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Abstract 

Streamline advection has proven an effective method for visualizing vector flow field 
data. Traditional streamlines do not, however, provide for investigating the coarser
grained features of complex datasets, such as the white matter tracts in the brain 
or the thermal conveyor belts in the ocean. In this paper, we introduce a cohesive 
advection primitive, called a stream bundle. Whereas traditional streamlines describe 
the advection patterns of single, infinitesimal micro-particles, stream bundles indicate 
advection paths for larger macro-particles. Implementationally, stream bundles are 
composed of a collection of individual streamlines (here termed fibers), each of which 
only advects a short distance before being terminated and re-seeded in a new location. 
The individual fibers combine to dictate the instantaneous distribution of the bundle, 
and it is this collective distribution which is used in determining where fibers are re
seeded. By carefully controlling the termination and re-seeding policies of the fibers, 
we can prevent the bundle from becoming frayed in divergent regions. By maintaining 
a cohesive form, the bundles can indicate the coarse structure of complex vector fields. 
In this paper, we use stream bundles to investigate the oceanic currents. 



1 Introduction and Background 

Since its introduction, streamline advection [5, 11] has proven an effective method 
for visualizing vector flow fields. Streamlines are the computational analog of the 
physical streamers used to evaluate flow in wind-tunnel experiments. Tiny particles 
are seeded within a velocity field, and their paths are traced as they advect through 
the field according to the integral equation: 

p(s) = 18 

v(p(s))ds, (1) 

where the flow vector v and the position p along the path are arc-length parameterized 
by s. 

Advection is accomplished computationally by discretely integrating with methods 
such as the fourth-order Runge-Kutta method [6]: 
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From this initial streamline concept, various extensions have been developed. These 
include stream-ribbons [12], stream-surfaces [3], stream-polygons [10], streamballs [2], 
and flow volumes [9]. In stream-ribbons, seed particles are paired together, and as 
they are advected, they define the two edges of a ribbon. This ribbon can be rendered 
as a triangle strip, providing the user with depth and occlusion cues. Extending 
this idea to more than two particles, the user can seed and advect a line of these 
articles. Connecting the edges swept out by neighboring pairs (and terminating or 
adding streamlines when neighbors become too close together or too far apart), this 
algorithm constructs a stream-surface. Alternatively, if instead of seeding particles 
along a line, one seeds particles at the vertices of a closed polygon, the stream-surface 
that is swept out is now a closed surface that encloses a flow volume. These extensions 
to traditional streamlines have several advantages. Primarily, the user can visualize 
twist, convergence, and divergence of the field. However, they tend to clutter the 
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volume and occlude one another, since they are now two-dimensional, rather than 
one-dimensional entities. 

Kajiya [4] introduced a method for lighting lines in 1985, and Banks [1] generalized 
this work in 1994. Zockeler et al. [13] extended this work by developing a faster method 
of shading lit lines and applied their method to specifically to streamlines. This 
extension provided a rapid lighting model for line segments, giving the user lighting 
cues to indicate line direction. In 1998, Loffelmann and Groller [7] introduced threads 
of streamlets, which enable the visualization of the local field around a particular 
streamline. Advecting a thread of streamlets is equivalent to choosing one "base 
trajectory" fiber which is advected the full length of the propagation, and then having 
short streamlets constantly being advected, terminated, and re-seeded around that 
base trajectory fiber. 

With all of the above methods, the user is investigating what happens to infinitesi
mally small particles as they advect through the field. However, these methods break 
down when the user is searching for more macroscopic characteristics of a field. For 
example, these methods have failed to illuminate the white-matter tracts in the brain 
[8], as well as cohesive currents in the ocean. Such methods fail specifically because 
each individual streamline only tracks an individual advection path, without being 
affected by the paths of the streamlines around it. As a result, all of the stream
lines splay in various directions. Such divergence gives no indication of the average 
or primary flow direction. As a result, though there is a clear (though complex) 
pathway between the language center of the brain and the primary auditory cortex, 
traditional streamline advection methods have failed to illuminate this fiber tract. 
Similarly, charting large-scale currents through the worlds oceans has remained an 
elusive goal for automatic streamline advection methods. 

In Figure 1, in the left image we see a group of streamlines advected from the corpus 
callosum. As the main communication pathway between the left and right hemi
spheres of the brain, the corpus callosum has primarily, though not solely, lateral 
connectivity. However, when we try to advect traditional streamlines through this 
region of the brain, only some of the streamlines indicate the gross bilateral direc
tion of this neural structure. In general the streamlines diverge and do not present 
a cohesive picture of the corpus callosum. Advecting a thread of streamlets [7] for 
the right image in Figure 1, we can see a local neighborhood around one particular 
streamline (the so-called base trajectory, T). But if that particular streamline does 
not follow the general path in which we are interested, as in this example, then it 
is of limited utility in revealing macroscopic structure. What we would like is a vi
sualization method that tracks the global structure of the corpus callosum, despite 
the local complexity of the individual white matter fibers. The method we introduce 
here, termed stream bundles accomplishes this goal. In Figure 2, we see the result of 
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Figure 1: Visualization of advection from the corpus callosum. A slice of the dataset 
is shown underneath an isosurface indicating the corpus callosum. Streamlines are 
shown as dark line in the image on the left, and a thread of streamlets is shown 
as a dark mass in the image on the right. Though both methods locally track the 
white matter fiber directions through the region, neither method effectively reveals 
the macroscopic lateral directionality of the corpus callosum. 

