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ABSTRACT 

Multicarrier spread spectrum (MC-SS) is an alterna
tive to the conventional spread spectrum (SS) techniques 
that behaves significantly better when the system is 
subject to narrow- or partial-band interference. How
ever, successful implementation of the optimum detector 
requires knowledge of noise and interference variance 
in each subcarrier band. In this correspondence, we 
propose a suboptimal detector for MC-SS that keeps the 
significant gain of MC-SS over the conventional SS, with 
a relatively low loss compared to the optimum MC-SS 
detector. Theoretical analysis and computer simulations 
that corroborate the theory are presented. 

I. INTRODUCTION 

Jam-resistant communication is traditionally estab
lished through direct sequence spread spectrum (DS
SS) and frequency hopping spread spectrum (FH-SS) 
techniques. More recently, multi-carrier spread spectrum 
(MC-SS) techniques have also been identified, and their 
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Fig. I. Transmitter structure of a multicarrier spread spectrum 
system. 

to the MC-SS scheme proposed and studied by Kaleh 
[2]. However, we note that our results are extendable to 
other variations of the Me-SS systems as well. We also 
note that different authors have used different names for 

performance advantages over the conventional spread reference to what is defined in this paper as MC-SS. 
spectrum (SS) schemes have been explored [1], [2], [3]. Kaleh [2] has used the terminology 'frequency-diversity 
It has been particularly noted that Me-SS is significantly spread-spectrum', while 'multicarrier DS CDMA' is 
more robust against narrow-band and partial-band in- used in [1]. We use Me-SS as it relates better the 
terference/jamming. However. to achieve the predicted common terminology DS-SS. 
performance, the receiver should constantly monitor the It has commonly been noted that to allow successful 
powers of noise and interference at all the subcarriers. rejection of narrowband interference in a Me-ss system, 
This might be a difficult task in a hostile environment the system subbands must be well isolated from each 
where noise and interference may be non-stationary. In other [1], [2], [3], [5]. To achieve this, transmission 
particular. an intelligent narrow-band jammer may hop is established through disjoint subbands. This is differ
in an unpredictable manner over different subcarriers. ent from the conventional multicarrier modulation sys-

This paper proposes a robust MC-SS technique with terns, such as orthogonal frequency division multiplexing 
performance near that of the optimum detector without (OFDM) [6]. where there is significant overlap among 
requiring any knowledge of the interference and noise different subbands. The analysis performed in [I], [2], 
powers. The proposed system can thus work in hostile [3] assumes perfect isolation of the subbands. In this 
environments where prediction of the powers of noise paper, also, we make the same assumption. 
and interference might be difficult. This paper is organized as follows. In Section II, the 

Different variations of the Me-SS system are possible. channel model and the optimum detector are introduced. 
Kaleh [2] has considered a case where the spread- The suboptimum detector is proposed in Section ITI. An 
ing/processing gain, G, is equal to the number of sub- analysis of the proposed detector is also presented in 
carriers, N, and has proposed spreading a data symbol this section. In Section IV, a scenario for comparing 
across all subcarrlers as in Fig. 1. When (maybe, due to the proposed detector with the optimum MC-SS and 
design limitations) N < G, a data symbol may be spread DS-SS detectors is discussed. Computer simulations that 
both across time and frequency [1]. Other variations are confirm the accuracy of the theoretical analysis are 
also possible [3], [4]. In this paper, we limit ourselves also presented. The concluding remarks are presented 
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in Section V. 
Throughout the paper the following notations are 

adhered to. Scalar variables are denoted by lower-case 
non-bold letters. Lower-case bold letters are used to refer 
to column vectors. Matrices are denoted by upper-case 
bold letters. The ith element of a vector x is denoted 
by Xi. The superscripts T and H denotes transpose and 
Hermitian, respectively. E[·] denote statistical expecta
tion. 

