
S e m o t u s V i s u m : A F l e x i b l e R e m o t e V i s u a l i z a t i o n F r a m e w o r k

Eric J. Luke* Charles D. Hansen^

Scientific Computing and Imaging Institute
School of Computing, University of Utah

A b s t r a c t

By offering more detail and precision, large data sets can provide
greater insights to researchers than small data sets. However, these
data sets require greater computing resources to view and man­
age. Remote visualization techniques allow the use of computers
that cannot be operated locally. The Semotus Visum framework
applies a high-performance client-server paradigm to the problem.
The framework utilizes both client and server resources via multi­
ple rendering methods. Experimental results show the framework
delivers high framerates and low latency across a wide range of data
sets.

CR Categories: C.2.0 [Computer-Communication Net­
works]: General—Data communications; C.2.4 [Computer-
Communication Networks]: Distributed Systems—Client/server;

Keywords: remote visualization, client/server

Scenario 1
Scenario 2
Scenario 3
Scenario 4

Figure 1: Dataflow in scientific visualization applications. In sce­
nario 1, images are streamed from server to client. In scenario 2,
part of the rendering calculations are done on the server. Scenario
3 allows the client to do all rendering calculations. Scenario 4 uses
the server for data storage only; all calculations are done on the
client.

Data
Storage

Data
Calculations

Rendering
Calculations

Rendering Display

(y - — (i - — (j— - t i - — ()

1 1

1
Server

| | Client

1 In t r o d u c t i o n

Remote visualization is an increasingly important aspect of scien­
tific computing. Advances in computing power enable researchers
to utilize progressively larger and more refined data sets. Obtaining
the insights offered by these data sets requires full use of modern
supercomputers. These computers typically have many CPUs, a
large amount of memory, increased I/O capability, and may have
special graphics hardware. We assume that such hardware is typi­
cally available on a high-end server. Difficulty arises when the sci­
entist or engineer who wants to visualize simulation data must use
a computer that they cannot operate locally. Transferring the full
data set to the researcher's desktop for visualization is prohibitively
slow; furthermore, many desktop machines lack the memory and
disk space to hold a multi-gigabyte data set.

Recent visualization research applies a client-server paradigm to
the problem. In figure 1, we see that there are many different strate­
gies for remote visualization. In the first scenario, the server ren­
ders images and streams them to the client. The second scenario has
the server performing some rendering calculations, such as geom­
etry transformation or visibility determination; the client finishes
the rendering locally. Another possibility is scenario 3, where the
server performs only the large-scale computations, and leaves the
client to handle all the rendering computations. Finally, scenario
4 outlines the situation where the server only provides raw data to
the client; not only does the client handle the visualization, but also
performs the scientific computation.

Each of the above-mentioned scenarios has tradeoffs. For exam­
ple, image streaming works well for thin clients, but can require

* luke @sci.utah.edu
thansen@cs.utah.edu

IEEE Visualization 2002 Oct. 27 - Nov. 1, 2002, Boston, MA, USA
0-7803 -7498-3/02/$17.00 © 2002 IEEE

significant network bandwidth. Performing some rendering cal­
culations on the server can greatly speed up isosurface visualiza­
tion [11]; however, low-end clients may not have the resources to
finish the rendering in a timely manner. With these issues in mind,
the value of a multifaceted approach becomes clearer.

We present a remote visualization framework that implements
a number of rendering methods. The framework, dubbed “Semo­
tus Visum” from the Latin for “remote visualization”, encompasses
a server middleware package, a set of communications protocols,
and a Java client. By utilizing both client and server resources, the
Semotus Visum framework can produce high framerates across a
range of data sets.

In the following sections, we first discuss related work, then
present an architectural overview of our framework. We then
present experimental results demonstrating the framework's perfor­
mance on three scientific data sets. Finally, we discuss our conclu­
sions and give suggestions for future work.

2 R e l a t e d W o r k

A common approach to remote visualization is to use an X server
to forward the local display. Such an approach requires no effort on
the part of the programmer; a simple environment variable provides
the interface. However, the protocol used by the server is not op­
timized for high-performance visualization; rendering N polygons
remotely requires O(N) internal X protocol messages. This high
overhead can severely curtail the performance of X-based applica­
tions.

