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Abstract

The DRAM main memory system in modern servers is largely ho-
mogeneous. In recent years, DRAM manufacturers have produced
chips with vastly differing latency and energy characteristics. This
provides the opportunity to build a heterogeneous main memory sys-
tem where different parts of the address space can yield different
latencies and energy per access. The limited prior work in this area
has explored smart placement of pages with high activities. In this
paper, we propose a novel alternative to exploit DRAM heterogene-
ity. We observe that the critical word in a cache line can be easily
recognized beforehand and placed in a low-latency region of the
main memory. Other non-critical words of the cache line can be
placed in a low-energy region. We design an architecture that has
low complexity and that can accelerate the transfer of the critical
word by tens of cycles. For our benchmark suite, we show an aver-
age performance improvement of 12.9% and an accompanying mem-
ory energy reduction of 15%.

1. Introduction

The main memory system is a significant performance and energy
bottleneck in modern high−performance platforms. Several trends
threaten to amplify the memory bottleneck. It is increasingly evident
that overall performance/cost and performance/watt are improved by
using simpler cores [10]. This shifts the energy bottleneck from pro−
cessor to memory. Simpler cores offer increased core count per die,
placing greater pressure on memory bandwidth. Simpler cores also
tend to be less effective in hiding memory latency. There is also a
demand for higher memory capacities because of the data−intensive
workloads that execute on many datacenter platforms. For example,
the RAMCloud project argues that disks are incapable of fulfilling
high query rates in future datacenters and disks must be replaced by
large DRAM memories accessed via a network [31]. There is also a
push towards in−memory databases within the database community.
This trend will also increase the contribution of the memory system
to overall system energy and performance.

To date, the main memory system has been largely homogeneous;
the DIMMs that are employed in a server have uniform timing pa−
rameters and only exhibit minor variations. But it is well known that
all data elements do not have a uniform impact on overall perfor−
mance. Some data elements are more critical to performance than
others. This argues for having a heterogeneous main memory design
where critical words or cache lines are placed in low−latency por−
tions of memory and non−critical elements are placed in low−energy
portions. Little prior work has explored the use of different types
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of DRAM chips to build and exploit a heterogeneous memory sys−
tem. This paper takes an important step in uncovering the potential
of such a heterogeneous DRAM memory system.

The DRAM industry already produces chips with varying proper−
ties. Micron offers a Reduced Latency DRAM (RLDRAM) product
that offers lower latency and lower capacity, and is targeted at high
performance routers, switches, and network processing [7]. Mi−
cron also offers a Low Power DRAM (LPDRAM) product that of−
fers lower energy and longer latencies and that has typically been
employed in the mobile market segment [6]. Our work explores
innovations that can exploit a main memory that includes regular
DDR chips as well as RLDRAM and LPDRAM chips. To reduce
complexity, we do not integrate different types of DRAM chips on
the same DIMM or even the same channel. We assume that each
DRAM chip type has its own DIMM and can be accessed via its
own channel and memory controller. We propose a critical-word-
first (CWF) optimization that organizes a single cache line across
multiple channels. We observe that the first word in a cache line
is typically most critical and benefits from being placed in a low−
latency channel/DIMM. Other non−critical words in the cache line
can be placed in a low−energy channel/DIMM, thus improving per−
formance and reducing energy. The phenomenon of critical word
regularity was first reported by Gieske [17] and was exploited in the
same work to optimize accesses to the on−chip SRAM caches. Our
results show that the CWF optimization yields an average 12.9% per−
formance improvement and a 15% memory energy reduction, while
incurring low implementation overheads.

Modern memory systems already incorporate a CWF optimiza−
tion where the critical word is returned before the other words when
servicing a cache line request (p. 372 [19], [13]). However, this only
prioritizes the critical word by a few CPU cycles, while not yielding
energy efficiency for the non−critical words. We show that our CWF
optimization prioritizes the critical word by 70 CPU cycles on aver−
age because the critical word has its own independent channel with
lower queuing delays, and it allows non−critical words to be placed
in low−energy DRAM chips. It is therefore a novel and significant
advancement over the state−of−the−art.

2. Background

In a modern server, the main memory system is comprised of multi−
ple channels, each having one or more Dual Inline Memory Modules
(DIMMs). Each DIMM consists of several DRAM chips which are
grouped into ranks. All DRAM chips in a rank work in unison to ser−
vice a cache line request. Each rank is itself partitioned into many
banks and all these banks may be in operation at the same time, each
servicing a different request, subject to various timing constraints.
Ranks and banks on a single channel enable memory−level paral−
lelism, but the accesses are finally serialized on the channel because
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the data transfer has to utilize this shared resource. Each bank in a
DRAM chip consists of 2D arrays of DRAM cells and a row buffer
which stores the most recently accessed row of the bank. An acti−
vate operation fetches data from an entire row (on the order of 8 KB)
into the row buffer. A column−read command transfers a cache line
from the row buffer to the processor. If a subsequent access is to the
same row, it yields a row buffer hit and can be completed at a lower
delay and energy cost. Before activating a new row, a precharge op−
eration must be performed. A close−page policy precharges a bank
after every column−read command to prepare the bank for access to
a new row. An open−page policy keeps the row open to service row
buffer hits and precharges the bank only when a new row is encoun−
tered. We next examine the specific properties of different flavors of
DRAM chips that can be used to construct memory systems.

2.1. DDR3

The most widely used DRAM variant in mid−to high−end computing
is the Dual−Data−Rate (DDR3) module. DDR3 DRAM chips attempt
to strike a balance between performance and density and are pro−
duced in very high volumes for desktop, laptop, and server market
segments. We model a standard x8 (data output width of 8 bits), 800
MHz DDR3 part that has a pin data bandwidth of 1600MBps [28]
and a capacity of 2Gb. Each DRAM chip has an 18 bit address and a
5 bit command bus. The address is provided in two cycles (row and
column). Two primary determinants of the possible throughput of a
DRAM chip are its bank count and bank−turnaround time. While
a larger number of banks promotes better concurrency, the bank−
turnaround time (tRC) determines the minimum time that needs to
elapse before a new row in the bank can be activated. To maximize
density, DDR3 chips are seldom designed with more than 8 banks,
and DDR3 bank−turnaround is about 50 ns.

2.2. LPDRAM

Low Power DRAM or mobile DRAM chips are used as an alter−
native to DDR3 chips in mobile devices. Designed for low−power
usage, LPDDR2 [29] has lower per pin bandwidth due to the lower
operating frequency (400 MHz). The core densities and bank counts
remain the same across LPDDR2 and DDR3. Due to lower oper−
ating voltages, the core latencies are increased by a small fraction
leading to a bank−turnaround time of 60 ns. The lower voltages allow
low active power consumption; the output drivers are also designed
to consume less power. In addition to regular low−power modes,
LPDDR2 supports many additional low−power modes like Tempera−
ture Compensated Self−Refresh (TCSR), Partial Array Self−Refresh
(PASR), and Deep Power Down (DPD) modes, all suited for use in
a mobile environment. While current LPDDR2 modules employ a
10−bit address/command bus that is dual−pumped, future low−power
DRAM chips could employ DDR3−style 23−bit address/command
buses.

