions with a series of idealized 
GCM experiments which are internally consistent with re­
spect to model and data. The experiments are forced with 
different combinations of initial and boundary conditions to 
diagnose the effects of both on the forecast. The main differ­
ence between this study and previous studies is that the ear­

lier studies examined either daily forecast skill on relatively 
short time scales, or simply the seasonally averaged skill. In 
the present study, we attempt to bridge the gap between short 
term weather forecasting and long term climate prediction by 
examining the daily breakdown of instantaneous predictabil­
ity from day one out to a season to derive the various time 
scales of interest. The results are then compared to time av­
eraged skill for different lead times.

We mostly apply the perfect model approach (Buizza, 
1997; Anderson et al., 1999) in this paper. That is, one fore­
cast is verified against another forecast with the same model, 
and errors concerning uncertainties in the model formulation 
are eliminated. This allows us to better focus on the basic 
questions of this paper and to determine the theoretical up­
per predictability limit for this model. To further examine 
the influence of model errors on actual forecast skill, we also 
verify our experiments against reanalysis.

Forecast skill on longer time scales is actually quite vari­
able, especially in the extratropics. Boundary forcing exerts 
only a weak constraint on the flow, and predictable signals 
from the boundary forcing and the initial state are largely 
dominated by noise, which are the unpredictable components 
of internal variability. In order to forecast on longer time 
scales, predictable components need to be separated from 
the noise. The solution is a statistical treatment in the form of 
time averaging, ensemble averaging, and various composites. 
The low-pass filtering structure of time and ensemble aver­
aging eliminates unpredictable high-frequency components 
from the flow. At the same time more and more information 
about individual weather events is lost. Thus, the problem 
of forecasting beyond the deterministic predictability limit 
becomes essentially one of stochastic prediction (Barnett, 
1995).

The organization of this paper is as follows. In the fol­
lowing chapter we describe briefly our model and data. In 
chapter three, we explain the experimental design of the pre­
dictability experiments. In chapter four, we illustrate how 
we analyze the experimental results using the perfect model 
framework. In chapter five, we present our results. In the last 
chapter, we summarize our findings and draw some conclu­
sions. Basically, we conclude that the effect of atmospheric 
initial conditions should be considered for seasonal forecasts, 
especially if the boundary forcing is weak.

2 Model and data

We used the seasonal forecasting model from the National 
Centers for Environmental Prediction (NCEP), which is also 
known as the Global Spectral Model (GSM). The model uses 
the spectral transform method to solve the atmospheric prim­
itive equation system for vorticity, divergence, virtual tem­
perature, specific humidity, and logarithm of surface pres­
sure. A triangular truncation of 42 spherical harmonics 
(T42), equivalent to a horizontal resolution of about 280 km, 
and a vertical sigma coordinate system which contains 28
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layers and 29 levels from the surface to zero hPa is used for 
these experiments.

The GSM originates from the NCEP medium range fore­
cast model (MRF) that was operational in 1995. The GSM 
was used for the NCEP/NCAR reanalysis (Kalnay et al. 
1996; Kistler et al. 2001), and the NCEP/DOE reanalysis-
2 (Kanamitsu et al. 1999). The model version of this 
study was released in October 2000, and differs from the 
reanalysis-2 model mainly by its parallelized code struc­
ture and improved physical parameterizations. Deep cu­
mulus convection is now parameterized using the “Relaxed 
Arakawa-Schubert” (RAS) scheme for deep cumulus con­
vection (Moorthi and Suarez, 1992), which is physically 
more realistic, and which is likely to show a better mid­
latitude response to tropical heating than the “Simplified 
Arakawa-Schubert” (SAS) scheme (Grell, 1993) of the older 
version. A new scheme for long-wave radiation (Chou and 
Suarez, 1994; Chou et al., 1999) replaces the old GFDL 
scheme (Fels and Schwarzkopf, 1975). Radiative effects of 
convective and stratiform clouds are now parameterized us­
ing the Slingo and Slingo (1991) formulation. Much effort 
has also been devoted to improve the physical processes in 
the soil and land-surface model through a better description 
of surface vegetation type, vegetation fraction, and soil type, 
and compatible physics (Hong, 2001; Pan and Mahrt, 1987). 
A detailed description of the model’s formulation is given 
in the comprehensive documentation of the 1988 version of 
the model (NMC-Development-Division, 1988). Subsequent 
model improvements are summarized in Kanamitsu (1989); 
Kanamitsu et al. (1990); Kalnay et al. (1990); Kanamitsu et 
al. (1991); Kalnay et al. (1996); Caplan et al. (1997); Kana­
mitsu et al. (1999); and Kanamitsu et al. (2002).

Observed, climatological or model generated boundary 
conditions are used to force the various experiments of this 
study. Over oceans, the observed history of SST and sea 
ice is imposed as the evolving lower boundary condition. 
The SST data for the 1948-1981 period were taken from the 
UKMO Global Ice and Sea Surface Temperature (GISST) 
data set. After 1982, a satellite-in situ blended SST analy­
sis based on the method of optimum interpolation (Reynolds 
and Smith 1994) was available from the reanalysis archives. 
The sea ice distribution was taken from the NCEP/NCAR 
reanalysis (Kalnay et al., 1996; Kistler et al., 2001). Some 
experiments were forced every year with the climatological 
seasonal cycle of SST and sea ice. The climatologies were 
calculated by averaging the observed monthly mean fields 
over the 50 year period 1950-1999. The monthly mean data 
were then linearly interpolated to daily values.

Over land, three different types of boundary conditions 
were used: For most experiments, land boundary conditions 
were determined internally by the land surface scheme of the 
model. In some cases, a climatological mean seasonal cycle 
for soil moisture and snow cover was prescribed, calculated 
from the NCEP/DOE reanalysis-2 by averaging over the pe­
riod 1979-1998. For some experiments, daily observed fields 
of soil moisture and snow cover, which were also derived 
from NCEP/DOE reanalysis-2, were specified.

3 Experimental design

The simulations of this study can be roughly divided into 
three categories, depending on the initial and boundary con­
ditions. Tables 1a-1c provides the name of each experiment, 
the kind of boundary conditions over oceans and over land, 
the type of initial conditions, the ensemble size, and the sim­
ulation time and period.

3.1 Experiments

Two base runs constitute the first group of experiments (Ta­
ble 1a). These continuous multi-year GCM simulations pro­
duced the initial conditions for the subsequent ensemble pre­
dictability experiments. Both base runs started from ob­
served initial conditions at 1 January 1948, which were de­
rived from the NCEP/NCAR reanalysis. Simulation BASE- 
O was forced with the observed history of SST and sea ice 
over the 1948-2000 period. Land surface boundary condi­
tions were generated internally by the GCM. The second base 
run, BASE-C, was run for 77 years, forced with a seasonal 
cycle of climatological SST and sea ice every year. Land 
surface boundary conditions were generated internally by the 
model.

The ensemble predictability experiments were reinitial­
ized every year at 15 December (15 June) and run continu­
ously through the 3^ month long northern hemispheric win­
ter (summer) season. Individual members of each experi­
ment were forced with identical boundary conditions, but 
were started from slightly different initial conditions. The 
initial conditions were derived by breeding (discussed later) 
from the BASE runs or from NCEP/NCAR reanalysis. The 
validation of the runs depended on the type of experiment 
and will be explained later.

To test the effect of initial conditions on predictability, two 
experiments forced with climatological boundary conditions 
(Table 1b) were conducted. The initial conditions for experi­
ment CC were produced by breeding from BASE-C. We call 
these initial conditions “climatological”, since BASE-C was 
forced with climatological ocean boundary conditions. Since 
neither the initial conditions nor the boundary conditions of 
CC contain anomalies, CC can be regarded as a pure pre­
dictability experiment (e.g. Lorenz, 1969). Experiment IC, 
on the other hand, was initialized by breeding from BASE- 
O. The initial conditions for this experiment can be thought 
of as being “anomalous” in the sense that they contain infor­
mation about the anomalous boundary forcing acting prior to 
the initialization time. This information is then carried over 
into the subsequent integration.

The remaining four experiments were forced with ob­
served SST and sea ice, and model generated or reanalysis 
land boundary conditions (Table 1c). These experiments dif­
fer mainly in the way how they were initialized. ICBC was 
initialized from BASE-O. Under the perfect model assump­
tion, this is equivalent to using “observed” initial conditions. 
ICBC-r was initialized from reanalysis, which is also equiv­
alent to “observed” initial conditions when verifying against
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Table 1. (a) Base run characteristics. Specified are boundary (“BCs”) and initial conditions (“ICs”), as well as ensemble size (“size”), and 
simulation period (“days” and “years”) (b) Experiments with climatological boundary conditions. “r-2” indicates NCEP/DOE reanalysis-2 
were used. See (a) for other details. (c) Experiments with observed ocean boundary conditions. See (a) for other details

(a)

name ocean BCs land BCs atmos. ICs land ICs sizes days years

BASE-O observed model observed 1/1/48 observed 1/1/48 1 1/1-12/31 1948-2000 
BASE-C climatology model observed 1/1/48 observed 1/1/48 1 1/1-12/31 1948-2024

(b)

name ocean BCs land BCs atmos. ICs land ICs sizes days years

IC climatology r-2 climatology BASE-O — 10 12/15-03/31 1979-2000
6/15-09/31

CC climatology r-2 climatology BASE-C — 10 12/15-03/31 1979-2000

(c)

name ocean BCs land BCs atmos. ICs land ICs sizes days years

ICBC observed model BASE-O BASE-O 20 12/15-03/31 1979-2000
(10) 6/15-09/31

BC observed model BASE-C rndm. BASE-C rndm. 10 12/15-03/31 1979-2000
6/15-09/31

ICBC-r observed r-2 r-2 — 10 12/15-03/31 1979-2000
iBC observed model ICBC, 1 yr lag ICBC, 1 yr lag 10 12/15-03/31 1980-2001

6/15-09/31

reanalysis. Through initial and boundary conditions, these 
two simulations receive the maximum possible amount of in­
formation about the state of the system.