A simple way to perform remote visualization is by image
streaming (scenario 1, above). Engel et al. [5] used a high-end
graphics server to stream images to a simple Java or C++-based
client. In [6], Engel et al. created a Common Object Request Bro­
ker Architecture (CORBA)-based framework that allows a server
to transmit images to a client. The server, running an Open Inven­

61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:thansen@cs.utah.edu

tor or Cosmo3D application, sends a series of images to the Java
client. These images can be transmitted raw, or compressed using
Zlib [19], Lempel-Ziv-Oberhumer (LZO) [17], or run-length en­
coding (RLE).

Ma and Camp [13] also stream compressed images in their par­
allel volume rendering scheme. Unlike other implementations of
this strategy, image compression is parallelized. Each processor
begins compressing its subimage when it finishes rendering its vol­
ume partition. These subimages are also decompressed in parallel
on the viewer. The speedup from parallel compression is nullified
to a great extent by the poorer compression rates of the smaller im­
ages, as well as the overhead of compositing the subimages on the
viewer. To improve performance, they suggest a hybrid approach
of combining subimages before compression.

Another visualization option is an all-Java implementation (en­
compassing scenario 4). Hibbard et al. [10] converted their VisAD
visualization system to Java. They utilize Java's Remote Method
Invocation (RMI) system to provide access to remote data. Another
pure Java approach was taken by Michaels et al. [16] in Vizwiz.
Vizwiz was designed to be run as an applet, using a CGI script to
upload the user's data. The lack of a usable 3D API caused signif­
icant rendering problems; further, Java's interpreted nature greatly
limited its performance in calculations, especially those related to
isosurface construction.

In [3], Engel et al. used VRML and Java to create a volume vi­
sualization system viewable by any web browser. This technique
involves creating three stacks of texture planes in orthogonal ori­
entations (ie, the XY, XZ, and YZ planes). When a user wishes to
view the model, only the plane most perpendicular to the line of
sight is rendered. In addition to the 3D view, the user can also view
the orthogonal 2D slices independently. By selecting an isovalue on
any of the 2D slices, a client-side module can compute and display a
full isosurface, eliminating the need for further data transfers. This
technique roughly corresponds to scenario 3, shown in figure 1.

An interesting approach to isosurface visualization was pre­
sented by Engel et al. [4]. By allowing the user to interactively con­
trol the level of detail, rough approximations to isosurfaces could
be quickly viewed, with finer detail available upon command. En­
gel et al. [7] make efficient use of both local and remote resources
in their isosurface extraction package. By dividing the computa­
tion load between server and client, they are able to transmit and
reconstruct isosurfaces very quickly. In addition, they incorporate
a focus point, allowing the user to increase the level of detail in a
limited area for more precise viewing.

Multi-modal systems such as OpenDX [20] allow the user to
choose between X-based rendering and local OpenGL to maxi­
mize rendering performance. More intelligent packages such as
ARTE [15] analyze bandwidth and client capabilities to automati­
cally select the most appropriate mode of transmission.

Not all remote visualization packages focus solely on software.
In their Visapult [1] visualization framework, Bethel and Tier­
ney et al. combine software with massively parallel hardware.
The hardware component, the Distributed Parallel Storage System
(DPSS) [2], is built of commodity components linked with custom
software.

Friesen and Tarman [8] describe a hardware-assisted system in
use at Sandia National Laboratories. This system uses arrays of
hardware scan converters to convert computer-generated RGB im­
ages to NTSC format. The NTSC video is then fed into an array
of hardware image compressors; the compressed output is trans­
mitted along a shared ATM network to the viewer, where similar
hardware decompresses the stream. By pushing the remote visual­
ization components from the server into hardware, the researchers
were able to sustain good quality 1280 x 1024 frames at 30 Hz.

3 T h e S e m o t u s V is u m F r a m e w o r k

Effective remote visualization frameworks must address a number
of system issues. Due to its distributed nature, a framework must be
portable; the choice of development language, graphics API, net­
work access, and thread implementation can all affect portability.
As will be shown shortly, a monolithic rendering scheme cannot
guarantee good performance in all conditions. Thus, a sensible ren­
dering framework should allow renderers to be placed at different
points in the rendering pipeline given in figure 1. More explicit
details for the algorithms described in this section can be found
in [12].

Collaboration is an increasingly important part of visualization.
Collaborative tools are useful in a remote visualization system be­
cause data features can be subtle and difficult to verbalize. In­
tegrated tools can aid in communicating these features to peers.
Persistent annotations can also serve as a reminder for researchers
when they revisit older data sets.

