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A b s t r a c t

By offering more detail and precision, large data sets can provide 
greater insights to researchers than small data sets. However, these 
data sets require greater computing resources to view and man­
age. Remote visualization techniques allow the use of computers 
that cannot be operated locally. The Semotus Visum framework 
applies a high-performance client-server paradigm to the problem. 
The framework utilizes both client and server resources via multi­
ple rendering methods. Experimental results show the framework 
delivers high framerates and low latency across a wide range of data 
sets.
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Figure 1: Dataflow in scientific visualization applications. In sce­
nario 1, images are streamed from server to client. In scenario 2, 
part of the rendering calculations are done on the server. Scenario 
3 allows the client to do all rendering calculations. Scenario 4 uses 
the server for data storage only; all calculations are done on the 
client.
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1 In t r o d u c t i o n

Remote visualization is an increasingly important aspect of scien­
tific computing. Advances in computing power enable researchers 
to utilize progressively larger and more refined data sets. Obtaining 
the insights offered by these data sets requires full use of modern 
supercomputers. These computers typically have many CPUs, a 
large amount of memory, increased I/O capability, and may have 
special graphics hardware. We assume that such hardware is typi­
cally available on a high-end server. Difficulty arises when the sci­
entist or engineer who wants to visualize simulation data must use 
a computer that they cannot operate locally. Transferring the full 
data set to the researcher's desktop for visualization is prohibitively 
slow; furthermore, many desktop machines lack the memory and 
disk space to hold a multi-gigabyte data set.

Recent visualization research applies a client-server paradigm to 
the problem. In figure 1, we see that there are many different strate­
gies for remote visualization. In the first scenario, the server ren­
ders images and streams them to the client. The second scenario has 
the server performing some rendering calculations, such as geom­
etry transformation or visibility determination; the client finishes 
the rendering locally. Another possibility is scenario 3, where the 
server performs only the large-scale computations, and leaves the 
client to handle all the rendering computations. Finally, scenario 
4 outlines the situation where the server only provides raw data to 
the client; not only does the client handle the visualization, but also 
performs the scientific computation.

Each of the above-mentioned scenarios has tradeoffs. For exam­
ple, image streaming works well for thin clients, but can require
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significant network bandwidth. Performing some rendering cal­
culations on the server can greatly speed up isosurface visualiza­
tion [11]; however, low-end clients may not have the resources to 
finish the rendering in a timely manner. With these issues in mind, 
the value of a multifaceted approach becomes clearer.

We present a remote visualization framework that implements 
a number of rendering methods. The framework, dubbed “Semo­
tus Visum” from the Latin for “remote visualization”, encompasses 
a server middleware package, a set of communications protocols, 
and a Java client. By utilizing both client and server resources, the 
Semotus Visum framework can produce high framerates across a 
range of data sets.

In the following sections, we first discuss related work, then 
present an architectural overview of our framework. We then 
present experimental results demonstrating the framework's perfor­
mance on three scientific data sets. Finally, we discuss our conclu­
sions and give suggestions for future work.

2  R e l a t e d  W o r k

A common approach to remote visualization is to use an X server 
to forward the local display. Such an approach requires no effort on 
the part of the programmer; a simple environment variable provides 
the interface. However, the protocol used by the server is not op­
timized for high-performance visualization; rendering N polygons 
remotely requires O(N) internal X protocol messages. This high 
overhead can severely curtail the performance of X-based applica­
tions.

A simple way to perform remote visualization is by image 
streaming (scenario 1, above). Engel et al. [5] used a high-end 
graphics server to stream images to a simple Java or C++-based 
client. In [6], Engel et al. created a Common Object Request Bro­
ker Architecture (CORBA)-based framework that allows a server 
to transmit images to a client. The server, running an Open Inven­
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tor or Cosmo3D application, sends a series of images to the Java 
client. These images can be transmitted raw, or compressed using 
Zlib [19], Lempel-Ziv-Oberhumer (LZO) [17], or run-length en­
coding (RLE).