Simulation iBC is very similar to ICBC. The only differ­
ence are the initial conditions, which were produced by in­
tegrating ICBC for one whole year, i.e. from 15 Decem­
ber (June) of the current year to 15 December (June) of the 
next year. The final state was then used to initialize iBC. 
For example, to initialize iBC for 15 December 1989, we 
would run ICBC from 15 December 1988 for one whole year 
to 15 December 1989. These initial conditions have com­
pletely lost their memory from the previous year, but they 
are adjusted to the boundary forcing at the new initializa­
tion time. The initial conditions of iBC and ICBC for the 
same year evolved under the influence of the same bound­
ary conditions, but through a different history of complex 
non-linear interactions. It can therefore be expected that the 
amplitude and phase of the main energy-carrying planetary 
waves are similar, at least to the extent that they are con­
trolled by boundary conditions. The synoptic and smaller 
scale components of the flow fields, however, are completely 
different. Another way of thinking is that two different AMIP 
type base runs were used to initialize iBC and ICBC. Both 
experiments, however, were verified against ICBC. There­

fore, ICBC initial conditions were almost perfect, whereas 
iBC initial conditions are not. The motivation for this ex­
periment was to find out how much predictability is lost by 
excluding the beneficial effects of synoptic scales in the ini­
tial conditions on dynamical predictability, but by retaining 
the effect of evolving boundary forcing on initial conditions. 
In this respect, experiment iBC is comparable to an ensemble 
of continuous AMIP-type integrations. Note that iBC is also 
comparable to the operational seasonal forecasts at the Inter­
national Research Institute for Climate Predictions (IRI). In 
their two-tiered approach, the GCM is initialized from a con­
tinuous AMIP-type run, which is forced with observed ocean 
boundary conditions (see Mason et al., 1999).

The final experiment, BC, contains only information from 
boundary forcing. It was started from randomly chosen 
“climatological” initial conditions, which were derived from 
BASE-C. This experiment allows us to study the effect of 
boundary forcing alone without the possible influences from 
initial conditions. It should be noted here that the design 
of some of our experiments contains certain unavoidable 
caveats. Atmospheric initial conditions are not unrelated to 
the boundary conditions for the same day. Initial conditions, 
which are not in balance with the imposed boundary forc­
ing, may lead to spin-up problems, which tend to make the
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model less predictable (e.g. Anderson and Ploshay, 2000). 
Experiments BC and IC may be affected to some extent by 
this, but we assume that this influence is small. We note 
also that due to technicalities with the model, the climatolog- 
ical or observed values for soil moisture and snow for exper­
iments CC, IC, and ICBC-r were prescribed only every 24 h. 
Between these intervals, the land model is allowed to com­
municate interactively with the model atmosphere to update 
land boundary conditions. The 24 h update period, however, 
is much smaller than the time scales that are typical for land 
boundary conditions. We believe therefore that this effect is 
negligible.

3.2 Simulation time and period

The predictability experiments cover the 22 year period from 
1979 to 2000. Each year, the model was initialized at 15 
December (June) 00:00 Z, and then continuously integrated 
for 107 days through 1 April (October) 00:00 Z of the fol­
lowing year (see Table 1). The experiments for the Northern 
Hemisphere winter will be denoted by DJFM, and the ex­
periments for summer by JJAS (it should be noted that this 
simulation time and period is identical to the DSP project). 
The model output was saved in 12 h intervals for further anal­
ysis. The simulations were carried out for both the northern 
hemispheric winter and summer to capture the effects of sea­
sonal variations in the strength of the ENSO signal and in the 
background state of the atmosphere.

3.3 Breeding

Ensemble predictions are used to isolate reproducible atmo­
spheric signals from unpredictable components of internally 
generated variability or noise. Forecasts start from slightly 
different initial conditions, which should represent the ob­
servational uncertainty in the atmospheric initial conditions. 
Each ensemble member can then be thought of as tracing 
one of the many possible paths in the phase space of the at­
mosphere. The average over all realizations filters out the 
noise and returns the most likely evolution of the forced at­
mosphere.

The probabilistic nature of the forecasting problem re­
quires a sufficiently large ensemble. Our standard ensemble 
size contained 10 members (see Table 1). For reference ex­
periment ICBC, which was used to verify other simulations, 
an ensemble size of 20 was used during winter. From ear­
lier studies we concluded that for seasonal means in the ex- 
tratropical atmosphere, 8-10  members produce a reasonably 
sized ensemble (e.g. Leith, 1974; Palmer et al., 1990; Bar­
nett, 1995; Kumar and Hoerling, 1995; Shukla et al., 2000). 
Sardeshmukh et al. (2000) stress the need for larger ensem­
bles, but since our results are based on composites over many 
years, and since we are examining skill over very large re­
gions, we believe that an ensemble size of 10 was more than 
adequate for all of our investigations.

We were also concerned about producing the best pos­
sible initial conditions for the ensembles. Some of the

early methods to perturb initial conditions for short term 
numerical weather forecasts were “Monte Carlo”, which 
just added suitable scaled random perturbations (e.g. Trib- 
bia and Baumhefner, 1988), and “lagged average forecast­
ing”, which used the difference between a previous fore­
cast and the present analysis as perturbation (Hoffman and 
Kalnay, 1983). More modern methods include “breeding 
of fast-growing modes” (Toth and Kalnay, 1993; Toth and 
Kalnay, 1997) and the “singular vector method” (Lorenz, 
1965; Buizza and Palmer, 1995). On the longer climate 
time scales, where the influence of the initial conditions is 
assumed to be minimal, not much attention has been paid 
to the problem of creating perturbations. Common methods 
are Monte Carlo (e.g. Shukla, 1981), using analyses for the 
same date but from different years (e.g. Barnett, 1995), or us­
ing analyses centered around the date but several hours apart 
(e.g. Chang et al., 2000; Anderson and Ploshay, 2000). With 
the latter method, all initial conditions originate from the 
same trajectory of the observed atmosphere. Consequently, 
different forecasts tend to evolve along the same trajectory, 
which may result in an overestimate of predictability.

We used the breeding method, which is a methodology 
for getting the fastest growing modes for a particular ini­
tial state from the atmospheric model itself. As described by 
Toth and Kalnay (1993, 1997), the resulting breeding vec­
tors are mathematically related to the Lyapunov exponents, 
which point into the direction of the phase space that can 
grow fastest in a sustainable manner. The method is standard 
for operational forecasting at NCEP. A breeding cycle starts 
by adding and subtracting ten different small initial perturba­
tions to the initial atmospheric field five days ahead of the ac­
tual initialization date (10 December or 10 June). The initial 
perturbations are those used operationally at NCEP truncated 
to T42 resolution (the breeding algorithm and the initial per­
turbations were made available to us by Z. Toth from NCEP). 
The model is integrated for 24 h from the 20 perturbed and 
from the original unperturbed initial conditions. The differ­
ences between the unperturbed and each of the perturbed 
forecasts are then used to calculate the next 20 perturbed 
initial conditions for the following 24 h breeding forecast. 
These differences are scaled down to the size of the initial 
perturbation. The scaling is based on the 500 hPa rotational 
kinetic energy, and uses a time and space dependant mask 
which takes into account observational uncertainties. The 
scaled differences are added to the initial atmospheric state 
for the following day to create the next set of perturbations. 
The last two steps, i.e. 24 h forecast and scaling of the dif­
ferences, are repeated five times. The final product includes 
twenty perturbed initial conditions for the 15th of the month, 
which contain the fastest growing modes for the particular 
atmospheric state. The mean rms differences between two 
individual perturbed initial conditions at the 500 hPa level 
over the northern hemisphere were ~3 m/s for the u and v 
wind components, and ~ 2 0 m for the geopotential height. 
The maximum differences at individual grid points reached 
~  17 m/s for the wind, and 110 m for the geopotential height.

It should be noted that the breeding method of this study
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creates fastest growing modes within the context a few days, 
i.e. for the weather forecasting range. Since we are con­
cerned with a much wider time range from days out to one 
season, it would be interesting to use an alternative method 
which creates fastest modes for longer time scales. This is­
sue, however, can only be addressed by future studies.