2.3. RLDRAM

Reduced Latency DRAM (RLDRAM3 [30]) was designed as a deter−
ministic latency DRAM module for use in high−speed applications
such as network controllers [40]. While the pin−bandwidth of RL−
DRAM3 is comparable to DDR3, its core latencies are extremely
small, due to the use of many small arrays. This sacrifice in density
is justified by a bank−turnaround time (tRC) of 10−15 ns compared
to 50 ns for DDR3, and a higher bank count (16 as opposed to 8
for DDR3). The maximum capacity offered by an RLDRAM3 chip

currently (576 Mb) is several times less than the capacity of a DDR3
chip −however Micron roadmaps [1] show plans for 1Gb and 2Gb
parts in the near future. In DDR3 devices, to limit the current draw,
a timing window tFAW is defined, during which only 4 bank activa−
tions can be issued. RLDRAM does not have any such restrictions,
favoring low latency over peak power guarantees. RLDRAM uses
SRAM−style addressing −the entire address is provided with a sin−
gle READ or WRITE command, instead of separate RAS and CAS
commands (although, this could be modified in future RLDRAM
chips). After a read or a write, the bank gets precharged automati−
cally. Thus, effectively, an RLDRAM chip can only operate with a
close−page policy.

3. Motivational Data

Most high−end servers employ DDR3 parts because they provide the
best combination of memory capacity and high performance. If ca−
pacity constraints are removed, the use of RLDRAM3 chip latencies
can lead to a dramatic improvement in performance. Likewise, if
DDR3 parts are replaced with LPDDR2 parts, performance is wors−
ened, but memory energy is reduced. The graph in Figure 1.(a)
shows the sensitivity of applications to these different DRAM prop−
erties, while still presenting a homogeneous main memory sys−
tem. We show results for an 8−core system running programs from
SPEC2k6 and NAS Parallel Benchmark (NPB) suites. We show re−
sults for homogeneous memory systems where the chips are all ei−
ther RLDRAM3, DDR3, or LPDDR2. More methodology details
are in Section 5.

RLDRAM3 outperforms DDR3 by 31% across the simulated
workloads (Figure 1a) while LPDDR2 suffers a 13% reduction in
throughput. The average main memory access time of RLDRAM3
is about 43% lower than that of DDR3. The breakdown of the laten−
cies in Figure 1b shows that each memory read request spends sub−
stantially less time in the queue in a RLDRAM3 system (Queue La-
tency) compared to DDR3, and also requires less time to be serviced
from the memory array (Core Latency). The low bank−turnaround
time of RLDRAM3 (10ns, compared to 50ns for DDR3) leads to
the low queuing delay. The lack of write−to−read turnaround delays,
as well as the higher bank counts of RLDRAM3, also allow it to
provide 24% higher sustained bandwidth compared to DDR3, even
though the pin bandwidth of the RLDRAM3 system is the same as
that of the DDR3 baseline. On the other hand, the LPDDR2 latency
is 41% higher than DDR3. The higher latency of LPDDR2 is due
to the higher bank−turnaround time, the slower arrays (due to lower
voltages) as well as the lower data bus frequency.

However, RLDRAM3 offers much lower capacity. It is well−
known that many applications require large amounts of main mem−
ory space [21, 31, 36, 42] and frequent page faults can lead to severe
drop in performance –for example, Qureshi et al. quantify the page
fault rates seen in several representative benchmarks as a function
of DRAM capacity [36]. Thus, an RLDRAM3 system that has the
same silicon area as a DDR3 system will have much lower capacity
and potentially lower performance for applications with large mem−
ory footprints.

While RLDRAM3 is a clear winner in terms of access latencies, it
incurs a power overhead. Figure 2 shows the power consumption of
the 3 DRAM variants for different bus utilization values. Section 5
outlines the power calculation methodology. We see that at low uti−
lization, the RLDRAM3 power consumption is much higher (due
to the high background power), while at higher activity scenarios,
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(a) Performance (b) DRAM Latency Breakdown
Figure 1: Sensitivity of Applications to Different DRAM Flavors.
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Figure 2: Power vs Bus Utilization(the RLDRAM3 part has a capacity
of 512Mb while the DDR3 and the LPDDR2 parts have ca-
pacities of 2Gb)

the power consumptions are more comparable. The high power con−
sumption of RLDRAM3 stems from its high background consump−
tion. This is in spite of the fact that the RLDRAM3 part supports
lower capacity. LPDDR2, by virtue of its lower operating voltage
and frequency, as well as enhanced low−power modes, can yield sub−
stantial power savings over DDR3.

Thus, a single memory type cannot yield a design point that is
favorable on all metrics. This motivates a heterogeneous memory
architecture where selective use of different memory types can help
improve performance, energy, and cost.

4. Exploiting Main Memory Heterogeneity

Instead of implementing a homogeneous memory system with
DDR3 DIMMs, we implement a memory system where some chan−
nels access LPDDR2 DIMMs and some channels access RLDRAM3
DIMMs. We attempt this in a manner that improves performance
and energy, at acceptable cost. The design of a heterogeneous
DRAM main memory system is a new topic and even some of the
basic implementation questions have not been addressed. Therefore,
in Section 4.1, we start by describing one design from prior work, ex−
plain why a simpler design approach is required, and finally describe
a heterogeneous memory architecture that is viable. Section 4.2 then
integrates a critical word first optimization with this heterogeneous
main memory.

4.1. Building a Heterogeneous Main Memory

Prior Work. Prior work attempted a heterogeneous DRAM de−
sign where three types of DIMMs were connected to a single chan−
nel [35]. The authors assume that one DIMM is optimized for low
latency by using narrow arrays, a wider address bus, and small
prefetch buffers. A second DIMM is optimized for low power by
using LPDRAM techniques (partial array self refresh and tempera−
ture compensated self refresh), fewer banks, narrower banks, small

prefetch buffers, and low voltage. The third DIMM is regular DDR
and offers high bandwidth by using many wide banks. With an off−
line profiling process, applications are classified as either latency or
bandwidth sensitive, or a candidate for power optimizations. Ac−
cordingly, pages are placed in the low−latency or low−power DIMM,
or striped across all three DIMMs if they are bandwidth−sensitive.
The authors argue that such a design is meaningful because opti−
mizing a DRAM device for one of the three properties (latency, en−
ergy, bandwidth) usually compromises the other two. While this
prior work took an excellent first step in an important area, some
implementation issues were not addressed. Some of the significant
roadblocks that need to be overcome to successfully institute a het−
erogeneous memory system are listed below:

• Operating different types of DRAM on the same channel is ex−
tremely complex (if not impossible) because of the different oper−
ating frequencies and voltages as well as different commands and
addressing modes.

• The complexity of the memory controller is extremely high as it
has to simultaneously handle the different command timing re−
quirements and states of the three kinds of DIMMs. Besides,
the RLDRAM command set is completely different from that of
DDR3 or LPDRAM.