Remote user interfaces, though not needed for batch systems,
are vital to interactive systems. The difficulty lies in providing
an interface that is not specific to a single application, but is still
useful across multiple applications. Remote users need to access
the server’s user interface, preferably in its original form. Further­
more, a remote user interface needs to show interconnection data
(for dataflow systems), and provide some method for choosing a
subinterface from multiple options.

3 .1 C l i e n t A r c h i t e c t u r e

Based on the issues discussed above, the Semotus Visum client was
implemented in Java. Java offers the platform independence of in­
terpreted languages, along with performance approaching that of
compiled languages. Virtual machines can be obtained for nearly
every modern computing platform. Development kits also come
with a large set of support and development libraries, speeding de­
velopment time. Java applications can also utilize native code for
speed-critical routines using the Java Native Interface (JNI).

Client Architecture

Rendered
Image

ĤUser Interface) (Remote Ul)

(̂Ul Manager

Rendered
Images

t Render
,-------------L , Data-(Renderer--------

i
Compressed
Data

(Compression)

Remote
Ul
Data

Net Dispatch
Manager

A

(Disk I/O] f Net Interface 1

Server Messages

Figure 2: Detailed client architecture.

The client architecture, shown in figure 2, is highly modular.
This modularity allows clean communication between unrelated
sections of the client, quick additions or modifications to modules,
and independent development and testing. The client abstracts the
network into a Network Interface layer. This layer uses standard
Java sockets to transmit and receive data from the network. There

62

are also utilities to handle byte order conversion. In addition to a
generalized socket interface, Java also provides threading and syn­
chronization primitives. Unrelated modules are decoupled from
each other by running in separate threads. Within a given mod­
ule, high- and low-performance sections are also decoupled into
separate threads. This helps to ensure maximum throughput and
performance.

To facilitate communication with the server, the client uses a
Message abstraction for received and transmitted data. There are
several message classes, each of which implements a particular
communication protocol. Incoming message requests are regis­
tered with a callback dispatch manager; the manager calls a call­
back function when the message arrives. Outbound messages are
sent directly to the network interface.

Renderers share a common interface; this common interface fa­
cilitates the addition of new renderers. Network data is sent to the
renderer from the callback manager. If the data is compressed, the
renderer sends it to a decompression module which decompresses
the data, and returns it to the renderer. After performing any needed
operations on the data, the renderer sends a rendered image to the
user interface. Optionally, the rendered image can also be written
to disk for permanent storage.

To protect the client's internals from user interface changes, the
client includes a user interface manager. Aside from the manager,
only renderers, in the interest of efficiency, have access to the user
interface. The manager also interacts with the remote user interface,
though this interaction is largely independent from the rest of the
client.

3 .2 S e r v e r A r c h i t e c t u r e

The Semotus Visum server is implemented in C++ as a middleware
software package. In this case, “server” refers to part of the ap­
plication process. Multiple servers may run on the same machine,
and multiple clients may interact with a single server. The design,
shown in figure 3, is focused as a general-purpose remote visualiza­
tion solution rather than restricted to a single scientific computing
package. Because the server interfaces between the application and
multiple clients, it should not impose significant processing over­
head. Thus, the package gives high priority to performance and
scalability.

Like the client, the server abstracts network access into a Net­
work Interface layer. This layer utilizes a wrapper for standard
Berkeley sockets, both connection-oriented and connectionless.
The same wrapper also offers host and network byte-order con­
version. In addition to the socket interface, the server also uses
threading and synchronization wrappers; these wrappers abstract
away the underlying thread and synchronization primitives. Unre­
lated modules are decoupled from each other by running in separate
threads. Within a given module, high- and low-performance sec­
tions are also decoupled into separate threads. This helps to ensure
maximum throughput and performance.

Messages are also used on the server for transmitted and received
data. These abstractions maintain a one-to-one mapping between
message types and communication protocols. Incoming client mes­
sages are registered with a callback dispatch manager; the callback
manager can either call a callback function or send a synchroniza­
tion message when data arrives. Outbound messages are sent di­
rectly to the network interface.

Rendering support is provided through a consistent interface
across renderers. The application provides the renderer with the
raw visualization data, and the renderer does any specialized pro­
cessing. After processing, the data is sent to a compression module;
the compressed data is forwarded to the network interface for trans­
mission to clients.