4 Analysis procedure

Predictability is measured from the spatial anomaly corre­
lation (A C ) of a certain pressure surface over four specific 
areas. Areas of interest were (a) the Northern Hemisphere 
(NH) (20° N—90° N), the Pacific North American (PNA) 
region (180° W—60° W, 15° N—70° N), the Southern Hemi­
sphere (SH) (20° S—90° S), and the tropics (20° N—20° S). 
We calculated the AC from the 500 hPa geopotential height 
over the extratropical regions (NH, PNA, SH), and from the 
200 hPa geopotential height over the tropics.

The A C  is designed to detect similarities in spatial pat­
terns (Wilks, 1995) of two fields, which we will refer from 
now on as “forecast” and “verification”. The AC is a com­
mon measure for skill of field forecasts. It is used in many 
studies of atmospheric predictability, but it is highly sensi­
tive to the technicalities of the analysis procedure (Anderson 
et al., 1999). The main shortcoming of the AC is that it is in­
sensitive to systematic biases and to scale; it does not change 
when a field is scaled by a positive constant or when a con­
stant is added to the field. The A C  also depends strongly 
on the choice of a reference climate for the computation of 
the anomalies (e.g. Barker and Horel, 1989). In this study, 
anomalies are calculated with respect to the daily climatol­
ogy of each simulation. This removes the seasonal cycle 
from the data and corrects systematic model errors. The cli­
matologies for a specific simulation are computed by taking 
daily averages from all members of that simulation over the 
1979—2000 period.

The A C  is defined as the spatial correlation coefficient 
over some region between the anomalies of the forecast and 
the verification. Let F  =  F ( x , t) be the forecast, and 
V  =  V ( x , t) and verification field at location x of the 12 h 
model output at time t . Then,

A Ci( t )  =

f ( F  — F ) ( V  — Vi)dA
_A______________________

f ( F  — F ) 2d A  f  (Vi — Vi)2d A
A A

(1)

defines the anomaly correlation using verification member 
i . d A  is the differential surface element of the geographi­
cal area A  under consideratifon, F  and Vi are the respective 
area averages, e.g. F  =  y f  F d A ,  F  is the ensemble and

2 A
time averaged filtered anomaly of the forecast, and Vi is the 
time averaged filtered anomaly of only one member of the 
verification. More specifically,

n2
(2)F7(x, t) = Fj (x,  t )  — (F(x))

and

Vi (x, t) = Vi(x, t) — (V(x))
n2 
n1 , (3)

where F  — ( F ) and V — ( V ) are the anomalies of the two 
fields with () being the climatological mean over all ensem-

—T
ble members and years, () a temporal mean over some time 
interval T , () an ensemble average over ten or nine ensem-

I in2ble members j  =  1...9 or 10 of the forecast, and | |n1 a spatial 
filter which includes total wave numbers from n 1 to n2. Usu­
ally, the spatial filtering coefficients are chosen as n 1 =  0 
and n2 =  42, i.e. all spatial scales from the flow field are re­
tained. The time average interval T  ranges between 1 (instan­
taneous 12 h skill), 10 (5 days), 30 (2 weeks), 60 (1 month), 
120 (2 months) and 180 (one season) output intervals.

Note that each ACi  is calculated from the ensemble mean 
Fj  of the forecast, but that ensemble averaging is not ap­
plied to the verification field Vi . Leith (1974) showed that 
the ensemble mean provides in a statistical sense a forecast 
more reliable than any of the single forecasts, including that 
started from the control analysis. This is because of the opti­
mal filtering nature of the averaging procedure, which damps 
phase decorrelated, erroneous, small scale structures in favor 
of more predictable large scales. Consequently, ensemble av­
eraging will increase the value of the A C . Since real world 
atmospheric states do not occur more than once, we use only 
one single realizations Vi to verify the ensemble mean fore­
cast. Since each member of the verification ensemble can 
represent real observations, a more robust estimate of the 
skill is obtained by computing the skill with each member 
of the ensemble being treated as verification in turn and av­
eraging over the individual results. Thus, the final A C  for a 
particular date is simply given by averaging over all I  mem­
bers of the verification experiment, i.e.

1 v -A C ( t )  =  - J 2  AC( t ) i .  
1 i=1

(4)

If a simulation was verified against itself, one ensemble 
member was taken as verification, and the ensemble mean 
over the remaining 1 — 1 members was taken as forecast.

A C  values are highly non-normally distributed since their 
range of values is limited between — 1 and+1. In some cases, 
however, it is desirable to have a more normal distribution of 
the skill values. This can be achieved by applying a Fisher 
z-transformation (e.g. Roads, 1988) to the A C  values, i.e.

1 (1 +  ACi)
Zi =  — I n ------------- .

! 2 (1 — ACi)
(5)

The mean spread S P  between ensemble members is given by 
the mean rms difference between all possible pairs of forecast 
members over some area A , i.e.

J —2 J—1

S P ( <) =  n T .  t .
n 1

i=0 j =i + 1 '
dA. (6)
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Note that this measure of spread does not depend on a veri­
fying field. It will be later used as potential indicator for the 
skill of the ensemble mean.

In some of our analysis we use a wavenumber represen­
tation in terms of spherical harmonic base functions. The 
spherical triangular expansion of a field Z  is given by

N N
Z(0, X, t) — An

m = - N  n—|m|
(t)Y„m(0, X), (7)

where are the spherical harmonics, A nm are the expan­
sion coefficients, N is the truncation, n is the total wavenum- 
ber, and m is the zonal wavenumber. This expansion is a 
standard numerical method. It is, for example, described in 
more detail in Hoskins (1975). Prior to the expansion, the 
climatological mean is removed from the data at each grid 
point. We use a truncation of N =  42, so that each field is 
represented by 946 expansion coefficient for different combi­
nations of n and m. The coefficients are appropriately scaled 
so that they carry the units of the field.

We calculate a wave number spectrum from the modulus 
of the complex coefficients by taking the average over vari­
ous ensemble members, time steps and years, i.e.

Pnm (A nm Anm (8)

A one-dimensional spectral representation is achieved by 
summing over all zonal wave numbers m for a given n. Since 
Pn{- m ) =  Pm  (see e.g. Boer, 1984) it follows that

P2 \  ' p 2 \  ' (2 — xm) P 2 1 n /  > 1 nm /  >(2 u0 ) 1 nm' (9)
m=0

The spectral error energy at a given lead time t between the 
coefficients of a forecast and a verification is determined by

E nm(t) — \ Fnm(t) Onm(t) (10)

where the averaging () is taken over many members and 
years at the same lead time. It is useful to express E%m rela­
tive to the maximum error E*m2

Sim — E 2nm/E*„m2, (11)

where the saturation error is given by the sum of the two 
climatological variances, i.e.

E*E (t)2 — Fnm (t ) + Onm (t ) (12)

Note that E*m2 is also a function of time because of seasonal 
changes in signal and noise.

5 Results

Below we present a statistical analysis of the various ensem­
ble experiments. The goal is to document the long-term ef­
fects of initial conditions and boundary conditions on pre­
dictability, and to find out how the results change for differ­
ent regions, seasons and years. First, the effects of averaging

are discussed, and we illustrate the time evolution of skill 
with very high temporal resolution. Then, we investigate 
the long-term effects of initial conditions on predictability 
without influences from the boundaries. Next, we examine 
the effects of boundary forcing, and we look at the regional 
and seasonal aspects of long-term predictability. We com­
pare the perfect model results with real world skill to find 
out how large model induced error components are. Then, 
we present a year-to-year breakdown of seasonally averaged 
predictability and examine the relationship between skill and 
spread. Finally, we examine how predictability varies for dif­
ferent scales of motion, and show which scales are affected 
by boundary forcing.

5.1 Averaging

What are the effects of averaging over ensemble members, 
over many years, and over increasingly longer lead times? 
We choose simulation CC to investigate the time evolution of 
skill at different stages of the averaging process. Figure 1a 
depicts the time evolution of the unaveraged 12 hourly A C  
of the global 500 hPa height of simulation CC from day 0 
(15 December) out to day 106 (31 March). Shown are the 
results from 10 individual verifying members for one arbi­
trarily selected model year (1989/1990). Under the perfect 
model assumption, each forecast member has been used in 
turn to verify the ensemble average of the 9 remaining mem­
bers. By taking ensemble averages, unpredictable flow com­
ponents are filtered out from the forecast, so that the overall 
predictive skill increases. Figure 1b shows the average over 
the ten individual verification members for the same year, 
and the length of the associated 95% confidence interval. The 
interval was calculated from the Fisher z-transformed skill 
values of all individual verifying members, using a two sided 
Student’s t-test (e.g. Wilks, 1995), and assuming that the in­
dividual values are normally distributed and independent.