Ma and Camp [13] also stream compressed images in their par­
allel volume rendering scheme. Unlike other implementations of 
this strategy, image compression is parallelized. Each processor 
begins compressing its subimage when it finishes rendering its vol­
ume partition. These subimages are also decompressed in parallel 
on the viewer. The speedup from parallel compression is nullified 
to a great extent by the poorer compression rates of the smaller im­
ages, as well as the overhead of compositing the subimages on the 
viewer. To improve performance, they suggest a hybrid approach 
of combining subimages before compression.

Another visualization option is an all-Java implementation (en­
compassing scenario 4). Hibbard et al. [10] converted their VisAD 
visualization system to Java. They utilize Java's Remote Method 
Invocation (RMI) system to provide access to remote data. Another 
pure Java approach was taken by Michaels et al. [16] in Vizwiz. 
Vizwiz was designed to be run as an applet, using a CGI script to 
upload the user's data. The lack of a usable 3D API caused signif­
icant rendering problems; further, Java's interpreted nature greatly 
limited its performance in calculations, especially those related to 
isosurface construction.

In [3], Engel et al. used VRML and Java to create a volume vi­
sualization system viewable by any web browser. This technique 
involves creating three stacks of texture planes in orthogonal ori­
entations (ie, the XY, XZ, and YZ planes). When a user wishes to 
view the model, only the plane most perpendicular to the line of 
sight is rendered. In addition to the 3D view, the user can also view 
the orthogonal 2D slices independently. By selecting an isovalue on 
any of the 2D slices, a client-side module can compute and display a 
full isosurface, eliminating the need for further data transfers. This 
technique roughly corresponds to scenario 3, shown in figure 1.

An interesting approach to isosurface visualization was pre­
sented by Engel et al. [4]. By allowing the user to interactively con­
trol the level of detail, rough approximations to isosurfaces could 
be quickly viewed, with finer detail available upon command. En­
gel et al. [7] make efficient use of both local and remote resources 
in their isosurface extraction package. By dividing the computa­
tion load between server and client, they are able to transmit and 
reconstruct isosurfaces very quickly. In addition, they incorporate 
a focus point, allowing the user to increase the level of detail in a 
limited area for more precise viewing.

Multi-modal systems such as OpenDX [20] allow the user to 
choose between X-based rendering and local OpenGL to maxi­
mize rendering performance. More intelligent packages such as 
ARTE [15] analyze bandwidth and client capabilities to automati­
cally select the most appropriate mode of transmission.

Not all remote visualization packages focus solely on software. 
In their Visapult [1] visualization framework, Bethel and Tier­
ney et al. combine software with massively parallel hardware. 
The hardware component, the Distributed Parallel Storage System 
(DPSS) [2], is built of commodity components linked with custom 
software.

Friesen and Tarman [8] describe a hardware-assisted system in 
use at Sandia National Laboratories. This system uses arrays of 
hardware scan converters to convert computer-generated RGB im­
ages to NTSC format. The NTSC video is then fed into an array 
of hardware image compressors; the compressed output is trans­
mitted along a shared ATM network to the viewer, where similar 
hardware decompresses the stream. By pushing the remote visual­
ization components from the server into hardware, the researchers 
were able to sustain good quality 1280 x 1024 frames at 30 Hz.

3  T h e  S e m o t u s  V is u m  F r a m e w o r k

Effective remote visualization frameworks must address a number 
of system issues. Due to its distributed nature, a framework must be 
portable; the choice of development language, graphics API, net­
work access, and thread implementation can all affect portability. 
As will be shown shortly, a monolithic rendering scheme cannot 
guarantee good performance in all conditions. Thus, a sensible ren­
dering framework should allow renderers to be placed at different 
points in the rendering pipeline given in figure 1. More explicit 
details for the algorithms described in this section can be found 
in [12].

Collaboration is an increasingly important part of visualization. 
Collaborative tools are useful in a remote visualization system be­
cause data features can be subtle and difficult to verbalize. In­
tegrated tools can aid in communicating these features to peers. 
Persistent annotations can also serve as a reminder for researchers 
when they revisit older data sets.