S e r v e r A r c h i t e c t u r e

(Application } •

Render
Data

r(Renderer j-

(Compression)

C om pressed
Data

C allback
Data

Net Dispatch
Manager

(Net Interface)-

Client
M essages

Figure 3: Detailed server architecture.

3 .3 C o m m u n i c a t i o n

Communication between client and server utilizes the eXtensible
Markup Language (XML). XML was chosen because it is a well-
documented protocol for information exchange. Well-supported,
XML can be created and parsed on virtually any platform in many
programming languages. Its human-readable form is useful in both
debugging and offline analysis of communication information.

Client-server messages fall into a number of categories: render­
ing, collaboration, and miscellaneous. The client uses rendering
messages to request rendering parameters from the server; these
messages also supply the server with any needed local information.
The server also makes use of rendering messages by including an
XML header for binary viewing data. These headers typically com­
prise a very small percentage of the total data transmitted, on the
order of less than 0.1%. Collaboration messages allow the client
and server to exchange collaboration data such as text, pointers,
and drawings. Other messages provide a framework for an ini­
tial client-server handshake, multicast and compression parameters,
and remote user interface data.

3 .4 R e n d e r i n g

Image streaming, shown in figure 4, uses the server to provide most
of the rendering power. This visualization method is simple to im­
plement; the server need only access a rendered frame, and the
client need only draw these pixels to the screen. Such simplicity
allows a client to support this type of rendering with minimal local
resources. Furthermore, the server's internal data representation is
hidden from the client. The server is thus free to use any available
methods (such as ray tracing, volume rendering, or polygon raster­
ization) to render the data. The Semotus Visum client uses Java’s
Bufferedlmage class to hold streamed images prior to rasterization.

Geometry rendering, shown in figure 5, uses the client to provide
most of the rendering power. Unlike image streaming, this scheme
takes advantage of client rendering resources. With the growing
power of 3D graphics accelerators, desktop machines can render
large numbers of polygons at interactive rates. Network resources
are involved only in the initial setup; after the geometry is trans-

63

Data
Storage

Data
Calculations

Rendering
Calculations

Rendering

•(Render)—»~(Grab Image)—

View Parameters

Display

Client
—► (Display)

| Server
1 Client

Figure 4: Image streaming. The server does all the calculations and
rendering; the client simply displays the rendered image. Viewing
parameters are relayed back to the server.

Data
Storage

Data
Calculations

Rendering
Calculations

Rendering Display

()—— t i——()—- (i——i)
i 1

Server Client
(Data)------------- ------------- ►(Display))

View Parameters
... ^

Server
1 Client

Figure 5: Geometry rendering. Geometric data is transmitted to the
client. Any changes in viewing parameters are implemented locally
on the client.

mitted, the client need not access the network again. The Semotus
Visum client uses the Java3D API to render geometry.

ZTex rendering, shown in figure 6, divides the rendering load be­
tween client and server. This method of rendering builds on image-
based rendering techniques and the relief texture mapping ideas dis­
cussed in [18, 14]. We first observe that a scene rendered from a
given viewpoint can be thought of as a dense mesh (represented by
the depth buffer) and as associated texture (represented by the color
buffer). If the dense mesh is simplified and the color buffer appro­
priately applied as a texture map, from the identical viewpoint the
framebuffer results would be unchanged. Having such a representa­
tion allows the client a small amount of 3D interaction, albeit with
significant error from oblique views.

The ZTex renderer is an implementation of these ideas. Af­
ter rendering the data from a particular view, the server reads the
color and depth buffers. The color buffer is sent to the client in the
same manner as in image streaming. The server creates a triangle
mesh from the depth buffer height field using a modified Garland-
Heckbert algorithm [9]. This mesh encompasses only the visible
rendered data; depth values of infinity, or polygons removed by the
Z buffer are not present in the mesh. The server then sends this
mesh to the client as it would in the geometry rendering scheme.
After receiving the viewing data, the client calculates texture coor­
dinates for the mesh vertices using local viewing parameters. These
texture coordinates correspond to the appropriate locations in the
image texture. The client subsequently renders the mesh using the
image as a texture. Like the Geometry renderer, the client ZTex
renderer uses the Java3D API to render the images.