Figure 1c depicts the ensemble mean skill averaged over 
all 22 model winters (1979-2000), and the 95% confidence 
interval. Each data point of the mean curve represents the 
average of 220 individual A C  calculations, from 10 verifi­
cation members and 22 winter seasons. The averaging pro­
cesses reduces the sampling uncertainty to tolerable levels, 
even for instantaneous forecast skill. Even though simu­
lation CC was forced with climatological boundary condi­
tions, instantaneous forecast skill can be detected out to sev­
eral weeks. The A C  values are actually very small, but as 
will be shown later, the skill increases considerably by us­
ing time averaging, by adding anomalous initial conditions 
and boundary forcing, and by focusing on certain better pre­
dictable regions. The main purpose of displaying unaveraged 
forecast skill is to determine later the exact time ranges for 
the influence of initial conditions and boundary forcing. For 
comparison, Fig. 1c also shows the skill of a persistence fore­
cast (red curve), which is made simply by persisting day 0 for 
all lead times. The skill of the persistence forecast is much 
lower than that of the dynamical forecast, and demonstrates 
the potential value of the dynamical model. Note that the

m — -n

2

2 2
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a .  winter 89/90: individual b . winter 89/90: ensemble mean
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Fig. 1. Time evolution of global skill for simulation CC verified against itself: (a) instantaneous forecast skill from verifying against 
individual members during model winter 1989/1990; (b) ensemble averaged skill for the same year, and 95% confidence interval; (c) 
composite forecast skill, averaged over 22 years and 10 verifying ensemble members (blue thick) and associated 95% confidence interval 
(blue thin); skill of persistence forecast (red); (d) composite skill for different time averaging intervals.

average skill over all years (Fig. 1c) is lower than the skill 
for the specific year 1989/1990 (Fig. 1b). This means that 
1989/1990 initial conditions were associated with very high 
long-term predictability.

Figure 1d demonstrates the effect of taking increasingly 
longer time averages of the input data before ACs are calcu­
lated. The curves are for different lengths of the time averag­
ing interval T in Eqs. (2) and (3), reaching from no averaging 
(0.5 days) to seasonal averaging (90 days). The curves are 
centered at the middle of the averaging interval. For exam­
ple, the first (last) data point of the seasonal skill corresponds 
to the mean of day 0-89 (17-106) and is centered at day 45 
(62). With longer averaging periods, the forecast skill im­
proves at the expense of losing information about individual 
weather events and explaining less of the original unaver­
aged variance. The improvement in skill is mainly a con­
sequence of the low-pass filtering structure of time averag­
ing process, which eliminates unpredictable features which 
propagate with periods less than the averaging time. To a 
lesser extent, the increase of skill is also consequence of the 
serially correlated data and the transfer of information from 
higher skill at the beginning of the forecast to lower skill at 
later times (e.g. Roads, 1986). To find out how strong this 
latter effect is, we approximated the instantaneous skill curve 
by an AR(1) process (not shown). From the AR(1) process it 
is straightforward to derive a 90-day time averaged skill. It

turns out that the time averaged skill from serial correlation 
alone is much smaller than the 90-day time averaged fore­
cast skill shown in Fig. 1d. This indicates that the increase 
in temporal averaged skill is more a consequence of low fre­
quency predictability than simply initial state contribution to 
time averages.

We further investigate the effects of time and ensemble av­
eraging from a spectral analysis of the global 500 hPa geopo­
tential height fields. The left panel of Fig. 2 shows the 
one-dimensional power spectrum P 2 calculated after Eq. (9) 
from simulation CC for different time averaging periods with 
and without ensemble averaging. The spectral maximum 
at wavenumbers 3-4 corresponds to the main energy carry­
ing planetary waves. The reduction in power relative to the 
unaveraged spectrum is shown in the right panel of Fig. 2, 
which demonstrates that time averaging acts like a spatial 
low-pass filter. The dashed curves in Fig. 2 are for en­
semble averaged data. They show that ensemble averaging 
is more effective in variance reduction than time averaging 
alone. Because of the relative strong serial correlation of at­
mospheric fields, different dates of the same member are less 
phase decorrelated than various members for the same date. 
Roughly speaking, the effect of averaging over 10 ensemble 
members of 12 h data is comparable to taking 90 day time 
averages of individual members.

The effects of ensemble averaging can be best seen from a
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a .  Power Spectrum

total wavenumber n total wavenumber n

Fig. 2. (a) Wavenumber spectra derived from the 500 hPa fields of simulation CC for various temporal averaging intervals. Dashed lines 
show spectra for ensemble and time averaged data. (b) Power reduction relative to unaveraged spectrum without (continuous) and with 
(dashed) ensemble averaging. Note logarithmic scale for x-axis.

CC: 90 d

lead (d)

Fig. 3. Seasonally averaged AC  of simulation CC for different en­
semble sizes as function of lead time. AC1 (yellow) and AC9 (red) 
were measured from global 500 hPa heights during DJFM. Dashed 
red (AC9) and dashed yellow (AC1) are calculated from measured 
AC1 and AC9, respectively. ACx  in green was calculated from 
AC 1. Black is signal to noise ratio s derived from AC9 and AC  1.

direct comparison with the average skill of individual mem­
bers. Figure 3 shows for simulation CC the time evolution of 
global seasonally averaged skill, which was calculated with 
and without ensemble averaging. Curves in yellow show 
AC1 from individual members, and the red curves show A C 9 
using 9 member ensemble averaging. At all leads, the skill 
of A C 9 is much higher than AC1, demonstrating the positive 
effects of ensemble averaging. We can compare this increase 
in skill by ensemble averaging with conceptual models which 
have established relationships between the anomaly correla­
tion and ensemble size (e.g. Brankovic et al., 1990; Kumar 
and Hoerling, 2000; Kumar et al., 2001; Sardeshmukh et al., 
2000; Rowell, 1998). In general, the increase in skill by the 
ensemble technique is a function of the ensemble size n and 
the signal to noise ratio s . Maximum efficiency is achieved 
for large n and intermediate s values. If s is too small or too

large, then ensemble averaging does not change much the 
either very low or very high correlations. Sardeshmukh et 
al. (2000), for example, showed that the ensemble averaged 
anomaly correlation for a perfect model can be expressed as

A C n — s

where

’■ / f t
s 2 +  1 s2 +  n -

| ensemble mean anomaly |2 
jensemble mean spread|2

(13)

(14)

is a measure of the signal to noise ratio. n is the ensemble 
size, (x) is the ensemble mean anomaly state vector, and x' 
are the variations of the anomaly state vector around (x) . If 
A C n for some n is known, then the A C  for any other n can 
be derived from Eq. (13). For example, the theoretical upper 
predictability limit for an infinite ensemble size is given by

A C — 4 A c [. (15)

The dashed green curves in Fig. 3 show A C which was 
calculated using Eq. (15). As expected, A C is everywhere 
larger than A C 9. However, both curves are close together, 
which indicates that there is not much room for skill im­
provements by further increasing the ensemble size. From 
Eq. (13) one can also diagnose AC9 from AC1 and vice 
versa. The result is shown by the dashed red and yellow 
curves in Fig. 3. Measured and calculated A C s are in good 
agreement, and the small differences can be explained as 
coming from limited samples.

The signal to noise ratio s is an important characterization 
for the potential predictability of the underlying data. One 
can see from Eq. (13) that s can be determined if A C  for a 
given n is know. s can actually be derived from either A C 1 
or A C 9. Using both has the advantage of giving more stable 
results. Solving Eq. (13) for s gives

s — ±
1 — a / n  

a — 1
(16)

1

x x2s —
x  ■ x
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Fig. 4. Lag evolution of global 500 hPa AC for simulation IC (red) and CC (black), verified against itself under the perfect model assumption. 
The curves show composite ensemble mean skill over 21 winter seasons (1980—2000): (a) from 30 days time averaged data; (b) from 90 
days time averaged data.

Power Reduction

Fig. 5. Power reduction of global 500 hPa heights due to ensemble 
and time averaging relative to unaveraged data. Results are for en­
semble averages from simulation IC (red) and CC (black) for 12 h, 
15 days and 90 days time averaged data taken from all years (1979— 
2000).

where a is

A C
2 .

A C 1
(17)

The result for simulation CC is shown in Fig. 3 by the black 
dashed curves. s ranges between values of 0.4 and 0.3, 
which is actually quite small. This indicates that noisy un­
predictable components greatly exceed the predictable com­
ponents. This should not be very surprising since s was de­
termined from experiment CC, which has seen only climato- 
logical boundary forcing. The values derived here represent 
therefore the lower limit for the signal to noise ratio. More s 
values from the more realistic experiment ICBC will be dis­
cussed later for various regions, averaging periods and years.

5.2 Initial conditions

It is clear from the previous section that a purely climato- 
logically forced run can produce considerable forecast skill

simply from initial conditions alone. To further investigate 
the influence of initial conditions, we examined if it makes 
any measurable difference whether climatological or anoma­
lous initial conditions are used, but still keeping the boundary 
conditions at their climatological values. This was examined 
by comparing the results from the two unforced simulations, 
CC and IC. Remember, the initial conditions for IC were de­
rived from BASE-O, and they are adjusted to the observed 
anomalous boundary forcing at the initialization time. In 
analogy to the anomalous boundary forcing, we call them 
“anomalous initial conditions”. In contrast, the initial condi­
tions for CC came from a climatological base run, so that we 
will term them as “climatological initial conditions”.

Figure 4 shows the time evolution of forecast skill as mea­
sured by the A C  of the global 500 hPa height for the two sim­
ulations. Shown are composites over 21 winters from 1980 to 
2000. Each simulation was verified against itself. Figure 4a 
illustrates forecast skill from 30 days averaged data. Dur­
ing the first 10 days, the skill of both simulations decreases 
rapidly. After that, the skill approaches slowly zero. This 
indicates that certain components of the atmospheric flow 
are predictable for several weeks, simply because of the in­
fluence of initial conditions. Note that simulation IC shows 
larger skill than simulation CC at all lead times. Statistically, 
the skill of IC always remains greater than zero, whereas that 
of CC reaches zero after 50 days.