• As we shall see in Section 4.1, using LPDRAM in a server−like
setting requires some modifications to the interface. This intro−
duces a few power overheads. The methodology in [35] assumes
different latency and power properties for different DRAM chips
while assuming no impact on the DRAM I/O interface, area or
power.

• RLDRAM is power hungry and must be used sparingly in the de−
sign − simply provisioning one−third of the main memory with
RLDRAM as done in [35], will lead to significant increase in
memory system power consumption.

In this section, we first address the above issues to develop a
scalable, cost−effective heterogeneous memory design that is imple−
mentable.

A Focus on Two Types of DIMMs. Unlike the prior work that in−
tegrates three types of DIMMs in a heterogeneous main memory
(latency−optimized, power−optimized, and bandwidth−optimized),
our design only integrates two types of DIMMs (performance−
optimized and power−optimized). An evaluation of existing chips
shows that a DIMM made with RLDRAM chips can not only offer
lower latency, but also higher bandwidth. Compared to a DDR chip,
RLDRAM has the same peak frequency, lower gap between succes−
sive requests (tRC), and twice as many banks. Hence, we see lit−
tle value in creating separate DRAM modules for latency and band−
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width. The memory controller complexity is also increased by strip−
ing some pages across 3 DIMMs (for high bandwidth [35]) and some
pages across a single DIMM. Therefore, in our work, we employ a
high−performance DRAM module that is built with RLDRAM de−
vices and that offers low latency and high bandwidth. We employ a
second type of DRAM module that is built with LPDRAM devices
and that has lower bandwidth, higher latency, and lower power. A
third type of DRAM module can also be built out of regular DDR3
devices that represents an intermediate design point in terms of per−
formance and power. To reduce cost and complexity, we implement
DIMMs that are themselves homogeneous, i.e., a DIMM only has
chips of one type.

Homogeneous DIMMs on a Channel. In the proposed system,
each DIMM type has its own dedicated channel. The memory con−
troller would have high complexity if a single channel controlled
DIMMs of different types. In all of our discussions, for simplic−
ity, we assume that only 1 or 2 DIMMs of the same type are at−
tached to each channel. This is consistent with projections that
future DDR generations will only support 1−2 DIMMs per high−
speed channel. However, our proposals are equally applicable to
configurations that can support more DIMMs or ranks per channel.
Modern high−performance processors implement multiple memory
channels. Our heterogeneous memory system is built by designat−
ing a subset of these channels as performance−optimized channels
and a subset as power−optimized channels. In our designs, our
performance−optimized DIMM/channel is representative of state−of−
the−art RLDRAM technology and operates at high frequency. Our
power−optimized DIMM/channel uses LPDRAM chips at lower fre−
quency, an open−row policy (that is known to minimize energy), and
an aggressive sleep−transition policy.

Adapting LPDRAM and RLDRAM for Server Memories. In
our work, we rely on existing DRAM chips and do not introduce
extensive chip optimizations of our own. We therefore restrict
ourselves to modeling DRAM chips that closely resemble regular
DDR3, LPDRAM, and RLDRAM properties. We allow a few modi−
fications that can be easily integrated into future generations of these
chips. For example, we assume that x8 and x9 RLDRAM chips can
be supported (only x18 and x36 are available today) and that LP−
DRAM chips support ODT and DLL.

As described in Section 2, RLDRAM parts are designed for low
latency response as well as high sustained bandwidth. In such en−
vironments, RLDRAM chips are soldered onto the motherboard,
communicating one−on−one with the processor. LPDRAM modules,
used in the embedded domain, are also soldered onto the system
PCB. This is in contrast to a regular server/desktop environment
where individual DDR chips form a DIMM, which is then plugged
onto the DRAM channel on the motherboard. While using LP−
DRAM parts in a DIMM form factor, it is important that additional
features be implemented to ensure signal timing and integrity, par−
ticularly when high−speed signalling is employed. RLDRAM parts
already employ these features.
ODT : An important feature present in modern DDR memory is on−
die−termination (ODT) for signals. The purpose of ODT is to match
the terminating impedance on the transmission die to the impedance
of the transmission line. A mismatch in the terminating impedance
leads to signal reflections which act as a source of noise on the mem−
ory channel. RLDRAM devices, by virtue of their high−speed operat−
ing environments, already incorporate ODT for signal integrity. LP−

DRAM devices, typically operated in power−sensitive systems, use
lower frequencies, and hence, LPDDR2 is not equipped with ODT.
However, LPDDR3 chips will incorporate ODT resistors to increase
signal integrity in high−frequency environments [32]. ODT resistors
can be incorporated in the LPDDR2 chips with very little area over−
head as they reside near the data pins [43]. The main overhead of
introducing the termination resistors is the increase in static power
which we model in the same way as in a DDR3 chip.
DLL : Modern DDRx SDRAM devices utilize an on−chip DLL
(delay−locked loop) to synchronize the data signals and the source−
synchronous clocking reference signal DQS with the global clock
used by the memory controller. The data sent out on the data bus
by a DIMM is synchronous with the DQS signal which in turn is
used by the memory controller to sample the data. To make sure that
the skew between the global clock fed to the DRAM chip and the
DQS signal seen by the memory controller is not catastrophic, the
on−chip DLL delays the DQS signal (and the data signals) enough
so as to put them in phase with the global clock [19]. DDRx devices
as well as RLDRAM 3 devices already use DLLs for this purpose
while LPDRAM chips, due to their power constraints, do not have
any such feature. We assume that DLLs can be integrated into the
I/O circuitry of the LPDRAM chips at a power cost. In Section 5
we describe how we account for this increased power cost in our
simulations.
Silicon Cost: It is well known that changes to a DRAM chip must
be very sensitive to area and cost. A recent paper [43] pointed out
that changes made to a DRAM chip are most disruptive to chip den−
sity when they are instituted in the bit−line sense−amplifier stripe,
followed by the local word−line driver stripe, then in the column
logic, and finally in the center stripe. To implement the DLLs and
the ODTs, we need to introduce and modify circuits close to the I/O
pads near the center stripe −we can therefore localize the changes
to the least sensitive portion of the DRAM chip. The inclusion of
ODTs in future generation LPDDRs (LPDDR3 [32]) demonstrates
that adapting LPDRAM for higher frequency and long channel envi−
ronments is indeed commercially viable.

We have thus instituted a low−complexity heterogeneous main
memory by introducing the following features: (1) the use of only
two types of DIMMs (performance−optimized vs. power−optimized)
in one design, (2) the use of only one type of DIMM per channel,
(3) the integration of DLL and ODT in LPDRAM chips to make
them server−class. It should also be noted that the use of hetero−
geneity need not be exposed to application developers and does not
pose programmer complexity. Similar to the non−uniformity intro−
duced by row buffer hits/misses, memory latencies will differ based
on whether heterogeneity is successfully exploited or not.