II. CHANNEL MODEL AND THE OPTIMUM DETECTOR 

As was noted above, a variety of combinations of 
multicarrier and spread spectrum techniques is possi
ble. In this paper we consider the case where a data 
symbol sen) has been spread across N subcarriers, as 
shown in Fig. 1, through a spreading vector I'(n) = 
h'o(n) 'Yl(n) ... IN-l(n)V where li(n)'s are a set 
of complex numbers that may be fixed or vary with 
time, n. Assuming that the channels associated with 
different subcarriers are flat-fading and non-overlapping, 
the received signal after demodulation and separation of 
the subcarrier components results in the vector [2] 

r(n) = s(n)HI'(n) + v(n) (1) 

where H is a diagonal matrix with the channel gain of 
different subcarriers as its diagonal elements, and v( n) 
is the vector of channel noise plus interference/jammer. 

Given the received vector r{n}, we wish to obtain a 
soft estimate so(n) of the data symbol sen) through an 
optimum linear processing procedure. To this end, we 
rearrange (1) as 

r'(n) = s(n)u + v'(n) (2) 

where u is a vector of length N with elements of 1, 
r'{n) = (Hr(n))-l r(n), v'(n} = (Hr(n))-l v(n), 
and r ( n) is the diagonal matrix whose diagonal elements 
are the elements of I'(n). Assuming that the noise plus 
interference vector v( n) is Gaussian 1 and. for m -:f 
n, vern) and v(n) are independent of each other, the 
optimum linear estimation of sen), is given by 

(3) 

where Wo is chosen such that the signal-to-interference 
plus noise ratio (SINR) is maximized. 

Here, the constraint w H u = 1 assures that E[so(n)l == 
s(n), and the minimization of E[lwH v'(nWJ results in 
minimum variance in the estimation error. This problem 
can be solved by using the method of Lagrange multi
pliers [8], [9]. The result is 

1 -1 
Wo = T -1 Rv'v'u (5) 

u Rv'v'u 

where Rv'v' = E[v'(n)v'H (n)]. Moreover, the variance 
of the estimation error is obtained as E[lw~ v(nWl == 
I/(uTR~~/u). Hence, assuming that E[ls(nWl = 1, the 
SINR at the decision device input is obtained as 

E[ls(nWl T-1 
Po = E[lw~ v 1(n)12] = u Rv'v'u. (6) 

The optimum estimator (5) provides a solution to 
the optimum detector without any restriction on the 
correlation properties of noise and interference. The 
previous reports, such as [2], consider special cases of 
the above result. To compare the results here with those 
of [2], consider the case where the channel noise is flat 
across the full band of transmission and has the per 
subcarrier band power No. Also, assume that a subset 
of subchannels are jammed by an interferer with per 
subcarrier band power Jo . We also assume that l'Yi(n) I = 
1, for all values of i. and E[ls(nWl = 1. When the 
subcarrier bands are non-overlapping, Rvv is a diagonal 
matrix and, in the present case, has the diagonal elements 
of No for the un-jammed subchannels and No + Jo for 
the jammed subchannels. In this case from (5), we obtain 

Ih,1 2 

No +0, J o . 0 1 N 1 (7) 
Wo,i = N-l Ihkl' ~ = , ,"', -

Lk=O No+CtkJo 

where Wo,i is the ith element of w o, and (fi is a binary 
number 0 or 1 showing absence or presence of the 
jammer, respectively, in the ith subchannel. Moreover, 
using (6), the SINR in this case is obtained as 

N-l Ihk l2 

Po= L . 
k=O No + C1.k Jo 

(8) 

When Ihkl = 1, for k = 0,1,·· " N - 1, the latter case 
reduces to the case considered in [2], and the conclusions 
derived in [2] will follow. 

III. SUBOPTIMUM DETECTOR 
The SINR is maximized through the following con

strained minimization: The above results show that the optimum detector 
requires knowledge of the spreading code, 'Yi(n}, the 

subject to the constraint channel gain, ~, of each subchannel and also the noise 
(4) and interference statistics. From these 'Yi (n) is obviously 

1 An interference signaUjammer, in general, may be non-Gaussian. 
However, when it is a random process spread across a number of 
subcarner bands, the demodulation (a multiband filtering process) 
results in a set of approximately Gaussian random variables. 

known to a detector that is designed to receive the 
transmitted SS signal. Estimation of the channel gains 
hi's is also possible in most of the applications where the 
channel varies slowly with time. The most challenging 
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problem that makes realization of the optimum detector Substituting (11) in (12), after some manipulations, we 
very difficult is estimation of the noise and interference obtain 

powers at each subchanneL In this section, we d~viate f, . (<Pi) = ~e-~ 
from the optimum detector and propose a suboptimum 'P, 27r 
detection method that performs close to the optimum 
detector, yet does not require any knowledge of the noise 
and interference power spectral densities. 