Remote user interfaces, though not needed for batch systems, 
are vital to interactive systems. The difficulty lies in providing 
an interface that is not specific to a single application, but is still 
useful across multiple applications. Remote users need to access 
the server’s user interface, preferably in its original form. Further­
more, a remote user interface needs to show interconnection data 
(for dataflow systems), and provide some method for choosing a 
subinterface from multiple options.

3 .1  C l i e n t  A r c h i t e c t u r e

Based on the issues discussed above, the Semotus Visum client was 
implemented in Java. Java offers the platform independence of in­
terpreted languages, along with performance approaching that of 
compiled languages. Virtual machines can be obtained for nearly 
every modern computing platform. Development kits also come 
with a large set of support and development libraries, speeding de­
velopment time. Java applications can also utilize native code for 
speed-critical routines using the Java Native Interface (JNI).
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Figure 2: Detailed client architecture.

The client architecture, shown in figure 2, is highly modular. 
This modularity allows clean communication between unrelated 
sections of the client, quick additions or modifications to modules, 
and independent development and testing. The client abstracts the 
network into a Network Interface layer. This layer uses standard 
Java sockets to transmit and receive data from the network. There
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are also utilities to handle byte order conversion. In addition to a 
generalized socket interface, Java also provides threading and syn­
chronization primitives. Unrelated modules are decoupled from 
each other by running in separate threads. Within a given mod­
ule, high- and low-performance sections are also decoupled into 
separate threads. This helps to ensure maximum throughput and 
performance.

To facilitate communication with the server, the client uses a 
Message abstraction for received and transmitted data. There are 
several message classes, each of which implements a particular 
communication protocol. Incoming message requests are regis­
tered with a callback dispatch manager; the manager calls a call­
back function when the message arrives. Outbound messages are 
sent directly to the network interface.

Renderers share a common interface; this common interface fa­
cilitates the addition of new renderers. Network data is sent to the 
renderer from the callback manager. If the data is compressed, the 
renderer sends it to a decompression module which decompresses 
the data, and returns it to the renderer. After performing any needed 
operations on the data, the renderer sends a rendered image to the 
user interface. Optionally, the rendered image can also be written 
to disk for permanent storage.

To protect the client's internals from user interface changes, the 
client includes a user interface manager. Aside from the manager, 
only renderers, in the interest of efficiency, have access to the user 
interface. The manager also interacts with the remote user interface, 
though this interaction is largely independent from the rest of the 
client.

3 .2  S e r v e r  A r c h i t e c t u r e

The Semotus Visum server is implemented in C++ as a middleware 
software package. In this case, “server” refers to part of the ap­
plication process. Multiple servers may run on the same machine, 
and multiple clients may interact with a single server. The design, 
shown in figure 3, is focused as a general-purpose remote visualiza­
tion solution rather than restricted to a single scientific computing 
package. Because the server interfaces between the application and 
multiple clients, it should not impose significant processing over­
head. Thus, the package gives high priority to performance and 
scalability.

Like the client, the server abstracts network access into a Net­
work Interface layer. This layer utilizes a wrapper for standard 
Berkeley sockets, both connection-oriented and connectionless. 
The same wrapper also offers host and network byte-order con­
version. In addition to the socket interface, the server also uses 
threading and synchronization wrappers; these wrappers abstract 
away the underlying thread and synchronization primitives. Unre­
lated modules are decoupled from each other by running in separate 
threads. Within a given module, high- and low-performance sec­
tions are also decoupled into separate threads. This helps to ensure 
maximum throughput and performance.

Messages are also used on the server for transmitted and received 
data. These abstractions maintain a one-to-one mapping between 
message types and communication protocols. Incoming client mes­
sages are registered with a callback dispatch manager; the callback 
manager can either call a callback function or send a synchroniza­
tion message when data arrives. Outbound messages are sent di­
rectly to the network interface.

Rendering support is provided through a consistent interface 
across renderers. The application provides the renderer with the 
raw visualization data, and the renderer does any specialized pro­
cessing. After processing, the data is sent to a compression module; 
the compressed data is forwarded to the network interface for trans­
mission to clients.

S e r v e r  A r c h i t e c t u r e
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Figure 3: Detailed server architecture.