The seasonally averaged skill in Fig. 4b shows a similar 
behavior. The difference in skill between IC and CC in­
creases with lead time, and is everywhere statistically sig­
nificant at the 5% error level. This proves that different ini­
tial conditions have different predictability. Our results thus 
show that anomalous initial conditions are more predictable 
than climatological initial conditions. The difference in the 
seasonally averaged A C  is 0.1 to 0.2 at maximum lead time.

To better understand the difference between anomalous 
and climatological initial conditions, we calculated the power 
spectra from global 500 hPa fields for both simulations. Fig­
ure 5 shows the reduction in power due to ensemble and time 
averaging for different averaging intervals. The reduction

a =
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Fig. 6. Lag evolution of the spatial AC  of the 500 hPa surface over the Northern Hemisphere (20° N-90° N) from 15 December to 31 March. 
All experiments have been verified against experiment ICBC. Results are based on all ensemble members of the indicated years. Top panels 
show AC from unaveraged 12 h data, middle panels are from 30 days time averaged data, and bottom panels are from 90 days time averages. 
Thick lines have been smoothed with a 10-day running mean filter, and are only shown where the AC is significantly (5% error) different 
from zero and from the reference experiment ICBC. Y-axis denotes the AC. Note the logarithmic y-axis for the top panels (range: 0.05-1.0).

measures the degree to which individual wave number com­
ponents decorrelate in time and therefore lead to a decrease 
in skill. Generally, IC shows a smaller reduction than CC, in 
particular at the larger scales. Since the larger scales carry 
more energy, this explains the difference in skill between 
the two simulations. We hypothesize that boundary forc­
ing leads to excited large-scale low-frequency modes, which 
are then included in the anomalous initial conditions of IC. 
These modes remember themselves longer than the unexcited 
modes from climatological initial conditions. In other words, 
the atmosphere remembers through its initial conditions the 
past history of boundary forcing.

5.3 Boundary forcing

How does boundary forcing alone and in combination with 
initial conditions affect predictability? Let us now compare 
the three boundary forced experiments (ICBC, iBC, BC) with 
the unforced simulation IC. Figure 6 shows the time evolu­
tion of their ACs calculated from 500 hPa heights over the 
Northern Hemisphere for different time averaging periods 
and years. Displayed are mean ACs from verifying the en­
semble mean forecast against 20 different realizations of the 
reference experiment ICBC. The time averaging period is in­
stantaneous (top row), 30 days (middle row), and 90 days 
(bottomrow). The middle column shows averages over all 21 
years (1980-2000). Thin lines denote unsmoothed skill, and

thick lines represent 10 day running mean smoothed results. 
Smoothed results are only drawn where the skill is signifi­
cantly greater than zero and significantly different from the 
verification forecast ICBC. The significance is derived from 
a t-test at the 5% error level.

First, consider the skill of simulation ICBC, which is 
shown in red. This simulation represents the upper pre­
dictability limit for this model. ICBC is being forced with 
observed ocean boundary conditions, and initialized from 
correct initial conditions (BASE-O). Therefore, initial and 
boundary conditions are perfectly balanced. The instanta­
neous forecast skill of ICBC (Fig. 6b) is at all lead times 
positive. Note that we have chosen a logarithmic scale to de­
pict instantaneous forecast skill so that we can better focus 
on the small skill values. The AC curve shows three dif­
ferent sections which are indicative for specific error growth 
rates: During the first 20 days, the AC drops quickly to val­
ues of around 0.2. Then, the slope flattens, and after day 40 
or so, the correlations remain more or less constant at about 
0.1. The three sections are marked with roman numbers in 
Fig. 6b. In each section, the skill decreases approximately 
linearly, as indicated by the black lines. Considering the log­
arithmic y-axis, this corresponds to an exponential decrease 
in AC. We will show later that the initial rapid decrease is 
related to the error growth of the synoptic scales. After 20 
days or so, when the error spectrum of the synoptic scales is
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presumably saturated, the slower error growth of the larger 
planetary scales is noticeable. After 40 days or so, the over­
all error growth finally saturates, resulting in constant skill 
thereafter. The division of skill in three sections — initial 
rapid growth, intermediate slow growth, and final saturation 
— can also be found in other simulations and over other ar­
eas. Qualitatively, this agrees with the study of Dalcher and 
Kalnay (1987), who also found an increase in error growth 
with wave number.

Let us compare ICBC with the unforced simulation IC 
(yellow curves, Fig. 6). Both simulations start from iden­
tical initial conditions and therefore show similarly high skill 
at the beginning. The unaveraged skill of both simulations 
start to differ from each other after 10 days or so, and they 
are significantly different after roughly 16 days. IC verified 
against ICBC reaches zero skill after 30 days.

Next, we consider the skill of simulation BC, which 
starts from climatological initial conditions, and which is 
then forced with observed boundary conditions (blue curves, 
Fig. 6). BC can be regarded as the complementary ex­
periment to simulation IC. Both experiments measure how 
quickly the atmosphere responds to changing boundary con­
ditions. In the case of BC, anomalous boundary conditions 
are imposed onto a neutral initial state, and the evolution of 
skill tells us how quickly the atmosphere adjusts from neu­
tral to forced boundary conditions. From IC we learn how 
quickly the atmosphere forgets its anomalous initial state 
when no anomalous forcing from the boundaries is subse­
quently applied. The unaveraged skill of BC starts to be 
significantly different from zero after 10—20 days, which is 
comparable to the time for simulation IC to be significantly 
different from ICBC. An interesting time scale is given by 
the crossover point between IC and BC, which indicates how 
long initial conditions are more important than boundary 
forcing. From the unaveraged skill for all years (Fig. 6b), 
the crossover is at 20—30 days. After this time, boundary 
forcing is more important for forecast skill than the memory 
of the initial state.

The skill of simulation iBC is represented by the green 
curves in Fig. 6 . Again, this experiment is a one year exten­
sion of ICBC. Its initial conditions are comparable to that of 
an AMIP-type simulation, and do not show the deterministic 
predictability regime at the beginning of the forecast. With­
out seasonal variations of the signal to noise ratio, the skill of 
iBC would be constant in time, since there are no influences 
from the initial conditions, and since this simulation is per­
fectly adjusted to its boundary forcing. However, iBC starts 
(in December) with lower skill than at later times. This is 
an expression of seasonality in signal and noise, and there­
fore in predictability. Comparing instantaneous skill of iBC 
with ICBC indicates that it takes 30—40 days until both sim­
ulations reach similar skill. This time is much longer than 
the roughly 20 days it takes ICBC to saturate its error spec­
trum for the synoptic and smaller scales. The difference is in 
the larger scales. We conclude that having perfect large scale 
initial conditions improves predictability out to 5 weeks, and 
that good initial conditions are therefore important on sub-

Table 2. Classification of strong ENSO and neutral years (year of 
January)

event years

strong ENSO 1983, 1985,1987, 1989, 1992, 1998,1999, 2000
neutral 1981,1982, 1986, 1990, 1994,1997

seasonal to seasonal time scales.
The effects of initial conditions on forecast skill are more 

evident for 30-day averaged skill (Fig. 6e). Note that the 
range of lead time decreases with increasing averaging inter­
val. As expected, ICBC is the best forecast at all lead times. 
From the differences between ICBC and BC one can see that 
for monthly forecasts, initial conditions are important out to 
4—5 weeks lead time. iBC shows somewhat higher skill than 
BC, as one might expect from the better initial conditions. 
For seasonally averaged forecasts (Fig. 6h), initial conditions 
are important at short lead times. At zero lead, the difference 
in seasonal forecast skill between ICBC and BC is about 0.1. 
This difference is statistically significant, and proves that ini­
tial conditions impact even seasonal forecasts for short lags. 
Similar conclusions hold for simulation iBC and ICBC. The 
differences between the three boundary forced simulations 
(ICBC, BC, iBC) become statistically insignificant after 6 to 
8 days.

How do the previous results change with the strength of 
ENSO forcing? To answer this, we subsampled the data from 
our experiments and included either only years from major 
ENSO events, or years where the conditions over the tropical 
Pacific were near neutral. The classification of strong ENSO 
and neutral years stems from the Climate Prediction Center at 
NCEP (published on the internet: www.cpc.ncep.noaa.gov), 
which provides a season-by-season breakdown of the condi­
tions of the tropical Pacific. Table 2 shows the years which 
are classified as near neutral or as strong ENSO years. Dur­
ing the period 1980—2000, there were 8 major cold or warm 
events, and 6 years could be classified as being near neutral.