Our method is based on a heuristic. We assume that 
the data symbols sen) have a constant modulo of one, 
i.e., when phase shift keying (PSK) signalling is used 
(the most common case in SS systems), and argue that 
the expected values of the magnitude of each element of 
r'(n) is unity. We thus nonnalize the elements of r'(n) 
to a length of unity prior to the linear processing. This 
nonnalization is implemented as 

_ r:(n) 
Ti(n) = IrHn)I' i=O,I,···,N-l. (9) 

A. Analysis ofTi(n) 

In SS systems it is very common to choose s (n) from 
a PSK alphabet. Moreover, the suboptimum detector that 
we propose in this section perfonns well only when 
sen) is PSK. We thus limit our discussion to the cases 
where Is(n)1 = 1. Moreover, to facilitate some of the 
derivations below, with no loss of generality, we assume 
that sen) = 1. Extension to the cases where sen) -11 is 
straightforward and will be discussed later. 

We start the analysis by studying rjCn). For this, we 
define the random variables Xi = 1 + ~ { Zlf (n)} and Yi = 
~{ZI:(n)}, where ~{-} and ~{-}, respectively, denote 
the real part and the imaginary part of the argument. 
Note that since here we assume sen) = 1, Xi and Yi are 
real and imaginary parts of rHn), respectively. Noting 
that ZI'(n) is a complex zero~mean circularly symmetric 

l . 
Gaussian random variable, the joint probability denSIty 
function (PDF) of Xi and Yi is obtained as 

(10) 

where o"? is the variance of ZlHn . Next, we define 

the random variables Zi = x; + Yf and 'Pi = 
arctan(Yi/ Xi). The joint PDF of Zi and <Pi is given by 
(see [7]. page 145) 

The marginal PDF of <Pi is thus 

where sign(·) is the signum function and erf(·) is the 
error function erf(x) = -f.: It e-

t2 dt. 
On the other hand, we note that when sen) = 1, the 

real and imaginary parts of ri(n) are cos <Pi and sin <Pi, 
respectively. Defining the random variables Pi = cos 'Pi 
and qi = sin <Pi and following standard methods for 
functions of random variables [7], the PDF's of Pi and 
qi, over the interval [-1, 1], are obtained as 

e-1/ 2u:2 

!p,(Pi) = ~ 
7T"yl- Pt 

'e-(1-p:l/2u:
2 

( • ( Ipi! )) + P~ R 1 + sign(Pi)erf 102 ~ (14) 
y'2;:o-: 1 - P; v ",o-~ 

and 

e-1/ 2U;2 e-q'f/2U? (~) 
!q, (qd = ~ + y'2;:o-' erf V2(J' . (15) 

7T"y 1 - q[ l , 

The above results are summarized as follows. When 
sen) = 1, the normalized observation sample ri(n) is a 
random variable whose real and imaginary parts are char~ 
acterized by the random variables Pi and qi with PDF's 
given by (14) and (15), respectively. When sen) :f:. 1, 
but still has a modulo of one, i.e., Is(n)1 = 1, by writing 
- .( ) - () Hil'en) sen) and noting that the random r, n - s n 1+11' n 8 n I 
variables ZIt( n) and vi (n) / s( n) have the same statistics, 
we conclude that Ti(n)/s(n) is a random variable whose 
real and imaginary parts are also characterized by the 
random variables Pi and qi. One important corollary of 
this result is that 

(16) 

B. Optimal Detector for fen) 

The optimal detector for the normalized observation 
vector fen) = [ro(n) Tl(n) ... TN-l(n)V is obtained 
as follows. We first scale each element Ti{n) such that 
its mean is equal to sen) . Using (16), we find that the 
scaling factor that establishes this is 1/ E[Pi]. Let us call 
the scaled version of f(n), f( n) and the associated noise 
vector 1.-(n). Considering r(n) to be the observation 
vector, the optimum detector is obtained by following 
the same line of derivation that led to (5). This leads to 
the estimate 

(12) 
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where Wo = uTi,,,juR;;;U and RiIiI = E[v(n)vB(n)]. 