3 .3  C o m m u n i c a t i o n

Communication between client and server utilizes the eXtensible 
Markup Language (XML). XML was chosen because it is a well- 
documented protocol for information exchange. Well-supported, 
XML can be created and parsed on virtually any platform in many 
programming languages. Its human-readable form is useful in both 
debugging and offline analysis of communication information.

Client-server messages fall into a number of categories: render­
ing, collaboration, and miscellaneous. The client uses rendering 
messages to request rendering parameters from the server; these 
messages also supply the server with any needed local information. 
The server also makes use of rendering messages by including an 
XML header for binary viewing data. These headers typically com­
prise a very small percentage of the total data transmitted, on the 
order of less than 0.1%. Collaboration messages allow the client 
and server to exchange collaboration data such as text, pointers, 
and drawings. Other messages provide a framework for an ini­
tial client-server handshake, multicast and compression parameters, 
and remote user interface data.

3 .4  R e n d e r i n g

Image streaming, shown in figure 4, uses the server to provide most 
of the rendering power. This visualization method is simple to im­
plement; the server need only access a rendered frame, and the 
client need only draw these pixels to the screen. Such simplicity 
allows a client to support this type of rendering with minimal local 
resources. Furthermore, the server's internal data representation is 
hidden from the client. The server is thus free to use any available 
methods (such as ray tracing, volume rendering, or polygon raster­
ization) to render the data. The Semotus Visum client uses Java’s 
Bufferedlmage class to hold streamed images prior to rasterization.

Geometry rendering, shown in figure 5, uses the client to provide 
most of the rendering power. Unlike image streaming, this scheme 
takes advantage of client rendering resources. With the growing 
power of 3D graphics accelerators, desktop machines can render 
large numbers of polygons at interactive rates. Network resources 
are involved only in the initial setup; after the geometry is trans-
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rendering; the client simply displays the rendered image. Viewing 
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Figure 5: Geometry rendering. Geometric data is transmitted to the 
client. Any changes in viewing parameters are implemented locally 
on the client.

mitted, the client need not access the network again. The Semotus 
Visum client uses the Java3D API to render geometry.

ZTex rendering, shown in figure 6, divides the rendering load be­
tween client and server. This method of rendering builds on image- 
based rendering techniques and the relief texture mapping ideas dis­
cussed in [18, 14]. We first observe that a scene rendered from a 
given viewpoint can be thought of as a dense mesh (represented by 
the depth buffer) and as associated texture (represented by the color 
buffer). If the dense mesh is simplified and the color buffer appro­
priately applied as a texture map, from the identical viewpoint the 
framebuffer results would be unchanged. Having such a representa­
tion allows the client a small amount of 3D interaction, albeit with 
significant error from oblique views.

The ZTex renderer is an implementation of these ideas. Af­
ter rendering the data from a particular view, the server reads the 
color and depth buffers. The color buffer is sent to the client in the 
same manner as in image streaming. The server creates a triangle 
mesh from the depth buffer height field using a modified Garland- 
Heckbert algorithm [9]. This mesh encompasses only the visible 
rendered data; depth values of infinity, or polygons removed by the 
Z buffer are not present in the mesh. The server then sends this 
mesh to the client as it would in the geometry rendering scheme. 
After receiving the viewing data, the client calculates texture coor­
dinates for the mesh vertices using local viewing parameters. These 
texture coordinates correspond to the appropriate locations in the 
image texture. The client subsequently renders the mesh using the 
image as a texture. Like the Geometry renderer, the client ZTex 
renderer uses the Java3D API to render the images.
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Figure 6: ZTex rendering. Geometric data is rendered on the server. 
The server generates a mesh from a simplified height field read from 
the depth buffer; the resulting mesh and rendered image are trans­
mitted to the client. The client can alter the viewing parameters 
locally, or request another ZTex object with the current local view­
ing info.