4.2. Accelerating Critical Words

4.2.1. Motivation. The few prior efforts [35, 37] that have con−
sidered non−uniform or heterogeneous memories have attempted to
classify data at the granularity of cache lines or OS pages. Instead,
we focus on another data criticality opportunity that has not been
previously leveraged by heterogeneous memories. A cache line is
fetched from memory when a given CPU word request results in on−
chip cache misses. It is well known that the word requested by the
CPU is more critical than the other words in that cache line. When
transferring the cache line, it is re−ordered so that the critical word
is sent before the other words, thus reducing access latency by a few
cycles [19, 18]. We argue that the transfer of the critical word can
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(a) leslie3d (b) mcf

Figure 3: Distribution of critical words in highly accessed cache-lines

Figure 4: Distribution of Critical Words

be improved by tens of cycles if it is placed on a separate DIMM
with lower device latencies and lower queuing delays. Since the
other non−critical words in the cache line are not required urgently,
they can be placed in low−power DRAM modules without incurring
a performance penalty.

For such an optimization it is necessary that the critical word in
a cache line remain fairly constant over a long period of time. The
graphs in Figure 3 demonstrate such critical word regularity. We
monitor DRAM accesses over a billion cycle period to identify the
criticality of words in the cache. In Figure 3, we plot the percentage
of accesses to different words, of the most accessed cache lines for
two applications. The graphs show that for most cache lines, some
words are more critical than others. For leslie3d (Figure 3.a), the
most accessed critical word is word 0. On the other hand, in mcf
(Figure 3.b), other words (i.e., 1 thru 7) are often the most frequently
accessed critical words in the cache line. But clearly, in both cases,
we see that within a cache line, there is a well−defined bias towards
one or two words. We see the same pattern for all the simulated
benchmarks.

A critical word first (CWF) optimization is facilitated if the criti−
cal word for a cache line remains unchanged over the execution of
a program. If every cache line has a different critical word, more
book−keeping would be required to track the identity of the critical
word. The implementation is simplified if the same word is always
the critical word for all cache lines and is placed in a low−latency
DIMM.

Figure 4 shows the distribution of critical words for our bench−
mark suite. For 21 of 27 programs, of the 8 words in a cache line,
word−0 is critical in more than 50% of all cache line fetches. In 6 pro−
grams, there is no well−defined bias and all words have roughly an
equal probability of being the critical word. The Appendix includes

a description explaining these biases for a variety of programs. In
summary, if the program is performing a sequential scan across an
array of data, early words in a cache line have a higher probability
of being critical than later words in the cache line, especially if the
stride is small and the word alignment is favorable. Pointer chasing
codes tend to exhibit less bias.

4.2.2. Data Placement. On average, across the entire suite, word−
0 is critical for 67% of all cache line fetches. To keep the design
simple, we therefore assume a static architecture where word−0 is
always placed in a low−latency DIMM and words 1−7 are placed in
a low−power DIMM. We later also describe a more complex and
flexible data organization.

In our baseline system (Figure 5a), an entire cache line plus
SECDED ECC is placed on a single DDR3 DIMM and striped
across 9 chips, where each chip is x8 wide. The proposed design for
a single channel is shown in Figure 5b. The 9−chip 72−wide DDR3
rank is replaced by an 8−chip 64−wide LPDRAM rank. The 8 chips
store words 1−7 and the ECC codes for each cache line. Word−0
for each cache line is now stored in a separate low−latency DIMM
(rank) made of RLDRAM chips, and controlled by its own inde−
pendent channel and memory controller. It is important for the RL−
DRAM DIMM to have its own independent controller. Since the
RLDRAM DIMM has lower queuing delays, the request for word−0
from the RLDRAM DIMM can be issued many cycles before the
request for words 1−7 from the LPDRAM DIMM gets issued. This
allows the critical word to arrive tens of cycles before the rest of
the cache line, having an impact much higher than other CWF opti−
mizations that have been considered by processors [19, 18]. Since
RLDRAM has lower density, we assume that 4 RLDRAM chips are
required to support the same capacity as one DDR3 or LPDRAM
chip. In order to remain processor−pin−neutral, the RLDRAM chan−
nel is assumed to only be 8 bits wide (plus a parity bit, explained
shortly). We have thus replaced a single conventional 72−bit chan−
nel/DIMM with a 64−bit low−energy channel/DIMM and 9−bit low−
latency channel/DIMM. The 9 DDR chips that made up a rank have
now been replaced by 8 low−power LPDDR chips and 4 low−latency
RLDRAM chips. The low−power and the low−latency channels re−
quire their own independent 23−bit address/command bus and inde−
pendent memory controllers on the processor. We will shortly pro−
pose optimizations to reduce these overheads.

In our CWF design, whenever there is an LLC miss, an MSHR
entry is created and two separate memory requests are created, one
in the LPDRAM memory controller and one in the RLDRAM mem−
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(a) A baseline DDR3 system, with a 72−bit wide Data +

ECC bus and a 23−bit wide address/control bus. The

processor has four instances of this configuration.
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(b) A heterogeneous Static−CWF memory system where

word−0 is placed in a single−rank RLDRAM DIMM and

other words are placed in a single−rank LPDRAM

DIMM. The processor has four instances of this

configuration.
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(c) A low−cost heterogeneous Static−CWF memory

system where the critical words of all 4 channels are

aggregated on a 16−chip RLDRAM DIMM and other

words are placed in four single−rank LPDRAM DIMMs.

Figure 5: A basic Static-CWF heterogeneous memory system and an optimized low-cost version of it.

ory controller. Both channels are completely independent and will
access their respective DIMMs and return data many cycles later. In
the common case, word−0 arrives first and is buffered at the MSHR.
If it is the critical word, it is returned to the CPU. When the second
part of the cache line arrives, the access is deemed complete. The
caches are then populated, and the MSHR entry is freed. The added
complexity is the support for buffering two parts of the cache line in
the MSHR and the additional memory controller for the RLDRAM
channel.

4.2.3. Handling ECC Checks. Memory systems are often required
to provide ECC support that can detect and recover from a single bit
error [38]. The ECC check can only happen after the entire cache
line arrives. However, our CWF design wakes up a waiting instruc−
tion before confirming that the data is free of errors. Typically, the
waiting instruction is at the head of the reorder buffer and will be
retired soon after the critical word arrives and likely before the ECC
code arrives. If the ECC−check flags an error, roll−back is often not
possible because the instruction that consumed the critical word has
already retired. We solve this problem as follows. A parity bit is
attached to every byte stored in the RLDRAM DIMM. RLDRAM
chips are already available in x18 and x36 configurations, i.e., they
already are provisioned for additional bits that can be used for fault
tolerance. When word−0 arrives at the processor, it is forwarded to
the waiting instruction if there is no parity error. If there is a parity
error, the data is forwarded only after the ECC code arrives and the
error has been corrected. Parity checks can lead to silent data cor−
ruption if there are multi−bit errors. However, this is already beyond
the scope of the baseline fault tolerance support which typically can
only guarantee recovery from a single bit failure per 64−bit word. As
in the baseline, our design will detect a 2−bit error on the 64−bit word
when the ECC finally arrives. This general approach of lightweight
error detection within RLDRAM and full−fledged error correction
support within LPDRAM can also be extended to handle other fault
tolerance solutions such as chipkill [9]. To summarize, the parity so−
lution does not replace the SECDED scheme; it augments SECDED.
So the error coverage is exactly the same as in the baseline SECDED.
The only deviation is that a multi−bit error (not detected by parity)
will cause an erroneous result to commit; this will be detected by
the regular SECDED a few cycles later when the full cache line is
received. The new model will also fail−stop and the point of failure
will be precisely known.