The time evolution of global skill during the eight major 
ENSO events for the previously discussed experiments is il­
lustrated in the right column of Fig. 6 , and the skill during 
neutral years is shown in the left column. Since this anal­
ysis is based on less data, the scatter and the statistical un­
certainty are higher than the previous results, which used all 
years. During ENSO (Fig. 6c), the unaveraged A C  for the 
boundary forced simulations levels off close to 0 .2 , as com­
pared to 0.1 for all years (Fig. 6b), and much below 0.1 dur­
ing neutral years (Fig. 6a). This difference illustrates a well 
known enhancement in predictability with tropical forcing. 
According to the changes in instantaneous skill, the 30 and 
90 days averaged skill of ICBC during ENSO is much higher 
than during neutral years. During ENSO, the seasonally av­
eraged A C s of the three boundary forced experiments ICBC, 
BC and iBC differ only insignificantly, and they are nearly

http://www.cpc.ncep.noaa.gov
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Fig. 7. Lag evolution of the spatial AC averaged over all years (1980-2000) from 30 days time averaged data. Panels (a)-(b) show the 
AC over the Northern Hemisphere (20° N-90° N), (c)-(d) for the PNA region (180° W-60° W, 15° N-70° N), (e)-(f) for the Southern 
Hemisphere (20° S-90° S), and (g)-(h) for the tropics (20° M-20° S). The AC has been calculated from the 500 hPa surface except for the 
tropics, where the 200 hPa surface has been used. Left panels are from 15 December to 31 March, and right panels are from 15 June to 31 
September. All experiments were verified against ICBC under the perfect model assumption.

constant in time. This implies that the effect of initial condi­
tions is negligible in the presence of strong boundary forcing. 
Again, the opposite is true during neutral years: The skill of 
ICBC decreases considerably with lead time. The skill of 
iBC and BC, which start from inferior initial conditions, is 
significantly lower than that of ICBC. Comparing the skill 
of BC and IC for neutral years (Fig. 6g) shows that even for

seasonal averages, the effect of initial conditions is as impor­
tant as boundary conditions at zero lead time. The various 
time scales derived for all years are generally shorter during 
ENSO years, and longer during neutral years. For example, 
the crossover between BC and IC advances from roughly 20 
days during ENSO years, to roughly 30 days during all years. 
This is consistent with initial conditions becoming less im­
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portant with increasing strength of boundary forcing.

5.4 Regional and seasonal variations

In the previous section, forecast skill was analyzed over the 
Northern Hemisphere during DJFM. How do these results 
vary for different regions and seasons? Figure 7 compares 
the time evolution of 30 day time averaged skill (1980-2000) 
for the Northern Hemisphere, the PNA region, the Southern 
Hemisphere, and the tropics. The left column is for DJFM, 
and the right column is for JJAS.

Consider first the DJFM season. As expected, the over­
all skill over the PNA region (Fig. 7c) is higher than for 
the whole Northern Hemisphere. Skill values of the three 
boundary forced experiments level off between 0.3 and 0.4, 
as compared to 0.2 to 0.3 for the whole hemisphere. The 
heightened sensitivity of the PNA region to boundary forc­
ing is illustrated by the shorter timescales for the crossover 
of IC and BC, and for BC reaching the same level of skill as 
ICBC. The ACs for the unforced experiment IC are almost 
identical for the PNA region and the Northern Hemisphere. 
Over the Southern Hemisphere (Fig. 7e), the influence of ini­
tial conditions is most important. This is evident from the 
slow decrease in skill of ICBC and IC. Note that the skill 
of IC is at all lead times significantly larger than zero. The 
aforementioned three periods with nearly linear decrease in 
skill can also be seen very clearly in Fig. 7e. The crossover 
between IC and BC for the 30 days time averaged data is 
reached after 30-40 days, and it takes almost 50 days for BC 
to reach the same skill as ICBC. The final skill of ICBC over 
the Southern Hemisphere is somewhat smaller than over the 
Northern Hemisphere. The opposite is the case during JJAS 
(Figs. 7b and 7f). This may be related to seasonal variations 
in the strengths of the subtropical jets. Strong westerly flows 
are very effective for Rossby wave forcing of the midlati­
tude wave train in relationship with ENSO (e.g. Sardesh- 
mukh and Hoskins, 1988; Held and Kang, 1987). Over the 
tropics (Fig. 7g), the overall skill is, as expected, very high. 
However, initial conditions still play a role, as can be seen 
by the slow approach of BC to ICBC, and the relative slow 
decrease of IC to zero skill.

During JJAS, the skill over the Northern Hemisphere 
(Fig. 7b) and over the PNA region (Fig. 7d) are very simi­
lar and much smaller than during DJFM. This is consistent 
with a weaker subtropical jet and weaker tropical forcing 
during this season. From the delayed crossover between IC 
and BC it must be concluded that initial conditions are some­
what more important during JJAS than during DJFM. Over 
the Southern Hemisphere (Fig. 7f), the final skill of ICBC 
is larger than over the North. Interestingly, there is no such 
strong influence of initial conditions as during DJFM. Per­
haps, the strong baroclinicity during Southern Hemispheric 
winter decreases predictability, although there could be other 
reasons as well. Over the tropics (Fig. 7h), the differences 
between the two seasons are small. Interestingly, IC shows 
a very slow approach to zero skill, which indicates that even 
over the tropics initial conditions must not be neglected.

Table 3. Signal to noise ratios s of experiment ICBC during DJFM 
for different regions, averaging periods and years. First number is 
for neutral years, second number is for all years, and third number 
is for ENSO years

NH PNA SH TROP

12 h 0.2 0.3 0.3 0.3 0.4 0.5 0.3 0.3 0.3 0.3 0.6 0.9
30 d 0.4 0.5 0.6 0.4 0.7 0.9 0.5 0.6 0.7 0.7 1.0 1.5
90 d 0.5 0.7 0.8 0.4 0.9 1.4 0.7 0.8 0.9 0.7 1.2 2.3

Table 3 shows the signal to noise ratio s calculated after 
Eq. (16) for simulation ICBC for different regions and years. 
The values were determined after error saturation of the ini­
tial 30 days. Generally, the signal to noise ratio and thus 
the potential predictability increase with increasing averag­
ing period. According to the importance of boundary forc­
ing, s is largest during ENSO years, over the PNA region, 
and the tropics, where s values greater than 1 (i.e. signal ex­
ceeds noise) can be found. In a previous section, the lower 
limit of s determined from simulation CC was found to be 
0.25 at maximum lead (Fig. 3). Corresponding values from 
ICBC exceed this limit during all years and over all regions, 
indicating that even weak boundary forcing and anomalous 
initial conditions contribute to a higher signal.

5.5 Real world skill

So far, all predictability results were performed under per­
fect model assumptions, meaning that model output was used 
for the verification. The advantage of this method was that 
model related errors did not negatively affect the sometimes 
very subtle signals. Moreover, various ensemble members 
could be used for the verification, which greatly reduced 
sampling problems. However, can similar signals be seen in 
actual forecast experiments verified against standard reanal­
ysis? To this purpose, experiment ICBC-r was conducted for 
the DJFM season. Again, each run was initialized by breed­
ing from NCEP/DOE reanalysis-2. To bring the simulations 
closer to real observations, daily fields of reanalysis-2 soil 
moisture and snow cover were also prescribed.

The red curves in Fig. 8 present the results for ICBC-r for 
the same four regions as in the previous section. 30 days 
averages are shown in the left column, and 90 day averages 
in the right column. The basic features between real world 
skill (ICBC-r) and perfect model skill (ICBC) are the same. 
The major differences of ICBC-r are: (a) the results are more 
noisy, since only one member was used for verification, and 
(b) the overall skill is lower because of the introduction of 
model errors. More robust results would have been achieved 
by larger ensembles and longer simulation periods. To test 
the effect of initial conditions on the real world forecast, 
Fig. 8 shows the skill of experiment iBC and BC verified 
against reanalysis. The skill of ICBC-r is almost everywhere 
larger than iBC or BC. Statistically, these differences are not
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Fig. 8. As Fig. 7 but for experiment ICBC-r verified against NCEP/NCAR reanalysis. For DJFM, and for 30 and 90 days averaged data. 
Dashed red lines show for comparison the skill of ICBC under the perfect model assumption.

always significant, as shown by the very short thick lines. 
This, however, is mostly related to the higher noise level in 
the data. The 90 days averaged data on the right column show 
similar but smoother results. It must be concluded that also 
for a real world forecast initial conditions are important on 
sub-seasonal to seasonal time scales. Note that for the South­
ern Hemisphere, the skill of ICBC is much higher than that 
of iBC or BC, as it has been the case in the previous section 
for the perfect model verification. Over the tropics, the influ­

ence of initial conditions seems to be least important. This 
is in contradiction with the perfect model verification, and 
may indicate that (a) the quality of observed initial condi­
tions over the tropics is not very good, or that (b) the model’s 
response to anomalous tropical initial conditions, e.g. the in- 
traseasonal oscillation, is not realistic enough.

A good estimate of the effects of model errors on skill can 
be achieved by comparing ICBC-r verified against reanaly­
sis with ICBC verified against itself. The skill of ICBC un-
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Fig. 9. (a) JFM mean SST anomalies over the Nino 3.4 region, ranked according to the strength of the SST anomalies from warm events 
(red) to cold events (blue). (b) JFM seasonal mean AC from 500 hPa heights over the PNA region for ICBC, verified under the perfect model 
assumption. Crosses indicate ACs from individual verification members, and columns denote the mean over all ten verification members. 
(c) Spread among ensemble members for ICBC (units in m). (d) Seasonal AC for ICBC-r verified against reanalysis. (e) Spread for ICBC-r.

der perfect model verification is shown in Fig. 8 by the red 
dashed curves. As expected, the perfect model skill is in all 
cases higher than the real world skill. From the seasonally 
averaged skill one can see that the difference between perfect 
and real world skill tends to increase with time, owing to the 
model drift toward an erroneous state when initialized with 
reanalysis. Over the PNA region, for example, the seasonal 
forecast skill at zero lead for the real world is 0.38, which is 
rather close to 0.42 of the perfect world. The difference of 
0.04 increases to about 0.15 at maximum lead time. Over the 
Southern Hemisphere, the difference between real and per­

fect world is only small, although this might be related to the 
sparse observations over this part of the world, which tend to 
make reanalysis data more similar to the model solution.