Data
Storage

Data
Calculations

Rendering
Calculations

Rendering Display

()—— () - —t)—) - ■—i J
1 1

Server Client
— Grab Image ')—
»- Grab Depth »- Mesh

View Parameters View Parameters

Server
Client
Both

Figure 6: ZTex rendering. Geometric data is rendered on the server.
The server generates a mesh from a simplified height field read from
the depth buffer; the resulting mesh and rendered image are trans­
mitted to the client. The client can alter the viewing parameters
locally, or request another ZTex object with the current local view­
ing info.

4 R e s u l t s

The Semotus Visum framework was tested using a number of scien­
tific data sets. The Aneurysm data set is a 250x250x125 magnetic
resonance angiogram of the vasculature of a patient's head. The Jet
Shockwave data set contains cells. This data set simulates the
Kelvin-Helmholz instability in a supersonic jet. The final data set is
derived from the Visible Male frozen CT. The raw Visible Male data
were scaled and padded to a uniform 369x475x254. From this data,
we derived a bone isosurface using a standard Marching Cubes iso­
surface generator. This dataset is labeled 'VisBone'. All the data
sets use rectilinear grids to implicitly denote positions of the data
points in space, and all isosurfaces were generated prior to perfor­
mance testing. Table 1 gives the size of each dataset in memory
footprint and polygons. Representative images from each data set
can be found in figures 7-9.

Data Set Size (MB) Polygons
Jet 67.1 148802
Aneurysm 31.3 502936
VisBone 178.1 2458966

Table 1: Data sets range in size from a thirty to several hundred
megabytes. The polygon count ranges from one hundred fifty thou­
sand to two and a half million. Note that even though the Jet data set
has a greater memory footprint than the Aneurysm, the specific iso­
values chosen for each dataset lead to inversely proportioned poly­
gon counts.

All the experiments used an SGI Origin 2000 (32 250MHz
R10000 CPUs, 12 GB of memory) as the server machine. The pri­
mary client in many of the tests is a dual 550MHz Pentium III with
512 MB of memory running a 2.2.17 Linux kernel. This client also
has an NVIDIA Quadro graphics card. Because it consistently out­
performed other similar virtual machines in industry benchmarks
and preliminary testing, the Linux client utilized the IBM 1.3.9
JVM. The Linux client was tested using 10, 100, and 1000 Mbit
ethernet connections. These connections will be labeled ’Linux10’,
’Linux100’ and ’Linux1000’, respectively. All tests were run on
a local network, with no more than one hop between server and
client.

Server
Data Data

64

Results in this chapter represent three types of experiments. The
first tests measure the global throughput of the system; this rep­
resents the maximum frame rates that the system can produce. As
much of the framework is multithreaded, we measure throughput as
a function of the slowest stage in the rendering pipeline. However,
frame rate alone does not give the complete picture of a rendering
system. The latency between client request and display of the cor­
responding data also affects the perceived interactivity of a system.
Thus, we also conducted tests to measure the latency of different
rendering requests. Though not directly affecting the user’s percep­
tion of interactivity, the bandwidth requirements for each data set
and viewing method were also measured.

Figure 7: Jet data set.

Figure 8: Aneurysm data set.

4 .1 F r a m e R a t e s

The basis for all framerate comparisons is the server’s local render­
ing rate. Framerates were measured on the server with no remote
services running; this will be referred to as the ’Local’ framerate.
As the simplest way to do remote visualization is to use the X Win­
dows protocol [21], framerates achieved while using this protocol

Figure 9: Visible Human Bone data set.

were also measured. To perform this measurement, we set the dis­
play of the server to the local machine, and rendered images as
normal. Frame rates measured using this technique will be referred
to as the ’X’ frame rates.

Frame rates for image streaming are shown for the case when
the server compresses the images using LZO. Further, to reduce
decompression and byte-order conversion time on the client, the
client utilizes the Java Native Interface (JNI). The proportion of
native code used in the client is very small; it represents less than
2% of the entire code base. Geometry and ZTex renderers convert
the geometry to triangle strips before rendering. This can improve
performance by as much as 50%.