4.2.4. Reducing Overheads. We propose two optimizations to im−
prove upon the basic design described so far. First, we recognize
that energy overhead is increased by striping word−0 across 4 chips
on the RLDRAM DIMM. Instead, we place each word−0 and its
parity bit on a single x9 RLDRAM chip. Hence, the RLDRAM
DIMM is implemented as 4 ranks, each with one x9 chip. The ad−
dress/command bus is now 26−bits wide to accommodate chip−select
signals (see Figure 5b).

By having more narrow ranks, we not only reduce activation en−
ergy, we also increase rank and bank level parallelism and reduce
queuing delays. While narrow ranks lead to a narrow row, that is not
a problem because RLDRAM employs a close−page policy and does
not yield row buffer hits anyway.

The second optimization targets the overhead of having an ex−
tra 26−bit wide address/command bus and memory controller for
each critical−word RLDRAM channel. Our baseline has four 72−
bit DDR3 channels. If our CWF proposal is applied to each chan−
nel, it produces four separate 9−bit RLDRAM channels, each with
its own memory controller and 26−bit address/command bus. To
reduce these overheads, we aggregate the four RLDRAM channels
into a single memory controller and channel (see Figure 5c). The
aggregated RLDRAM channel will now have a 36−bit data bus and a
38−bit address/command bus (note the extra signals for chip−select).
This organization is similar to Rank−Subsetting [8] where one ad−
dress/cmd bus is used to control many skinny data channels. The
only change from our previous scheme is that the four 9−bit wide
channels will all share the same address/command bus. It is safe to
share the address/command bus among four data channels without
creating contention. This is because the transfer of word−0 from a
RLDRAM chip keeps the data bus busy for eight clock edges, but
keeps the address bus busy for only two clock edges1. We can thus
afford to increase the utilization of the address/command bus by a
factor of four. The address/command bus now drives 16 chips on the
RLDRAM DIMM, an already common scenario in modern chan−
nels.

With these optimizations in place, some of the initial overheads
are reduced by a factor of four. Now, every access activates the
same number of DRAM chips (9) as the baseline, keeping activation

1RLDRAM uses a close−page policy and does not require an explicit precharge on
the address/cmd bus after every data access. Hence, the utilization of the data and ad−
dress/cmd bus is in the ratio 4:1. We assume double−data−rate for the address/command
bus, as is done for LPDRAM [29], and GDDR5 [5]
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energy in check. We are introducing only one additional memory
controller and only 42 (38 for the address/cmd bus and 4 for parity)
new pins to control the RLDRAM channel. This is a small overhead
given that modern processors have 1000+ pins.
4.2.5. Adaptive Placement. Design complexity is an important
guiding metric in creating our static CWF architecture. We there−
fore assume that word−0 is always critical and place it in the RL−
DRAM DIMM/channel. This makes it easy to locate and assemble
the two parts of a cache line. As a potential study, we also consider
a more complex organization where every cache line is allowed to
designate one of its eight words as the critical word. We assume
that the critical word on the previous fetch will also be the critical
word on the next fetch. Hence, when a dirty line is evicted from
cache, the line is re−organized and placed in DRAM memory such
that the predicted critical word is placed in the low−latency DIMM.
With such prediction, 79% of all critical words will be found in the
low−latency DIMM, compared to the 67% success rate of the static
CWF architecture. The critical word would need a 3−bit tag in cache
and DRAM to identify itself as one of the eight words in the cache
line. We present results for this model to showcase the additional
room for improvement with an adaptive CWF optimization, but ac−
knowledge the relatively high design complexity required to realize
this added improvement.
4.2.6. Discussion. To summarize, our innovations allow us to
enhance system performance and lower the memory system en−
ergy. To achieve this, we add a memory controller, one extra ad−
dress/command bus and four extra data pins. On the processor, some
support from the MSHR is required to handle the fragmented trans−
fer of a cache line. The total memory capacity and DRAM error
coverage is the same as in the baseline. The use of RLDRAM will
lead to a higher purchase cost.

5. Methodology

Processor

ISA UltraSPARC III ISA
CMP size and Core Freq. 8−core, 3.2 GHz

Re−Order−Buffer 64 entry
Fetch, Dispatch, Maximum

Execute, and Retire 4 per cycle

Cache Hierarchy

L1 I−cache 32KB/2−way, private, 1−cycle
L1 D−cache 32KB/2−way, private, 1−cycle
L2 Cache 4MB/64B/8−way, shared, 10−cycle

Coherence Protocol Snooping MESI

DRAM Parameters

DDR3 MT41J256M4 DDR3−1600 [28],
RLDRAM3 Micron MT44K32M18 [30]
LPDDR−2 Micron MT42L128M16D1 [29] (400MHz)
Baseline 4 72−bit Channels
DRAM 1 DIMM/Channel

Configuration (unbuffered, ECC)
1 Rank/DIMM, 9 devices/Rank

Total DRAM Capacity 8 GB
DRAM Bus Frequency 800MHz

DRAM Read Queue 48 entries per channel
DRAM Write Queue Size 48 entries per channel

High/Low Watermarks 32/16

Table 1: Simulator parameters.

Simulator Details. We use the Wind River Simics [25, 4] simu−
lation platform for our study. Table 1 details the salient features
of the simulated processor and memory hierarchy. We model an

Parameter DRAM RLDRAM3 LPDDR2

tRC 50ns 12ns 60ns
tRCD 13.5ns − 18ns
tRL 13.5ns 10ns 18ns
tRP 13.5ns − 18ns

tRAS 37ns − 42ns
tRTRS 2 Bus Cycles 2 Bus Cycles 2 Bus Cycles
tFAW 40 ns − 50ns
tWTR 7.5ns 0 7.5ns
tWL 6.5ns 11.25ns 6.5ns

Table 2: Timing Parameters [30, 29, 28, 23]