5.6 Interannual variations

Variations in the strength of ENSO related boundary forc­
ing are the main reason why some years are better pre­
dictable than others. To some extent, variations in skill 
are also random, caused by the internal variability of the 
model. This inherent uncertainty is noticeable on all time
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scales, even on seasons or longer, and can be ameliorated 
by the ensemble approach. It may also be that initial con­
ditions influence interannual variations in predictability. As 
was discussed previously, the atmosphere may be better pre­
dictable from some initial conditions than from others. Our 
results showed that this assumption may even hold on sea­
sonal time scales, where there were significant differences in 
predictability merely because of differences in initial condi­
tions. Initial conditions that are associated with atmospheric 
persistence are probably more likely to increase predictabil­
ity. For example, initial conditions may contain or develop 
into stable blocking situations, which in turn lead to higher 
predictability, given the ability of the GCM to reproduce this 
event correctly. It may also be that stable natural eigenmodes 
of the atmosphere are contained in initial conditions, which 
then persist through much of the forecast.

In Fig. 9 the strength of the tropical ENSO forcing is 
compared with the interannual variations of seasonal fore­
cast skill over the PNA region during January, February and 
March (JFM). For the seasonally averaged skill, the sampling 
uncertainty of individual years is sufficiently small, so that 
stable results are achieved without taking composites over 
many years. Fig. 9a depicts the strength of the ENSO sig­
nal for each winter of the period 1979-2000. This signal 
was calculated from the magnitudes of SST anomalies over 
the Nino 3.4 region during JFM relative to the climatology 
1950-2000. Individual years were arranged according to 
the strength of the SST anomalies, with the warmest years 
in red on the left-hand side, and the coldest years in blue 
on the right-hand side. The graphs below show the corre­
sponding A C s for simulation ICBC verified under the perfect 
world assumption (Fig. 9b), and for ICBC-r verified against 
NCEP/NCAR reanalysis (Fig. 9d). The A C s were calculated 
from seasonally averaged (JFM, i.e. day 17-106) 500 hPa 
heights over the PNA region, and arranged according to the 
ranked SST anomalies. Crosses show individual results for 
each of the ten verifying members, and the gray bars denote 
the mean over all 10 verification members.

ICBC (Fig. 9b) shows considerable year-to-year variabil­
ity in skill, but in every year the skill is positive. There is 
a fairly good relationship between the strength of the ENSO 
forcing and seasonal forecast skill; larger A C s occur at the 
two extremes of the graphs than for neutral years at the mid­
dle. The correlation between the Fisher z-transformed A C s 
and the magnitude of the SST anomaly over the Nino 3.4 re­
gion is 0.76. There are also exceptions: During the winter 
2000, which was a strong La Nina event, ICBC has relatively 
modest skill. In contrast, during 1980, ICBC shows surpris­
ingly good skill compared to the weakness of the tropical 
forcing.

The skill of the real world forecast ICBC-r (Fig. 9d) is in 
most cases positive. Exemptions are 1979, 1982, 1994, and 
1981, which were all neutral ENSO years. Two years show 
very negative skill. This is probably a consequence of ensem­
ble averaging, which makes poor skill of individual forecasts 
even worse (e.g. Brankovic et al. 1990). The skill of ICBC-r 
is clearly lower than that of ICBC. The mean over all years

for ICBC-r is 0.33 as compared to 0.53 for ICBC. This dif­
ference must be mainly due to model errors, since boundary 
and initial conditions were in both forecasts similar. ICBC- 
r has also the disadvantage of a larger sampling uncertainty, 
since only one member -  the real atmosphere -  was available 
for the verification. The correlation between skill and ENSO 
forcing for ICBC-r is 0.56, which is also smaller than for 
ICBC. It is interesting to compare the real world skill of this 
model with that of other models which participated with the 
DSP project. The mean A C  of all DSP models over the PNA 
region and over the years 1983-1993 was 0.47 (Shukla et 
al., 2000), which is slightly smaller than 0.48 for this model. 
This means that the performance of this GCM is comparable 
to the average of all DSP models.

There is also a modest relationship between spread S P  and 
skill A C . Such a relationship would mean that one could 
have more confidence when ensembles have low spread (An­
derson et al., 1999). The spread among ensemble members 
for the two simulations from 500 hPa heights over the PNA 
region are shown in Figs. 9c and 9e. The correlation is —0.27 
for ICBC, and —0.12 for ICBC-r. Although a modest rela­
tionship is indicated, these levels are statistically insignifi­
cant, given the small number of years.

5.7 Scale variations

In the previous section, three distinctive regimes of error 
growth were briefly discussed: An initial fast error growth 
during the first 20 days or so, an intermediate moderate er­
ror growth from days 20-40, and error saturation thereafter. 
It was speculated that this could be related to the scale de­
pendence of error growth. Intuitively, it is clear that smaller 
scales have a faster error growth than larger scales, simply 
because smaller length scales are more sensitive to defor­
mation by advective errors. Earlier studies of predictability 
confirm that errors in prediction of the smallest scales grow 
the fastest (e.g. Dalcher and Kalnay, 1987; Roads, 1987). In 
fact, Lorenz (1969) proposed that errors in the smallest scales 
gradually propagate to larger scales until the whole spectrum 
is saturated. From the analysis of our experiments, however, 
errors do not seem to fully saturate at all length scales.

Figure 10 shows relative error energy Sn2m as a function 
of lead time and 2-dimensional wavenumber for the three 
experiments ICBC, IC and BC. Note that S 1fi^—m-) — S^m, 
so that two-sided spectral plots (—n < m < n)  are redun­
dant, and one-sided plots (0 < m < n)  contain all neces­
sary information. The quantity shown is time averaged in­
stantaneous error energy scaled by the maximum saturation 
variance. It was calculated using Eq. (11). All data were 
taken from daily global 500 hPa fields. As for the A C s, en­
semble mean forecasts were verified against individual mem­
bers of the verifying experiment ICBC. The spectra for ICBC 
(Fig. 10, top row) show that small scale errors grow faster 
than larger ones. During days 20-40, errors for wavenum- 
bers greater than 10 are fully saturated. During days 40-100, 
only a few specific large wavenumbers are not completely 
saturated. These scales are maintained by boundary forcing,
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Fig. 10. 2 -dimensional error spectra of global 500 hPa fields for zonal wavenumber m (x-axis) and total wavenumber n (y-axis) at different 
lags. Shown are time averages of instantaneous error spectra over different averaging periods. Ensemble means of each simulation were 
verified against individual members of ICBC. Errors are expressed relative to the theoretical maximum error variance.

and they must be responsible for the non-zero instantaneous 
skill at long leads. These wavenumbers are mainly located 
along zonal wavenumber zero, which means that error en­
ergy is quite homogeneously distributed in the zonal direc­
tion. Apart from wave number zero (global mean), there 
is a secondary maximum for wavenumber 4,0 (n, m). The 
characteristic bow shape of the isolines indicates that for a 
given total wavenumber, errors for higher zonal wavenum- 
bers grow faster than for lower ones. This is probably related 
to the fact that zonal wind speeds are on average higher than 
meridional ones, so that error energy spreads zonally faster 
than meridionally.

The spectra of simulation IC (Fig. 10, middle row) during 
days 0-4 and 4-10 are very similar to ICBC, which indicates 
that effects from the boundaries are not very important at this 
early stage. From day 10 on, errors for IC grow much faster 
than for ICBC. After day 40, the errors for IC are fully sat­
urated at all scales. This is consistent with IC having zero 
skill after day 40. During days 20-40, ICBC has much better 
skill than from initial conditions (simulation IC) or bound­
ary conditions (simulation BC) alone. This means that the 
combined effect of boundary forcing and initial conditions 
is particularly important for good skill at this lag. The error 
spectra for simulation BC show a progression from larger to 
smaller scales. Boundary effects are first noticeable in the 
largest scales, and then gradually affect smaller scales. At 
the maximum lead time interval (days 40-100), the spectra 
of ICBC and BC are almost identical. This is consistent with 
ICBC and BC having the same skill, and initial conditions 
information being completely lost.

A one-dimensional representation of the error energy pro­

vides additional insight into the scale dependence of error 
growth. In Fig. 11 errors are shown for every time step, 
but only for total wave number n. During the first 20 days 
(regime I), simulation ICBC shows rapid error growth at 
scales with n > 5. Between day 10 and 20, scales with 
n < 5 also contribute to some error growth. Let us define 
scales with n > 5 as “small”, and scales with n < 5 as 
“large”. After day 20 (regime II), when the small scales are 
completely saturated, the error growth in the large scales con­
tinues at its own slower rate. This explains the slow decrease 
in skill after day 20 noted before. Mainly wavenumbers 2, 3, 
and 5 contribute to error growth at this stage. After day 40 
or so (regime III), the error energy for ICBC and BC remains 
almost constant in time.