Tables 2-4 give the frame rates for the Jet, Aneurysm, and Vis-
Bone data sets. Severely limited by network bandwidth, the 10
Mbit X frame rates are consistently lower than those of the 100 and
1000 Mbit clients. Image streaming matches the performance of
the server; the local rendering rate is the bottleneck in this case. In­
terestingly, compression reduces the bandwidth needs of the image
streaming clients enough that the 10 Mbit client can offer the same
performance as the other clients. Geometry rendering consistently
offers twice the local rendering rate. However, the VisBone data set
cannot be rendered due to size restrictions.

ZTex rendering provides interactive frame rates for each of the
data sets. On the Jet and Aneurysm data sets, ZTex renders at 10-20
times the local rate; on the VisBone data set, this speedup improves
to 50-120. These frame rates correspond to speedups of 50-700
over X-based visualization.

4 .2 L a t e n c y

Though frame rate is an important measure of renderer perfor­
mance, latency cannot be ignored. In many cases, interactivity
requires the user to see the results of viewing changes without a
sizeable delay. We define the latency of an X request as the inverse
of the framerate - ie, we ignore the time required for the client to
request an image from the server. This is a reasonable assumption,
as such requests require negligible processing and network time.
To keep comparisons equitable, we also ignore the small Semotus
Visum request time.

Though each stage in the framework’s rendering process runs in
parallel, our latency measurements must include the full time a re­
quest takes from start to finish. Thus, image streaming latency is the
sum of server rendering and processing time, network transmission

65

Jet Dataset
Local Frame Rate 4.3 fps

10 Mbit X Frame Rate 0.08 fps
100 Mbit X Frame Rate 0.6 fps

1000 Mbit X Frame Rate 0.8 fps
Renderer FPS Local Speedup X Speedup

Linux10 Image 4.3 1.0 53.75
Linux100 Image 4.3 1.0 7.16
Linux1000 Image 4.3 1.0 5.38
Linux Geom 9.5 2.2 15.7
Linux ZTex 78 /45 18.1/11.3 130/80.8

Table 2: Basis results for the Jet dataset. ZTex results are for 3/6
concurrently rendered ZTex objects.

Table 4: Basis results for the Visible Human Bone dataset. Client
could not render geometry due to size constraints. ZTex results are
for 3/6 concurrently rendered ZTex objects.

time, client processing time, and client rendering time. Geometry
latency is the sum of the server data marshalling and processing
time, network transmission time, and client processing time. ZTex
request latency is the sum of server rendering and processing time,
network transmission time, and client processing time.

Table 5 shows the latency of the X protocol and each Semo­
tus Visum rendering method. The X protocol’s latency increases
linearly as data set size increases. Though their latency also in­
creases with data set size, the image renderers are dominated by the
server’s rendering rate. As it is image-based, ZTex latency is also
directly affected by the server’s rendering time. In addition, the
overhead of transmitting ZTex objects increases the overall latency.
The renderer with the worst latency performance is geometry ren­
dering. As data sets increase in size, the latency of the geometry
renderer increases exponentially. This is due to nonlinear effects of
handling large data sets: networks approach saturation, caches are
overwhelmed, and the client must start swapping the data to disk.

Latency Per Dataset (seconds)
Rendering Method Jet Aneurysm VisBone
Linux X 1.6 3.3 20
Linux10 Image 1.45 1.9 4.6
Linux100 Image 0.42 0.83 3.5
Linux1000 Image 0.44 0.84 3.5
Linux10 Geom 3.3 12.7 131
Linux100 Geom 2.7 9.9 122
Linux1000 Geom 2.6 9.4 120
Linux10 ZTex 3.5 6.6 9.1
Linux100 ZTex 2.2 4.8 7.8
Linux1000 ZTex 2.2 4.7 7.7

Table 5: Latency for all datasets.

4 .3 B a n d w i d t h

Measuring the bandwidth requirements for the Semotus Visum ren­
dering methods is mostly straightforward. The required bandwidth
for geometry and ZTex is simply the data transferred per request di­
vided by the network time. Image streaming is more complex; this
rendering method is usually constrained by the client or server. So,
though the peak bandwidth requirements will be similar to other
rendering methods, the sustained bandwidth requirements are cal­
culated using this formula:

.

In other words, the sustained rate is the fraction of time spent trans­
mitting data times the peak rate.

The bandwidth used by the X server is not easily measured di­
rectly. Thus, results for X-based visualization are derived from in­
spection of the source code and X protocol definitions. The X pro­
tocol transfers roughly 28 bytes of information per double-precision
vertex. The data required for each frame is therefore approximately
the number of vertices times the 28-byte packet size. The results of
these bandwidth measurements and estimations are given in table 6.