We note that since v(n) is non-Gaussian, the latter 
detector is not an optimum linear estimator of s(n), 
in the strict sense of minimizing the detection error. 
However, it is optimum in the minimum mean-square 
error (MJvfSE) sense, Le., it minimizes E[ls{n)-s(n)l2]. 
Moreover, since the estimation error sen) - sen) = 

w-;! v( n) is a linear combination of a set of random 
variables, it approaches a Gaussian distribution for large 
values of the processing gain N, and thus the MMSE 
estimator will approach the true optimum detector, i.e., 
the one that minimizes the probability of symbol errors. 

C. A Practical Suboptimum Detector 

The detector defined by (17), even though optimal for 
the observed vector r(n), defeats our goal of proposing 
a suboptimum detector that does not require any knowl
edge of the noise and interference powers. Construction 
of r( n) and thus Wo requires kno~ledge of the noise 
and interference powers in each subchannel, since the 
statistics of Pi and qi depend on O'? which in tum is a 
function of the noise and interference powers. 

Since no knowledge of the distribution of noise and in
terference is available, it is reasonable to assume that all 
subchannels are corrupted by the same amount of noise 
plus interference. That is, the elements of v( n) have the 
same variance, 0'2. Assuming that the sub carrier bands 
are non-overlapping [1), (2), we get E[v{n)vH (n)] = 
a 2 I. Using this, we find that Ru'u' is a diagonal matrix 

with the ith diagonal element of 0'[ = Ih; 121~~ (n W . 
Next, we use the PDF's (14) and (15) to find an 

estimate of the diagonal elements of Rvil for substitution 
in (17). To this end, we first note that the assumption 
unon-overlapping subcarrier bands" implies that RiIiI is 
a diagonal matrix. Let a;, and a~. denote the variances 
of random variables Pi and % respectively. Recalling 
the construction of r(n), one finds that the ith diagonal 
element of Ri/v is given by 

(18) 

where the second identity follows from a~; + a~; = 
E[Pn - (E[Pi])2 + E{qf] - (E{qi])2 = E[p; + q[] -
(E [Pi]) 2 = 1 - (E[Pi])2, since E[qi] = 0 because 
of even symmetry of the PDF of qi (see (15», and 
P; + q[ = 8in

2 ¢>i + C08
2 ¢>i = l. 
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Fig. 2. Relationship between 0'2/1h.12 and at. The circles show 
the points that have been evaluated numerically. The line is the best 
linear fit. The slope of the line is K = 1.269. 

relationship,2 implying the identity 

v2 K0'2 

ai = Ihd 2 
(19) 

where K = 1.269 is the slope of the line in Fig. 2. 
Substituting (19) in (17), we obtain 

[ 

lhOl2] 
Ihll2 

IhN~112 
(20) 

where the subscript 'subo' denotes sub-optimum. Hence, 
the suboptimum estimate Ssubo = w~bof( n) is obtained. 
However, this requires r{ n) that in tum requires values 
of E[Pi] which are dependent on 0'2. Since 0'2 (summa
tion of noise and interference powers) is unknown, one 
cannot claim the possibility of constructing r{ n). 

To resolve the above problem, we resort to a detector 
that uses r{n) instead of f(n). To this end, we note that 
substituting (19) in (18) gives 

(21) 

Since the cases of interest in SS systems are when SINR 
is very small and in such cases Ihi l

2 « Ka2, from (21), 

we obtain E[Pi] ;;::: ;Jt. Using this and recalling the 
definition of r( n), one finds that 

(22) 

Unfortunately, because of the presence of the error 
function in (14), derivation of an analytical equation for 2 Although, not clear in Fig. 2, the linear relationship between 1;'~2 
E[Pi] and thus (18) is not possible. However, it can be and Ii'; is lost at lower values of 1;'~2' corresponding to higher values 
evaluated numerically. Fig. 2 shows 6: as a function of of SINR. However, since in practical applications of SS, cases of 

~ • interest are low SINR's (usually negative SINR's) only, the use of 
,f::Pl' Surprisingly, this very closely resembles a linear linear relationship (19) is justified. 