advecting a stream bundle through the corpus callosum. The primary lateral connec
tivity is clearly evident in this image, since the collection of streamlines has effectively 
been prevented from diverging. 

Implementationally, a stream bundle is a collection of many short streamlines, which 
we call fibers. The advection of the stream bundle is determined by the collective ad
vection of its fibers; and the re-seeding of the fibers is determined by the distribution 
of the bundle. As a result, the user sees the averaged advection path of some neigh
borhood through the volume. Intuitively, it is similar to advecting a macro-, rather 
than micro-particle through the volume. We believe this method is well suited to in
vestigating grosser structures within vector fields, and in this paper we demonstrate 
its efficacy in visualizing oceanic currents. 

The rest of this paper describes our method for advecting stream bundles, and how 
we control the distribution of the constituent fibers. In Section 2, we describe our 
methodology and implementation; in Section 3, we present results of applying stream 
bundles to an oceanic dataset; and in Section 4, we summarize and conclude with 
some ideas for future work. 
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Figure 2: Stream bundles advected from the corpus callosum. The primary lateral 
flow direction of the structure is clearly revealed. 

2 Methods and Implementation 

As defined above, a stream bundle is a collection of many short, individual streamlines, 
which we call fibers. Running through the interior of the bundle is the bundle's 
midline. The midline is defined as the average positions of the bundle fibers at every 
step along the path. When we refer to the direction of the bundle, we are really 
referring to the direction of this midline. Furthermore, when we refer to the shape 
of the bundle at a particular step, we are really referring to the distribution of the 
bundle's constituent fibers at that step. In keeping the bundle together, the shape 
and direction are important descriptive terms; as such, we will be using these terms 
throughout the paper. 

By definition, a stream bundle is a collection of individual fibers. The fibers of the 
stream bundle are independently advected through the field for a short distance before 
they terminate. When a fiber terminates, a new seed is placed within the bundle and 
a new fiber is advected. As defined in Equation 2, the advection method for the fibers 
is accomplished using a simple fourth-order Runge-Kutta algorithm [6]. To maintain 
the coherence of the fibers, they must be advected in lock-step. This is important 
because as fibers die off, they have to be re-seeded according to the distribution of 
the other fibers in the bundle. Having chosen an advection method, two questions 
remain: 1. how long should we advect an individual fiber? and, 2. where should we 
re-seed after that fiber has been terminated? 
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Figure 3: Termination policies for stream bundle fibers: A) stagnation, B) exiting 
field, C) random lifetime duration, D) divergent outlier. 

It is important to note that the way in which the fibers stay together to produce a 
coherent bundle is not by influencing each other's paths as they all advect. Quite 
to the contrary, each fiber advects completely autonomously, its path determined by 
independent advection. Coherence is instead enforced via the bundle's re-seeding 
and termination policies. By pruning away divergent fibers, and then re-seeding new 
fibers near the bundle's midline, the algorithm controls the collective behavior of the 
bundle. As such, the termination and re-seeding policies are pivotal in dictating the 
direction and shape of the bundle. We discuss several such policies below. 

2.1 Fiber Termination 

We have investigated four different criteria for fiber termination, which we will now 
describe. The methods are pictorially represented for a two-dimensional vector field 
in Figures 3a-d, and extend naturally to three-dimensions. 

There are two hard-coded termination criteria which are common to all of our im
plementations. The first is that once a fiber stagnates (i.e., lands in a region of no 
flow), it is terminated. This case is indicated in Figure 3a. The second termination 
criterion is if a fiber leaves the bounds of the field, as indicated in Figure 3b. For 
the second case, the fiber is not restarted - allowing for bundle termination as the 
individual fibers exit the field. 

In addition to these hard-coded methods, we investigated a "random lifetime" method 
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Figure 4: Re-seeding methods for stream bundle fibers: A) distribution-based, B) 
constant radius, C) evolving radius. 

and an "outlier termination" method. In the first method, the fiber is given a lifetime 
(measured in advection steps) at the time it is created. The fiber advects this number 
of steps with the other fibers in the bundle and then promptly terminates. The length 
of the lifetime is randomly chosen based on a user-chosen maximum lifetime, ltma.:r., 
using the following equation: It = ltma.x x (1 - (randO )2). This termination method 
is illustrated in Figure 3c, where the dotted fiber is terminated because it has reached 
its pre-determined lifetime of five steps. 