X requires 10.1 MB/sec on average, or roughly 81% of the avail­
able bandwidth on a 100 Mbit network. It is this high bandwidth
requirement that causes X to perform so poorly on a 10 Mbit/s net­
work. Though LZO compression can reduce the size of an image
stream by up to 90%, the high server frame rates for the Jet and
Aneurysm data sets cause image renderers to consume bandwidth
on the order of X. As the server rendering rate becomes the bottle­
neck, the peak bandwidth demand subsides. The sustained band­
width requirements of these image streams are a few hundred kilo­
bytes per second, or only 1.5% of the bandwidth of the X-based

Aneurysm Dataset
Local Frame Rate 1.6 fps

10 Mbit X Frame Rate 0.02 fps
100 Mbit X Frame Rate 0.3 fps

1000 Mbit X Frame Rate 0.3 fps
Rendering Method FPS Local Speedup X Speedup
Linux10 Image 1.6 1.0 80
Linux100 Image 1.6 1.0 5.3
Linux1000 Image 1.6 1.0 5.3
Linux Geom 2.8 1.75 9.4
Linux ZTex 27.4/15.5 17.1/9.7 91.3/51.7

Table 3: Basis results for the Aneurysm dataset. ZTex results are
for 3/6 concurrently rendered ZTex objects.

VisHuman Bone Dataset
Local Frame Rate 0.3 fps

10 Mbit X Frame Rate 0.002 fps
100 Mbit X Frame Rate 0.05 fps

1000 Mbit X Frame Rate 0.06 fps
Rendering Method FPS Local Speedup X Speedup
Linux10 Image 0.3 1.0 150
Linux100 Image 0.3 1.0 6.0
Linux1000 Image 0.3 1.0 5.0
Linux ZTex 35.4/15.5 118/51.7 708/310

66

Bandwidth Per Dataset (MB/second)
Rendering Method Jet Aneurysm VisBone
X 7.5 12.5 10.3
Image (Peak) 9.5 10 3.9
Image (Sustained) 0.2 0.2 0.03
Geometry 10.3 10 10.7
ZTex 3.7 4.2 7.3

Table 6: Bandwidth requirements for all datasets. Tests were run
on a 100 Mbit/s network.

approach. Geometry rendering transmits the entire data set in a sin­
gle burst; therefore, even compressed geometry streams still require
roughly 10 MB/second of bandwidth. As ZTex objects are partially
composed of compressible images, they require less bandwidth than
geometry. However, as data set complexity increases, the ZTex ob­
jects will be contain a greater proportion of geometry. Thus, the
total compressibility of the object decreases, and bandwidth needs
increase.

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have presented a remote visualization framework that offers
high frame rates and low latency on a variety of data sets. The
Semotus Visum framework supports multiple rendering methods,
each of which exploits resources found in a stage of the rendering
pipeline. This approach delivers significant speedups over previous
methods. By trading latency for throughput, the framework can out­
perform the server’s local rendering rate even for large data sets.
Though image streaming makes heavy use of network resources,
compression algorithms like LZO can liberate this method from
bandwidth considerations.

Future work on the Semotus Visum framework encompasses
several directions. First, the framework would benefit from exten­
sive wide-area network testing, as well as multi-client tests con­
ducted on a larger scale. This testing could identify scalability is­
sues in the server and communication scheme. The current shared-
memory server design could be extended to include distributed and
cluster machines. Further, the framework could be extended to uti­
lize multiple independent servers. Peer-to-peer client interaction,
such as sharing rendering or collaboration information, could re­
duce the resource demand on the server.

The three rendering methods included in the framework only en­
compass a small fraction of the imaginable rendering schemes. For
example, variants of the geometry renderer could implement the
isosurface extraction schemes discussed by Engel et al. [7]; the ge­
ometry renderer could also be extended to support geometry com­
pression. New rendering methods could accommodate those super­
computers that do not possess specialized graphics hardware. The
framework could also be augmented with an automated heuristic
which recommends a rendering method based on server resources,
network bandwidth, client power, and user needs.