7~.d. 
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Moreover, since we assume PSK signaling and such 
signaling is insensitive to a positive scaling, the factor 
on front of the summation on the right-hand side of (22) 
may be removed. This leads to the desired suboptimum 
estimate 

N-l 

ssubo(n) = L lhili\(n). (23) 
i=O 

D. Summary of the Suboptimum Detector 

Table I presents a summary of the proposed detector. 
As one may notice, this a very simple detector that 
requires only the spreading factors Ii (n) and the channel 
gains hi. It is interesting to note that the scaled samples 
Ti(n) do not appear in the detector. They only played an 
intermediate role in obtaining the final estimate (23). 

TABLE I 

SUMMARY OF THE SUBOPTIMUM DETECTION ALGORITHM. 

1 AI' . '() Ti{n) .:, , Ignment. r. n = -- for t = 0 1 ... N - 1 
hi'Yi(n) '" 

2. Normalization: 1\(n) = I~~~:~I for i = 0,1,"', N - 1 
N-l 

3. Symbol Estimation: ssubo(n) = L Ihilii(n) 
i 0 

E. SINR Analysis 

We note that Ti(n) = E[pi]Ti(n) = E(pi](s(n) + 
vi{n)). Substituting this in (23), we obtain 8subo{n) = 
es(n) + vsubo(n), where B = Ei':;(jllh;IE[Pi] and 
vsubo(n) = E!ollhiIE[pi]vi(n). Since Is(n)1 = 1, the 
SINR of the suboptimum detector is thus obtained as 

(]2 
Psubo = 

= 

= (24) 