4  R e s u l t s

The Semotus Visum framework was tested using a number of scien­
tific data sets. The Aneurysm data set is a 250x250x125 magnetic 
resonance angiogram of the vasculature of a patient's head. The Jet 
Shockwave data set contains cells. This data set simulates the 
Kelvin-Helmholz instability in a supersonic jet. The final data set is 
derived from the Visible Male frozen CT. The raw Visible Male data 
were scaled and padded to a uniform 369x475x254. From this data, 
we derived a bone isosurface using a standard Marching Cubes iso­
surface generator. This dataset is labeled 'VisBone'. All the data 
sets use rectilinear grids to implicitly denote positions of the data 
points in space, and all isosurfaces were generated prior to perfor­
mance testing. Table 1 gives the size of each dataset in memory 
footprint and polygons. Representative images from each data set 
can be found in figures 7-9.

Data Set Size (MB) Polygons
Jet 67.1 148802
Aneurysm 31.3 502936
VisBone 178.1 2458966

Table 1: Data sets range in size from a thirty to several hundred 
megabytes. The polygon count ranges from one hundred fifty thou­
sand to two and a half million. Note that even though the Jet data set 
has a greater memory footprint than the Aneurysm, the specific iso­
values chosen for each dataset lead to inversely proportioned poly­
gon counts.

All the experiments used an SGI Origin 2000 (32 250MHz 
R10000 CPUs, 12 GB of memory) as the server machine. The pri­
mary client in many of the tests is a dual 550MHz Pentium III with 
512 MB of memory running a 2.2.17 Linux kernel. This client also 
has an NVIDIA Quadro graphics card. Because it consistently out­
performed other similar virtual machines in industry benchmarks 
and preliminary testing, the Linux client utilized the IBM 1.3.9 
JVM. The Linux client was tested using 10, 100, and 1000 Mbit 
ethernet connections. These connections will be labeled ’Linux10’, 
’Linux100’ and ’Linux1000’, respectively. All tests were run on 
a local network, with no more than one hop between server and 
client.

Server
Data Data
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Results in this chapter represent three types of experiments. The 
first tests measure the global throughput of the system; this rep­
resents the maximum frame rates that the system can produce. As 
much of the framework is multithreaded, we measure throughput as 
a function of the slowest stage in the rendering pipeline. However, 
frame rate alone does not give the complete picture of a rendering 
system. The latency between client request and display of the cor­
responding data also affects the perceived interactivity of a system. 
Thus, we also conducted tests to measure the latency of different 
rendering requests. Though not directly affecting the user’s percep­
tion of interactivity, the bandwidth requirements for each data set 
and viewing method were also measured.

Figure 7: Jet data set.

Figure 8: Aneurysm data set.

4 .1  F r a m e  R a t e s

The basis for all framerate comparisons is the server’s local render­
ing rate. Framerates were measured on the server with no remote 
services running; this will be referred to as the ’Local’ framerate. 
As the simplest way to do remote visualization is to use the X Win­
dows protocol [21], framerates achieved while using this protocol

Figure 9: Visible Human Bone data set.

were also measured. To perform this measurement, we set the dis­
play of the server to the local machine, and rendered images as 
normal. Frame rates measured using this technique will be referred 
to as the ’X’ frame rates.

Frame rates for image streaming are shown for the case when 
the server compresses the images using LZO. Further, to reduce 
decompression and byte-order conversion time on the client, the 
client utilizes the Java Native Interface (JNI). The proportion of 
native code used in the client is very small; it represents less than 
2% of the entire code base. Geometry and ZTex renderers convert 
the geometry to triangle strips before rendering. This can improve 
performance by as much as 50%.

Tables 2-4 give the frame rates for the Jet, Aneurysm, and Vis- 
Bone data sets. Severely limited by network bandwidth, the 10 
Mbit X frame rates are consistently lower than those of the 100 and 
1000 Mbit clients. Image streaming matches the performance of 
the server; the local rendering rate is the bottleneck in this case. In­
terestingly, compression reduces the bandwidth needs of the image 
streaming clients enough that the 10 Mbit client can offer the same 
performance as the other clients. Geometry rendering consistently 
offers twice the local rendering rate. However, the VisBone data set 
cannot be rendered due to size restrictions.

ZTex rendering provides interactive frame rates for each of the 
data sets. On the Jet and Aneurysm data sets, ZTex renders at 10-20 
times the local rate; on the VisBone data set, this speedup improves 
to 50-120. These frame rates correspond to speedups of 50-700 
over X-based visualization.