6 A c k n o w l e d g m e n t s

The authors would like to acknowledge Peter-Pike Sloan, David
Hart, and David McAllister for their work on the ZTex render­
ing scheme. This work was supported by the DOE Corridor One
project and the DOE Advanced Visualization Technology Center
(AVTC). The Jet data set was obtained from the Advanced Visu­
alization Technology Center data repository at Argonne National
Labs. The Visible Human data set was obtained from the National
Library of Medicine’s Visible Human project. The Aneurysm data

set was provided by the University of Utah’s Medical Imaging and
Research Laboratory (MIRL), and Department of Radiology.

R e f e r e n c e s

[1] ”W. Bethel, B. Tierney, J. Lee, D. Gunter, and S. Lau”. Us­
ing High-Speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization. In ’’Supercomputing”.
IEEE, November 2000.

[2] Distributed Parallel Storage System. ”http://www-
didc.lbl.gov/DPSS”.

[3] K. Engel and T. Ertl. Texture-based Volume Visualization for
Multiple Users on the World Wide Web. In Gervautz, M. and
Hildebrand, A. and Schmalstieg, D., editor, Virtual Environ­
ments ’99, pages 115-124. Eurographics, Springer, 1999.

[4] K. Engel, R. Grosso, and T. Ertl. Progressive Iso-Surfaces on
the Web. In Late Breaking Hot Topics. IEEE Visualization,
1998.

[5] K. Engel, O. Sommer, C. Ernst, and T. Ertl. Remote 3D Vi­
sualization using Image-Streaming Techniques. In Advances
in Intelligent Computing and Multimedia Systems (ISIMADE
’99), pages 91-96, 1999.

[6] K. Engel, O. Sommer, and T. Ertl. An Interactive Hardware
Accelerated Remote 3D-Visualization Framework. In Pro­
ceedings o f EG/IEEE TCVG Symposium on Visualization Vis-
Sym ’00, May 2000.

[7] K. Engel, R. Westermann, and T. Ertl. Isosurface Extraction
Techniques for Web-based Volume Visualization. In Proc.
Visualization ’99, pages 139-146. IEEE, 1999.

[8] J. Friesen and T. Tarman. Remote High-Performance Visual­
ization and Collaboration, 2000.

[9] M. Garland and P. Heckbert. Fast Triangular Approximation
of Terrains and Height Fields.

[10] W. Hibbard, J. Anderson, and B. Paul. A Java and World Wide
Web Implementation of VisAD. In Interactive Information
and Processing Systems for Meteorology, Oceanography, and
Hydrology, pages 174-177, 1997.

[11] Y. Livnat and C. Hansen. View Dependent Isosurface Extrac­
tion. In IEEE Visualization ’98, pages 175-181. IEEE, 1998.

[12] Eric J. Luke. Semotus Visum: A Flexible Remote Visual­
ization Framework. Master’s thesis, School of Computing,
University of Utah, January 2002.

[13] Kwan-Liu Ma and David M. Camp. High Performance Vi­
sualization of Time-Varying Volume Data over a Wide-Area
Network Status. In Supercomputing, 2000.

[14] William R. Mark, Leonard McMillan, and Gary Bis hop. Post­
rendering 3d warping. In 1997 Symposium on Interactive 3D
Graphics, pages 7-16. ACM SIGGRAPH, April 1997. ISBN
0-89791-884-3.

[15] I.M. Martin. ARTE - An Adaptive Rendering and Transmis­
sion for 3D Graphics. In ACM Multimedia 2000, November
2000.

67

http://www-

[16] C. Michaels and M. Bailey. Vizwiz: A Java Applet for Inter­
active 3D Scientific Visualization on the Web. In Proc. Visu­
alization ’97, pages 261-267. IEEE Computer Society Press,
1997.

[17] M.F.X.J Oberhumer. Lempel-Ziv-Oberhumer Data Compres­
sion Library. http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html.

[18] M. Oliveira, G. Bishop, and D. McAllister. Relief Texture
Mapping. In Computer Graphics Proceedings. ACM SIG-
GRAPH, 2000.

[19] G. Roelofs. Zlib. http://www.cdrom.com/pub/infozip/zlib/.

[20] Visualization and Imagery Solutions. OpenDX.
http://www.opendx.org.

[21] The X Windows System. http://www.x.org.

68

http://wildsau.idv.uni-linz.ac.at/mfx/lzo.html
http://www.cdrom.com/pub/infozip/zlib/
http://www.opendx.org
http://www.x.org