out−of−order processor using Simics’ ooo-micro-arch module and
use a heavily modified trans-staller module for the DRAM simu−
lator. The DRAM simulator is adapted from the USIMM simulation
framework [12]. We also model a stride prefetcher. At the memory
controller, demand requests are prioritized over prefetch requests in
general, unless the prefetch requests exceed some age threshold, at
which point they are promoted over demand requests.
DRAM Simulator. The memory controller models a First−Ready−
First−Come−First−Served (FR−FCFS) scheduling policy (for DDR3
and LPDRAM2) and models all DRAM, RLDRAM3 and LPDDR2
commands and timing parameters. We describe the most perti−
nent ones in Table 2. The DRAM device model and timing pa−
rameters were derived from Micron datasheets [28, 19, 29, 30].
DRAM address mapping parameters for our platform (i.e., number
of rows/columns/banks) were adopted from Micron data sheets [28,
29, 30]. The open row address mapping policy from [19] is
used in the baseline and LPDDR2. We use this address mapping
scheme because this results in the best performing baseline on av−
erage when compared to other commonly used address interleaving
schemes [44, 19]. For the RLDRAM modules, we use a close−page
policy. Note that the queuing delays that we see in the baseline in
our simulations (Figure 1.b) are lower than those observed in prior
work such as [41] because we simulate more channels and larger
last level cache capacities which reduce the traffic in each channel.
Workloads. Our techniques are evaluated with full system simula−
tion of a wide array of memory−intensive benchmarks. We use multi−
threaded workloads (each core running 1 thread) from the OpenMP
NAS Parallel Benchmark [11] (cg, is, ep, lu, mg, sp) suite and the
STREAM [3] benchmark. We also run multiprogrammed work−
loads from the SPEC CPU 2006 suite (astar, bzip2, dealII, gromacs,
gobmk, hmmer, h264ref, lbm, leslie3d, libquantum, mcf, milc, om−
netpp, soplex, sjeng, tonto, xalancbmk and zeusmp). Each of these
single threaded workloads are run on a single core −so essentially
each workload is comprised of 8 copies of the benchmark running on
8 cores. For multi−threaded applications, we start simulations at the
beginning of the parallel−region/region−of−interest of the application.
For the multiprogrammed SPEC benchmarks, we fast forward the
simulation by 2 billion instructions on each core before taking mea−
surements. We run the simulations for a total of 2 million DRAM
read accesses after warming up each core for 5 million cycles. Two
million DRAM read accesses correspond to roughly 540 million pro−
gram instructions on average. For comparing the effectiveness of the
proposed schemes, we use the total system throughput defined as ∑i
(IPCi

shared/IPCi
alone) where IPCi

shared is the IPC of program i in a
multi−core setting. IPCi

alone is the IPC of program i on a stand−alone
single−core system with the same memory system.
Power Modeling. We use the Micron DRAM power calculators [2]
to model the power consumption of each DRAM chip. While the
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DDR3 and RLDRAM3 calculators can directly be used to model
the power of each of these variants of DRAM chips, we modify the
DDR3 power calculator to serve as the power model for LPDDR2.
We change the current values from those of DDR3 to the correspond−
ing LPDDR2 values for all except the background currents (Idd3P
and Idd3PS). This is to ensure that we do not artificially inflate the
LPDDR2 power savings. As mentioned in Section 4.1 we assume
that an LPDDR2 chip used on a DIMM will have a DLL. This DLL
consumes power in idle modes. To account for this component of
the idle power, we assume that an LPDDR2 chip consumes the same
amount of current that a DDR3 chip does in idle state. We also as−
sume that LPDRAM requires ODT and calculate the static power
contribution of such termination resistors.

6. Evaluation

6.1. Critical Word Optimization

6.1.1. Performance Analysis. We evaluate the proposed critical
word optimizations for three memory configurations. In the first two
of these, an eighth of the DRAM capacity (meant for storing critical
words) is constructed out of RLDRAM3 while the rest is built with
DDR3 and LPDDR2 respectively. In the third configuration, DDR3
is used to store the critical word and the rest of the word is stored in
LPDDR2. The three configurations are as follows.
• RD : 1GB RLDRAM3 and 7GB DDR3 (plus 1GB ECC)
• RL : 1GB RLDRAM3 and 7GB LPDDR2 (plus 1GB ECC)
• DL : 1GB DDR3 and 7GB LPDDR2 (plus 1GB ECC)

In Figure 6, we present the throughput of each of these systems
normalized to an 8GB DDR3 baseline, while Figure 7 shows the
average DRAM latency of the requested critical word. Each system
represents a different point on the power−performance space, depend−
ing on the type of DRAM chip in use. We see in Figure 6 that RD has
an average throughput improvement of 21% over DDR3 while RL
has an average improvement of 12.9% over the baseline. The source
of these improvements are the 30% and 22% reductions in critical
word latency for RD and RL respectively. The overall performance
degradation with the power optimized DL scheme is 9%.

Maximum improvements with the RLDRAM based configura−
tions are observed for those benchmarks that have a large fraction
of critical words placed in RLDRAM. Figure 8 shows the fraction
of total critical word requests served by the faster RLDRAM module.
Applications like cg, lu, mg, sp, GemsFDTD, leslie3d, and libquan-
tum show significant improvements with RL and RD because most
of the requested critical words for these benchmarks are to word 0
and hence are serviced with RLDRAM3 latency. In fact, for these
benchmarks, RD and RL perform very similarly because the latency
of the slower DRAM module rarely affects the system performance.
For the same reason, DL is able to hide the latency of LPDDR2 to
a large extent in these cases and suffers minimal performance degra−
dation.

On the other hand, applications like lbm, mcf, milc, and omnetpp
have a large fraction of critical words that are not the first word in the
cache line and are hence serviced from the slower DRAM module
(Figure 8). For these applications, RL performs nominally better
than the baseline. In fact, with RL, bzip2 performs about 4% worse
than the baseline because of the increased critical word latency.

To further understand the performance gains from the RL scheme,
we collected statistics on the time gap between the first request for a
cache−line and the subsequent access to the same cache−line, but to
a different word. This is to determine if accesses to words 1 through

7 in the cache−line occur sufficiently late in the instruction window
to tolerate the increased LPDDR latency. We compare the average
gap between the first two accesses to a cache−line to the average LP−
DRAM access latency for all the benchmarks which have word−0 as
the most frequently accessed critical word. We see that in the ma−
jority of the applications that benefit from our proposed architecture,
this gap is greater than or very close to the LPDRAM latency for
more than 82% of all accesses. This means that there is very lit−
tle additional slowdown compared to an all DDR baseline for these
applications. However, some applications such as tonto and dealII,
which see reduced critical word latencies with both RD and RL, due
to the large percentage of critical word 0 accesses, still experience
marginal overall slowdown compared to the baseline. This is be−
cause in these applications, most of the second accesses to cache−
lines (more than 75%) occur before the whole line is returned from
the LPDDR.

All the results above are with a system that employs a stream
prefetcher. In the absence of the prefetcher the performance gain
with the RL system is 17.3%, simply because there is more opportu−
nity for latency hiding with CWF.

We also perform an experiment where the critical words are as−
sumed to be randomly mapped between the RLDRAM and LP−
DRAM systems (with the critical word being 7 times more likely
to be found in the LPDRAM system compared to the RLDRAM sys−
tem). This experiment is done to ensure that the intelligent data map−
ping contributes to the performance gains observed above. We see
that with a random mapping, the average performance improvement
is only 2.1% for RL (compared to the DDR3 baseline) with many ap−
plications showing severe performance degradation because a large
percentage of their critical words are fetched from LPDRAM.

6.1.2. Analyzing RLDRAM+LPDDR performance. Since the RL
scheme has comparable performance to the RD scheme and (as
shown later) has significant energy advantages over RD, we choose
it as our flagship configuration. We apply the adaptive critical word
placement on it and present the results in the following graph, Fig−
ure 9.