For the "outlier termination" method, our algorithm determines if a fiber has strayed 
too far from the rest of the bundle, in which case it is immediately terminated and re
seeded. Fibers that stay close to the pack are allowed to continue to advect indefinitely 
(unless they stagnate or leave the field, in which case they are terminated as described 
earlier). This final termination case is shown in Figure 3d. The dotted fiber is 
terminated, as it strays too far from the center of the other fibers. 

2.2 Fiber Re-seeding 

In combination with the termination criteria, the re-seeding policy for the fibers will 
determine the shape and path of the bundle. We have investigated three methods for 
re-seeding. As with the previous termination figures, we have pictorially illustrated 
our re-seeding methods for the case of a two-dimensional vector field in Figures 4a-c. 

The first method is based on re-seeding the new fiber to maintain the distribution 
of the other fibers in the bundle. Specifically, we find the midpoint of the present 
positions of the other fibers, and construct a histogram of the distances from the fibers 
to that midpoint. Outliers are then removed, and the histogram is Gaussian blurred. 
After normalization, this histogram is exactly the probability density function from 
which a radius for the new seed point can be chosen. A new seed point on the 
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corresponding circle is then chosen at random, and a new fiber is advected from that 
seed point. An example of this re-seeding is shown for the dotted fiber in Figure 4a. 

Our second re-seeding method is simply based on the midpoint of the existing fibers 
and a user-chosen radius. The user chooses a radius for the initial distribution sphere 
(or a set of three radii and axis directions for an ellipsoidal distribution). The mid
point of the fibers is computed as the bundle advects. In this way, it is always ready 
and available when a terminated fiber needs to be re-seeded. The seeding position 
within the sphere is chosen based on a uniform distribution within its volume. The 
advantage of this method is that the resulting bundle is easy to interpret, as it has a 
uniform shape throughout. This method is illustrated in Figure 4b. The dotted fiber 
has been re-seeded within the outlined elliptical region. 

Our third method is a variant of the second method. Rather than maintaining a 
constant radius, though, the radius is allowed to vary as a function of the average 
velocity of the fibers. In regions of high velocity, the radius is made to shrink, thereby 
constricting the bundle. In regions of low velocity, the radius grows, permitting the 
slowly moving fibers to diffuse out. The motivation for this method is that in areas 
of high velocity, flow fields often hold together more tightly. In contrast, in regions of 
low flow there is often a more diffusive behavior. Allowing the radius to grow in these 
low velocity pools will allow us to expand our search, in hopes of finding another high 
velocity current out. An example of this re-seeding policy is indicated in Figure 4c. 

2.3 Special Cases 

We asserted earlier that the termination and re-seeding policies uniquely define a 
stream bundle algorithm. Furthermore, by choosing specific policies, we can mimic 
the behavior of other methods. For example, blurring the field as a pre-process, and 
then advecting traditional streamlines is equivalent to choosing a constant spherical 
distribution for our fibers, giving them varied, short lifetimes, and advecting the 
bundle. 

Another special case of our algorithm is the "thread of streamlets" method of Loffelmann 
and Groller [7]. The re-seeding policy for their method would require re-seeding within 
a sphere about a particular "base trajectory" fiber, instead of about the midline. Fur
ther, their termination policy is precisely our random lifetime method, with the caveat 
that the base-trajectory fiber never be terminated. 
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Figure 5: Streamlines, streamlets, and a stream bundle advected through the Gulf 
of Mexico. The streamlines and streamlets diverge through the region, whereas the 
stream bundle remains unfrayed. Please refer to the color plate for a clear differenti
ation of the lines. 

3 Results 

In this section, we present the results of applying our stream bundles algorithm to 
vector visualization in an oceanic dataset. The POP ocean dataset from the Advanced 
Computing Lab at Los Alamos National Lab represents the flow of oceanic currents 
within a 1024x768x42 volumetric model of the earth. This dataset is being studies in 
an effort to better chart pathways of major oceanic currents. 

In Figure 5 we see a close-up of the Gulf of Mexico. A rake of streamlines is shown in 
red, a thread of streamlets is shown in blue, and a stream bundle is shown in green. 
All lines are rendered using Zockeler's lit line model [13J. Whereas the streamlines 
and streamlets have divergent paths, the streambundle maintains a cohesive form as 
it evolves through the region. 

4 Conclusions and Future Work 

We have introduced a framework for cohesive streamline advection (stream bundles), 
which enable the user to control the coherence among a propagating collection of 
streamlines (fibers). Streambundles enable the visualization of coarser properties 
within complex vector fields, which would otherwise be less apparent, if visible at all. 
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Working from the mindset of cohesive advection, we believe this framework could be 
applied to other vector field advection methods, including stream-surfaces, stream
ribbons and stream-volumes. Additionally, we are interested in exploring other ter
mination and re-seeding methods. 
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