4 .2  L a t e n c y

Though frame rate is an important measure of renderer perfor­
mance, latency cannot be ignored. In many cases, interactivity 
requires the user to see the results of viewing changes without a 
sizeable delay. We define the latency of an X request as the inverse 
of the framerate - ie, we ignore the time required for the client to 
request an image from the server. This is a reasonable assumption, 
as such requests require negligible processing and network time. 
To keep comparisons equitable, we also ignore the small Semotus 
Visum request time.

Though each stage in the framework’s rendering process runs in 
parallel, our latency measurements must include the full time a re­
quest takes from start to finish. Thus, image streaming latency is the 
sum of server rendering and processing time, network transmission
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Jet Dataset
Local Frame Rate 4.3 fps

10 Mbit X Frame Rate 0.08 fps
100 Mbit X Frame Rate 0.6 fps

1000 Mbit X Frame Rate 0.8 fps
Renderer FPS Local Speedup X Speedup

Linux10 Image 4.3 1.0 53.75
Linux100 Image 4.3 1.0 7.16
Linux1000 Image 4.3 1.0 5.38
Linux Geom 9.5 2.2 15.7
Linux ZTex 78 /45 18.1/11.3 130/80.8

Table 2: Basis results for the Jet dataset. ZTex results are for 3/6 
concurrently rendered ZTex objects.

Table 4: Basis results for the Visible Human Bone dataset. Client 
could not render geometry due to size constraints. ZTex results are 
for 3/6 concurrently rendered ZTex objects.

time, client processing time, and client rendering time. Geometry 
latency is the sum of the server data marshalling and processing 
time, network transmission time, and client processing time. ZTex 
request latency is the sum of server rendering and processing time, 
network transmission time, and client processing time.

Table 5 shows the latency of the X protocol and each Semo­
tus Visum rendering method. The X protocol’s latency increases 
linearly as data set size increases. Though their latency also in­
creases with data set size, the image renderers are dominated by the 
server’s rendering rate. As it is image-based, ZTex latency is also 
directly affected by the server’s rendering time. In addition, the 
overhead of transmitting ZTex objects increases the overall latency. 
The renderer with the worst latency performance is geometry ren­
dering. As data sets increase in size, the latency of the geometry 
renderer increases exponentially. This is due to nonlinear effects of 
handling large data sets: networks approach saturation, caches are 
overwhelmed, and the client must start swapping the data to disk.

Latency Per Dataset (seconds)
Rendering Method Jet Aneurysm VisBone
Linux X 1.6 3.3 20
Linux10 Image 1.45 1.9 4.6
Linux100 Image 0.42 0.83 3.5
Linux1000 Image 0.44 0.84 3.5
Linux10 Geom 3.3 12.7 131
Linux100 Geom 2.7 9.9 122
Linux1000 Geom 2.6 9.4 120
Linux10 ZTex 3.5 6.6 9.1
Linux100 ZTex 2.2 4.8 7.8
Linux1000 ZTex 2.2 4.7 7.7

Table 5: Latency for all datasets.

4 .3  B a n d w i d t h

Measuring the bandwidth requirements for the Semotus Visum ren­
dering methods is mostly straightforward. The required bandwidth 
for geometry and ZTex is simply the data transferred per request di­
vided by the network time. Image streaming is more complex; this 
rendering method is usually constrained by the client or server. So, 
though the peak bandwidth requirements will be similar to other 
rendering methods, the sustained bandwidth requirements are cal­
culated using this formula:

.

In other words, the sustained rate is the fraction of time spent trans­
mitting data times the peak rate.

The bandwidth used by the X server is not easily measured di­
rectly. Thus, results for X-based visualization are derived from in­
spection of the source code and X protocol definitions. The X pro­
tocol transfers roughly 28 bytes of information per double-precision 
vertex. The data required for each frame is therefore approximately 
the number of vertices times the 28-byte packet size. The results of 
these bandwidth measurements and estimations are given in table 6.