The bar RL OR in Figure 9 represents system throughput with
an oracular scheme, where we assume that every critical word is
fetched from RLDRAM3. The performance obtained with RL−OR
is the highest (28% improvement) that can be achieved by the RL
configuration. Note that the performance thus obtained will be
lower than an all−RLDRAM3 system represented by the last bar, RL−
DRAM3, in Figure 9. Note that in RL OR, only the critical word
comes from the RLDRAM3 part, compared to the whole cache line
in RLDRAM3. The other factor restricting the performance of the
RL OR system is the limited address/command bus bandwidth. Even
though the RLDRAM chips are organized into 4 independent data
channels, the single address and command bus can become a bottle−
neck, especially for applications with high memory pressure such as
mcf, milc, lbm.

The RL AD bar represents the performance of the adaptive criti−
cal word placement scheme. The RL AD scheme re−organizes the
layout of the cache word to place the last used critical word in the
RLDRAM3 part. This scheme performs better (15.7% improvement
over baseline) than the RL scheme (12.9% improvement over the
baseline) because it lowers the critical word latency of more requests
compared to the RL scheme. Mcf is one of the applications that ben−
efits from adaptive placement (a 20% improvement over baseline
compared to 12% for RL). This is because in mcf, word 0 and word
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Figure 6: Performance of CW optimization

Figure 7: Critical Word Latency

Figure 8: Percentage of Critical Word Accesses Served By RLDRAM3

3 are the most accessed critical words (see Figure 4). With adaptive
placement, during a write to the lines which have word 3 as the criti−
cal word, the layout of the cache line is altered and subsequent reads
to these lines have lower critical word latencies. The performance
of the RL AD scheme is dependent on the write−traffic −i.e., unless
a word is written to, its organization in the main memory is not al−
tered. Therefore, not all applications that have words 1 through 7 as
critical words can be accelerated with the RL AD scheme.

6.1.3. Energy Analysis. In this section, we analyze the energy con−
sumption of the ensemble. The system energy consumption for the
different configurations is shown in Figure 10.

Methodology: To calculate system energy, we assume the power
consumption of the DRAM system in the baseline to be 25% of the
entire system [27, 22]. We assume that one−third of the CPU power
is constant (leakage + clock), while the rest scales linearly with CPU
activity. We calculate the power consumption of DDR3, RLDRAM3
and LPDDR2 chips using activity factors from the simulator, which
are then fed to the Micron DRAM power calculators [2].

As seen in Figure 2, the power consumption of a single RL−
DRAM3 chip is higher than that of a DDR3 chip at the bus utiliza−
tion values that we see in our simulations (between 5% and 40%).
In an RL system, we have 16 RLDRAM3 chips and 32 LPDDR2

chips compared to 36 DDR3 chips in the baseline. In the baseline,
every cache line request requires the activation of 9 DDR3 chips,
while in RL, 1 RLDRAM3 chip and 8 LPDDR2 chips are activated
for each request. The high power consumption of RLDRAM3 is
alleviated by the lower power consumption of the LPDDR2 chips.
In our experiments we find that by only fetching one cache−word
from the RLDRAM3 chip, its active power consumption is kept in
check. Also, since each RLDRAM3 chip sees one−fourth of the ac−
tivity seen by each DDR3 chip (because of the sub−ranking optimiza−
tion), the I/O power of the RLDRAM3 chips is kept lower. The
LPDDR2 channels, due to their lower frequency and lower operat−
ing voltage consume about 20% less power on average compared to
the DDR3 system. The faster power−down entry and exit modes al−
low the LPDDR2 ranks to be put to sleep more frequently compared
to the baseline. The overall memory power decreases by 1.9% and
memory energy reduces by 15%.

We see that the overall system energy consumption drops by about
6% with RL while the DL scheme consumes about 13% lower en−
ergy compared to a DDR3 baseline. The RL scheme exhibits maxi−
mum energy savings for high−bandwidth applications with high criti−
cal word 0 accesses −e.g., mg, sp, GemsFDTD, leslie3d, and libquan−
tum. High DRAM utilization bridges the gap between DDR3’s
power consumption and that of RLDRAM3 (Figure 2) to a certain
extent. When such high−bandwidth applications can benefit from the
critical word optimization, i.e., have a high number of critical word
0 accesses, the overall system energy is reduced. On the other hand,
high bandwidth applications such as lbm, mcf, and milc, which show
modest performance improvements with our schemes do not show a
marked reduction in system energy consumption.

Applications like bzip2, dealII and gobmk, have low bandwidth
requirements. As a result, the power consumption of the RLDRAM3
component is high enough that the DRAM power in the RL config−
uration exceeds the baseline DDR3 power consumption. Coupled
with this are the marginal execution time reductions (increase in
bzip2) for these applications with RL, resulting in overall system

2121



Figure 9: Performance of various RLDRAM3+LPDDR2 configurations

Figure 10: System Energy Normalized to DDR3 Baseline

Figure 11: Bandwidth Utilization vs Energy Savings

energy consumption increases.
Figure 11 shows the energy savings obtained for the RL scheme

as a function of bandwidth utilization (each point in the figure repre−
sents a different workload). As explained above, the energy savings
are a function of two parameters −the critical word regularity and
the bandwidth utilization. We notice in Figure 11 that in general,
with increasing bandwidth utilization, the system energy savings are
progressively greater. This is because the energy gap between RL−
DRAM and DDR3 shrinks at high utilization. This implies that in
future systems constrained by bandwidth, our innovations can be ex−
pected to provide greater energy savings and performance improve−
ments.

7. Alternate Heterogeneous Memory Design Options

7.1. Comparison to Page Placement Proposals

Most heterogeneous main memory proposals, including that of
Phadke et al., place a group of cache−lines (usually belonging to
the same physical page) in a single DRAM variant on a single chan−
nel. To compare the merits of such a strategy against our proposal
we evaluate a heterogeneous memory system that consists of RL−
DRAM3 and LPDRAM2. An application is statically profiled and
a fraction of its pages are placed in RLDRAM3 and the rest in LP−

DRAM2. In this experiment, to ensure that the memory configura−
tion is practical, we assume that the system consists of four 72 bit
wide channels. Three contain 2GB LPDDR2 DIMMs each while
the fourth channel has only .5GB of RLDRAM3 memory. This de−
sign allows the RLDRAM3 system to enjoy the pin bandwidth of a
conventional system and curbs the energy consumption of the RL−
DRAM3 system by restricting the number of chips. Hence the base−
line configuration and the one described above are iso−pin−count and
iso−chip−count. We do not consider the performance effects of the re−
duced RLDRAM3 capacity. The applications are profiled offline and
the top 7.6% ( .5GB/6.5GB) of the accessed pages wwere placed in
RLDRAM3. We see that the performance varies widely, from a 9.3%
loss to a 11.2% improvement, yielding an average improvement of
about 8%. Those applications, most of whose working set fits in the
RLDRAM memory, benefit from this organization showing higher
benefits compared to our scheme. However, the loss in performance
is due to many accesses to the LPDRAM − since the top 7.6% of
pages only account for a maximum of 30% of all accesses for any of
the programs. In addition, [39] demonstrates that for most applica−
tions, few cache−lines in a page make up the majority of all accesses
to that page. Thus, allocating space on RLDRAM at a page granu−
larity does not yield much benefit. It is also necessary to note that
the improvements reported here will likely be less once page−fault
effects due to the smaller overall capacity of the memory system are
taken into consideration (our simulations are not long enough to con−
sume even the reduced memory capacity). The power consumption
of this system is decidedly better than our scheme, because
• there is less RLDRAM3 in the system compared to the proposed

scheme, thus less background power.
• pages in LPDRAM have low access frequencies, thus the LP−

DRAM can stay in power down modes for longer, thereby reduc−
ing power consumption further.