Small scales contribute to most of the error growth at 
shorter lead times. From band pass filtered (2-5 days) wave 
number spectra (not shown) it is found that the synoptic en­
ergy maximum is located at n =  11, so that the “small” 
scales are mostly associated with synoptic and smaller scales. 
The “large” planetary waves, on the other hand, have a slower 
error growth rate, and do not saturate completely at long lead 
times. This can also be shown by replacing time averaging, 
which filters out unpredictable small scale structures, with a 
more direct spectral filtering. This method has the advantage 
that the evolution of skill can be calculated with better tem­
poral resolution. The data were spectrally filtered by keeping 
either only large scales, all scales, or small scales. Figure 12 
shows the effects of spatial filtering on instantaneous global 
forecast skill from ICBC, IC, iBC and BC. Skill from large 
scale filtered data is much higher than from data with all or 
only the small scales. For simulation ICBC, the large scale
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Fig. 11. Error energy spectrum as a function of total wavenumber n and lead time t for simulation ICBC (a), IC (b) and BC (c). 500 hPa 
height ensemble mean fields of each simulation were verified against individual members of ICBC. Error energy is expressed in percent of 
the maximum saturation error.
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Fig. 12. Lag evolution of global instantaneous AC of simulation ICBC (red), IC (yellow), iBC (green), and BC (blue) for all years. Only 
wavenumbers 1-4 (a), 0-42 (b), or 5-42 (c) were retained. Skill is only shown where significantly different from ICBC.

correlations level off between 0.3 and 0.2, as compared to 
0.1 for all scales, and 0.05 for the small scales. Note that 
the small scales show some measurable instantaneous skill at 
long lead times. This suggests that the influence of boundary 
forcing is not completely confined to the largest scales. The 
size of instantaneous large scale correlations is comparable 
to 30 day time averaged correlation using all scales. Simula­
tion IC (yellow curves) shows that the memory of the initial 
conditions is short for the small scales and long for the large 
scales. For small scales, skill from initial conditions alone is 
completely lost after 20 days, but for the large scales it lasts 
for almost two months. This confirms again that the long 
term memory of the initial conditions resides in the largest 
scales.

The initial loss in predictability of the large scale filtered 
data for ICBC is much slower than that of the unfiltered data. 
The difference in skill between large scale filtered and unfil­
tered data is shown in Fig. 13 for three composite periods. 
The difference grows rapidly at the beginning, owing to the 
fast error growth of the small scales. After 20 days or so, the 
difference remains almost constant in time. Small scale er­
rors are saturated now, and further error growth is only due to 
larger scales. The gain in skill by large scale filtering is big­
ger during ENSO years than during neutral years, indicating 
that ENSO forcing is mainly affecting large scales.

6 Sum m ary and  conclusions

The goal of this study was to determine the importance of ini­
tial and boundary conditions for atmospheric predictability 
on all time scales out to a season. The NCEP global spectral 
model was used to conduct a series of seasonal predictabil­
ity experiments, which were forced with different combina­
tions of boundary and initial conditions. Initial conditions for 
the ensemble experiments were perturbed using the breeding 
method. The 22 year long simulation period covered both 
the cold and warm season. Predictability was examined over 
several target regions using the perfect model assumption as 
well as reanalysis.

First, predictability was investigated from purely clima- 
tologically forced runs. Initial conditions, together with 
their instabilities and nonlinear interactions, remember them­
selves for 50 to 60 days. Interestingly, anomalous initial 
conditions lead to higher predictability than climatological 
initial conditions. It must therefore be concluded that excited 
low frequency modes of the atmosphere have a higher persis­
tence than unexcited modes. The effects of boundary forcing 
are detectable after about 10 days and lead to instantaneous 
skill of 0.1 at maximum lead time over the Northern Hemi­
sphere. This small amount of instantaneous skill increases 
to about 0.35 for seasonally averaged skill over the same re-
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Fig. 13. Difference in global instantaneous skill of ICBC between 
large scale filtered and unfiltered data for ENSO years, all years 
(1980-2000), and neutral years.

gion. From a detailed analysis of 30 days averaged skill sig­
nificant regional and seasonal differences in skill were found. 
Under the same boundary forcing, true initial conditions led 
in all cases to better forecasts than random climatological 
or AMIP-type initial conditions. The improvement was de­
tectable out to 5-6  weeks, and cannot be explained alone 
from the effects of high deterministic predictability during 
the first 2-3 weeks. This means that initial conditions also 
improve predictability for the low-frequency large scale com­
ponents of the flow. The combined effect of boundary and 
initial conditions was particularly important for forecasts on 
a monthly lead time.

The real world verification of the simulations led to the 
same conclusion. In this case, good initial conditions were 
particularly important at short leads, when the impact of 
model errors are still relatively small. From the difference 
between perfect and real world skill the effect of model errors 
on predictability could be discussed. The difference gener­
ally increases in time. At maximum lead, it is about 0.15 cor­
relation of seasonally averaged AC over the Northern Hemi­
sphere during DJFM. This clearly demonstrates the large po­
tential for better forecasts if models could be improved.

A detailed year to year breakdown of seasonally aver­
aged forecast skill revealed a good relationship between the 
strength of ENSO forcing and skill. The correlation between 
both is around 0.8. Unfortunately, the relationship between 
spread and skill is quite weak. Spectral error analysis showed 
that large planetary scales have a much slower error growth 
rate than small length scales. Basically, the long term effect 
of boundary forcing is to maintain predictability for a few 
specific spatial wavenumbers. After day 40, total wavenum- 
bers 0 and 4 contribute to most of the predictability, while 
error energy for wavenumbers larger than 9 is almost com­
pletely saturated after that time.

How important initial conditions on the longer time scales 
are depends on factors such as lead time, averaging period, 
region, level, season, verification method, variable, and how 
susceptible the specific atmospheric state is. The role of ini­
tial conditions also varies with the strength of boundary forc-

Table 4. Time scale for influence of initial conditions measured by 
the intersection between the skill curves from experiments IC and 
BC from instantaneous data

NH PNA SH TROP

DJFM 27 24 46 23
JJAS 28 26 28 22

ing. During ENSO years, the effect of initial conditions is 
smaller than during neutral years. Table 4 summarizes our 
findings with a simple quantity, t  , that measures the impor­
tance of initial conditions. t  is the time scale at which the 
skill from the unforced simulation IC, which starts from good 
initial conditions, intersects with that from the forced simula­
tion BC, which comes from random initial conditions. Thus, 
it represents the time at which boundary forcing is equally 
important as initial conditions. t  was determined for dif­
ferent regions and seasons, using the perfect model skill of 
unaveraged data over all years.

Over the Northern Hemisphere, it takes about 4 weeks un­
til boundary forcing reaches the same significance as initial 
conditions. This 4 week time range highlights the special sit­
uation for forecasts on sub-seasonal time scales (2 -6  weeks). 
On the one hand, initial conditions are important, but their 
influence is too small to give useful deterministic skill. On 
the other hand, effects from the boundaries are important, but 
they are hard to detect over the short 4 week time range. The 
consequence for monthly averaged forecasts is that the dom­
inance of initial conditions is limited to the first 1-2 weeks, 
and for seasonal averages, t  is actually negative, meaning 
that boundary conditions are more important than initial con­
ditions even at zero lead. Seasonal differences of t  over the 
Northern Hemisphere are small. During periods with strong 
ENSO forcing, t  reduces to about 3 weeks, meaning that 
boundary forcing becomes more important. Over the PNA 
region and the tropics, t  is somewhat shorter. Over these 
areas, boundary forcing is more important, but this does not 
mean that initial conditions can be neglected.

Over the Southern Hemisphere, there exists a remarkable 
difference in t  between summer and winter. During winter 
(JJAS), t  is in the 4 week time range, like over the North­
ern Hemisphere. During summer (DJFM), t  increases to 6­
7 weeks, showing that the importance of initial conditions is 
dramatically increased. One might argue that this is an model 
artifact caused by the perfect model assumption, but the ver­
ification with reanalysis leads to very similar results. In fact, 
Trenberth (1985) found over Antarctica during summer indi­
cations for atmospheric persistence which is greatly in excess 
of that found over the Northern Hemisphere. The conditions 
which contribute to this long term memory may be related to 
the weak baroclinicity and the more zonally symmetric struc­
ture during the Southern Hemisphere summer. Also, major 
modes, like the Antarctic Circumpolar Wave (White and Pe­
terson, 1996) and the Antarctic Oscillation (Thompson and



T. J. Reicher and J. O. Roads: The role of boundary and initial conditions 231

Wallace, 2000) may play a role. These aspects need to be 
addressed further.

From this study it is obvious that the contribution of initial 
conditions to predictability beyond 4 weeks is, on average, 
smaller than that from boundary conditions. However, we 
must conclude that the effects of initial conditions are not 
negligible, in particular when the boundary forcing is weak. 
The consequence for current sub-seasonal to seasonal fore­
casts is that good atmospheric initial conditions are needed.
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