where the last identity follows from (18), 

To allow comparison of the proposed suboptimum de
tector with the optimum detector proposed in Section II, 
we follow the noise-jammer setup that was discussed at 
the end of Section II and simplify Psubo accordingly. We 
note that for the noise-jammer setup of Section n, (21) 
converts to 

~~~~----~-r~~~~==~ 
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Fig. 3, SINR performance comparison of the optimum Me-SS, the 
suboptimum Me-SS, and DS-SS. SNR = 0 dB. (a) The total power 
of jammer is 10 dB above the noise level. (b) The total power of 
jammer is 20 dB above the noise level. 

Substituting (25) in (24), we get 

(26) 

IV. COMPARISONS 

In this section, we present some numerical results that 
compare the performance of the suboptimum detector 
(23) with the optimum detector (3). Also, for compari
son, we present the performance of a OS-SS system with 
the same processing gain. We note that OS-SS performs 
similar to the optimal MC-SS when all subchannels/chips 
are subject to the same level of noise plus interference. 
However, as was noted in Section I, OS-SS penorms 
significantly worse than MC-SS when both are subject 
to partial-band interference [1], [2]. 

(25) Results in this section are for a flat fading channel, i.e., 
hi'S are all equal. We assume that subcarrier bands are 
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Fig. 4. SNR loss of the suboptimum detector compared to the 
optimum detector. 

perfectly isolated from one another. Results are presented 
for the processing gain N = 100. Also, with no loss of 
generality, we set Ihil = 1, for i ~= 0,1"", N - l. 
Moreover, we set Is(n)1 = I!i(n) I ~ 1, for all values of 
n and i. We assume that M of the subcarrier bands are 
corrupted by the interference. We also define the signal
to-interference, signal-to-noise and signal-to-interference 
plus noise ratios 

= 

= 

= 

= 

E[:Ol E[lhni(n)s(nWl 
Mx Jo 

N 
MJo 

:2:[:01 E[lhni(n)s(nWJ 

1 

No 

NxNo 

E~Ol E[lhni(n)s(n) 12] 
N X No+M X Jo 

1 

(27) 

(28) 

(29) 

where the subscript 'in' is to emphasize that the ratios are 
given for the signals at the receiver input. Both channel 
noise and interference are modeled by Gaussian sources. 

For our study in this section, it is convenient to refer 
to the values of N, M, SIRin, SNRin and SINRin, as 
a starting point. When N and M and two of the ratios 
SIRin, SNRin or SINRin are given, we can use (27)-(29) 
to calculate the noise variance No and the interference 
variance Jo. These can then be substituted in (8) and 
(26) to obtain Po and Psubo. 

Figs. 3(a) and (b) show two sets of plots of 51NR's 
Po, (8), and Psubo, (26), as a function of the percentage 
of the 5S band that is corrupted by interference. In both 
cases SNRin = 0 dB. In Fig. 3(a), SIRin = -10 dB, 
while in Fig. 3(b), SIRin = -20 dB. As expected, when 
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Fig. 5. Bit error rates of the optimum and suboptimum MC-SS as a 
function of SINR, when (a) PJ / PN = 20 dB, (b) PJ / PN = 10 dB 
and (c) PJ / PN = 0 dB. The BER of OS-55 is also presented for 
comparison. 
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a small fraction of the SS band is jammed, Me-SS 
perfonns significantly better than DS-SS. This advantage 
vanishes as the jammer energy is spread over a larger 
portion of the band. The suboptimum detector loses 
about 1 dB compared to the optimum detector, when 
the jammer occupies either a small fraction or 100% of 
the transmission band. Larger losses are observed when 
a larger fraction of the band, but not the full-band, is 
jammed. Nevertheless, the suboptimum MC-SS performs 
significantly better than DS-SS, unless the band is fully 
jammed. 

Fig. 4 presents perfonnance loss, Pol Psubo, incurred 
due to replacement of the optimum detector by the 
suboptimum detector. Results for several combinations 
of SINRin and the ratio of interference power to noise 
power PJ / PN, where PJ = M 10 and PN = N No are 
the total interference power and the total noise power, 
respectively, are given. The parameter that has the most 
impact on the shapes of the curves is the ratio PJ/ PN. 
The curves depend on SINRin to a Qluch smaller extent. 

To corroborate the accuracy of the predictions made 
by (8) and (26), in Figs. 5(a), (b) and (c) we have 
presented a set of bit-error-rate (BER) curves of the 
optimum and suboptimum detectors for PJ / PN values of 
20 dB, 10 dB and 0 dB, respectively. Quadrature phase
shit keying (QPSK) symbols are considered and gray 
coding has been applied to map data bits to symbols. 
Each point on the curves is calculated after observing 
at least 500 bit errors. The perfOImance loss of the 
suboptimum detector compared to the optimum detector 
in these figures matches very closely the prediction made 
in Fig. 4. For instance, according to Fig 4 a difference of 
1 to 6 dB should be observed between the optimum and 
SUboptimum detectors when PJ / PN = 20 dB, and this 
difference should increase as M / N varies between 0 and 
0.9. This is clearly observed in Fig. 5(a). Moreover, with 
decreasing PJ / PN, the difference between the optimum 
and SUboptimum detector reduces. This trend is observed 
in Figs. 5(b) and ( c). 

V. CONCLUSION 

An effective, but simple, method of implementing 
MC-SS systems in a hostile environment, where an intel
ligent jammer may hop to different subcarriers randomly, 
was proposed and its performance was analyzed theoreti
cally. The proposed scheme, does not require knowledge 
of this jammer and even though suboptimum, was found 
to be significantly superior to the conventional DS-SS. 
Computer simulations that confirm the accuracy of the 
theoretical results were also presented. Even though the 
presented results do not cover many possible conditions 
where the channel may be frequency selective andlor 
noise and interference spectrums may have arbitrary 

shapes, the conclusions drown remain the same. Namely, 
when the received signal is corrupted by a partial band 
interference, the proposed detector performs significantly 
better than the DS-S5 system. Moreover, the system 
degradation compared to the optimum Me-S5 detector 
is usually in the range of 1 to a few decibels. 
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