7.2. Alternate LPDRAM Design
As noted in Section 9, Malladi et al. have looked at adapting LP−
DRAM for use in server memories [26]. Their analog simulations
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show that even in the absence of On−Die−Termination, the "eye" of
the read and write signals is wide enough to allow using unmodified
LPDRAM chips (grouped into packages of four) to construct the
memory channel. We simulate a similar system in our experiments
and find that the LPDRAM power is further reduced in this case with
very little loss in performance (due to deeper sleep modes) and thus
the energy savings are boosted to 26.1%.

8. Cost Analysis

The total cost of ownership of a server system is an important de−
sign metric. The acquisition cost of a product is intrinsically tied to
the volume of production. LPDRAM is already being used in high−
volume markets (portable compute devices) which will help reduce
its price. The higher cost−per−bit of the RLDRAM3 devices is kept
in check in our design by using RLDRAM for only 1/8th of the to−
tal memory space. The CapEx involved will reduce if a case can
be made for large−scale adoption of such devices. In the recent fu−
ture, we expect non−volatile memories to relieve the DRAM system
of its high density requirements. It can therefore be expected that
DRAM products, their target markets, and their volumes will evolve
accordingly in the future. Energy−optimized memory systems, like
the one we propose in this work, will drive down the OpEx by reduc−
ing overall system−energy. We expect this to be a big motivation for
the adoption of such a design in the data−center space and this will
likely help drive up the volume of these specialty parts.

9. Related Work

Critical Word Regularity : Regularity in the critical word accesses
was reported by Gieske et al. [17]. In this work the repeatable pat−
terns in critical words to optimize the L2 cache’s power and perfor−
mance characteristics via a "critical−word−cache".
Heterogeneous Memory : A recent paper [35] proposes one possi−
ble application of heterogeneous DRAM based memories. The au−
thors propose an offline analysis of the LLC miss−rate and average
wait−time of an instruction at the head of the queue to determine if
an application is latency or bandwidth sensitive. Section 3 already
provides a qualitative comparison. Quantitatively, we observed that
for a similar pin count and chip count as the baseline, this approach
only yields an 8% improvement.
Dong et al. [15] discuss the possibility of having a two−tiered
DRAM−based hierarchy where an on−chip dram is used in conjunc−
tion with traditional off−chip DDR DIMMs. However, in contrast to
convention [24, 47, 20], the on−chip dram is not used as a large LLC,
but instead considered a part of the main memory. The authors de−
scribe hardware accounting techniques to identify candidate pages
to migrate from the on−chip dram to the main DRAM.
Memory design with LPDRAM : Very recently, two techniques to
construct server memory entirely out of mobile DRAM parts have
been proposed [45, 26]. In these papers, the authors aim to exploit
the low background−power characteristics of LPDRAM and focus
on solutions to overcome the lower bandwidth, lower channel ca−
pacity and ECC implementation problems of memory systems built
with LPDDR. Our proposals are complementary to their designs.
Specifically, we demonstrate that the addition of RLDRAM to such
a LPDDR based design can provide significant performance benefits
for most applications.
Hybrid DRAM+NVM Memory : Several papers have suggested
integrating Phase Change Memory (PCM) technology in the main
memory hierarchy [23, 48, 36, 46]. Considering the longer read

and write latencies of PCM, it seems likely that DRAM cannot be
completely substituted by PCM −rather, a combination of the two
technologies would be the better choice. Consequently, the man−
agement of such a hybrid memory space has been studied by some
recent papers. Proposals for managing such a hybrid system consist
of placement of performance critical and frequently written pages in
DRAM and the rest in PCM [37], write−frequency counter guided
page placement to manage wear−levelling [14] and migration of data
pages between PCM and DRAM based on access counts to mitigate
background power consumption [33].

10. Conclusions

We show that modern memory systems can be enhanced by promot−
ing heterogeneity in their construction. Existing production DRAM
parts can be utilized to construct an efficient heterogeneous main
memory system with low complexity with changes to the memory
controller and channel organization. We also identify a novel pattern
in the repeatability of critical word accesses at the DRAM level for a
variety of workloads and achieve 12.9% performance improvement
and 6% system energy reduction by exploiting the critical word reg−
ularity with a heterogeneous memory. Trends indicate that our tech−
niques can be used in future bandwidth−hungry systems to achieve
higher performance and energy savings.

It is also likely that in the future, 3D−stacked DRAM technology
will become mainstream. The recently announced Hybrid Memory
Cube (HMC) from Micron [34] is one embodiment of such 3D tech−
nology. Each HMC device consists of 2D DRAM dies that are
stacked on top of one another and connected via high−bandwidth
TSVs to a logic layer at the bottom. The HMC is touted as a solu−
tion for the scaling problems with current DDR technology by virtue
of its high capacity, high bandwidth and low power consumption. If
we witness widespread use of HMCs in the future, then we can think
of integrating some kind of heterogeneity in a HMC−based memory
system. There are two ways to enable a critical−data−first architec−
ture with HMCs. In one possible variant, one could include dies with
different latency/energy properties and the critical data could be re−
turned in an earlier high−priority packet. In another implementation,
one could imagine having a mix of high−power, high−performance
and low−power, low−frequency HMCs. The high−speed signalling
employed in the baseline HMC makes it power−hungry. Thus a crit−
ical data bit could be obtained from a high−frequency HMC and the
rest of the data from a low−power HMC.
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A. Appendix: Explaining Critical Word Accesses in Pro-
grams

A profile of LLC filtered memory accesses of different applications
shows that for almost all cache lines, one particular word in the
cache line accounts for the vast majority of critical accesses to the
cache line. The existence of such critical word regularity is not sur−
prising, i.e., it is reasonable to expect that data in a region will be tra−
versed in a similar order on multiple occasions. Such critical word
regularity was reported and exploited by Gieske to optimize LLC
performance [17].

Applications that stream through large data arrays will exhibit crit−
ical word accesses to words near the beginning of the cache line −
most often to word 0 (at the DRAM level). Applications which have
strided accesses with small stride lengths are most likely to have
word 0 as the most critical word. For example, an application like
hmmer has a dominant stride length of 0 for 90% of all accesses [16]
−hence word 0 is the most popular critical word for hmmer. The
STREAM benchmark has 4 parts, Copy, Scale, Sum and Triad. Each
of these kernels uses unit strided accesses over large arrays, also re−
sults in word 0 being critical.

On the other hand, applications like mcf and xalancbmk spend
most of their time in chasing pointers. For xalancbmk, 80% of
misses are generated by two nested loops of pointer chasing, while
in mcf, 70% of accesses are generated by random pointer chasing.
These kinds of applications demonstrate a more uniform critical
word distribution.
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