X requires 10.1 MB/sec on average, or roughly 81% of the avail­
able bandwidth on a 100 Mbit network. It is this high bandwidth 
requirement that causes X to perform so poorly on a 10 Mbit/s net­
work. Though LZO compression can reduce the size of an image 
stream by up to 90%, the high server frame rates for the Jet and 
Aneurysm data sets cause image renderers to consume bandwidth 
on the order of X. As the server rendering rate becomes the bottle­
neck, the peak bandwidth demand subsides. The sustained band­
width requirements of these image streams are a few hundred kilo­
bytes per second, or only 1.5% of the bandwidth of the X-based

Aneurysm Dataset
Local Frame Rate 1.6 fps

10 Mbit X Frame Rate 0.02 fps
100 Mbit X Frame Rate 0.3 fps

1000 Mbit X Frame Rate 0.3 fps
Rendering Method FPS Local Speedup X Speedup
Linux10 Image 1.6 1.0 80
Linux100 Image 1.6 1.0 5.3
Linux1000 Image 1.6 1.0 5.3
Linux Geom 2.8 1.75 9.4
Linux ZTex 27.4/15.5 17.1/9.7 91.3/51.7

Table 3: Basis results for the Aneurysm dataset. ZTex results are 
for 3/6 concurrently rendered ZTex objects.

VisHuman Bone Dataset
Local Frame Rate 0.3 fps

10 Mbit X Frame Rate 0.002 fps
100 Mbit X Frame Rate 0.05 fps

1000 Mbit X Frame Rate 0.06 fps
Rendering Method FPS Local Speedup X Speedup
Linux10 Image 0.3 1.0 150
Linux100 Image 0.3 1.0 6.0
Linux1000 Image 0.3 1.0 5.0
Linux ZTex 35.4/15.5 118/51.7 708/310
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Bandwidth Per Dataset (MB/second)
Rendering Method Jet Aneurysm VisBone
X 7.5 12.5 10.3
Image (Peak) 9.5 10 3.9
Image (Sustained) 0.2 0.2 0.03
Geometry 10.3 10 10.7
ZTex 3.7 4.2 7.3

Table 6: Bandwidth requirements for all datasets. Tests were run 
on a 100 Mbit/s network.

approach. Geometry rendering transmits the entire data set in a sin­
gle burst; therefore, even compressed geometry streams still require 
roughly 10 MB/second of bandwidth. As ZTex objects are partially 
composed of compressible images, they require less bandwidth than 
geometry. However, as data set complexity increases, the ZTex ob­
jects will be contain a greater proportion of geometry. Thus, the 
total compressibility of the object decreases, and bandwidth needs 
increase.

5  C o n c l u s i o n s  a n d  F u t u r e  W o r k

We have presented a remote visualization framework that offers 
high frame rates and low latency on a variety of data sets. The 
Semotus Visum framework supports multiple rendering methods, 
each of which exploits resources found in a stage of the rendering 
pipeline. This approach delivers significant speedups over previous 
methods. By trading latency for throughput, the framework can out­
perform the server’s local rendering rate even for large data sets. 
Though image streaming makes heavy use of network resources, 
compression algorithms like LZO can liberate this method from 
bandwidth considerations.

Future work on the Semotus Visum framework encompasses 
several directions. First, the framework would benefit from exten­
sive wide-area network testing, as well as multi-client tests con­
ducted on a larger scale. This testing could identify scalability is­
sues in the server and communication scheme. The current shared- 
memory server design could be extended to include distributed and 
cluster machines. Further, the framework could be extended to uti­
lize multiple independent servers. Peer-to-peer client interaction, 
such as sharing rendering or collaboration information, could re­
duce the resource demand on the server.

The three rendering methods included in the framework only en­
compass a small fraction of the imaginable rendering schemes. For 
example, variants of the geometry renderer could implement the 
isosurface extraction schemes discussed by Engel et al. [7]; the ge­
ometry renderer could also be extended to support geometry com­
pression. New rendering methods could accommodate those super­
computers that do not possess specialized graphics hardware. The 
framework could also be augmented with an automated heuristic 
which recommends a rendering method based on server resources, 
network bandwidth, client power, and user needs.
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