
Efficient Data Restructuring and Aggregation for
I/O Acceleration in PIDX

Sidharth Kumar,∗ Venkatram Vishwanath,† Philip Carns,† Joshua A. Levine,∗ Robert Latham,† Giorgio Scorzelli,∗

Hemanth Kolla,‡ Ray Grout,§ Robert Ross,† Michael E. Papka,† Jacqueline Chen,‡ Valerio Pascucci∗

∗Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
†Argonne National Laboratory, Argonne, IL, USA
‡Sandia National Laboratories, Livermore, CA, USA

§National Renewable Energy Laboratory, Golden, CO, USA

Abstract—Hierarchical, multiresolution data representations
enable interactive analysis and visualization of large-scale simu-
lations. One promising application of these techniques is to store
high performance computing simulation output in a hierarchical
Z (HZ) ordering that translates data from a Cartesian coordinate
scheme to a one-dimensional array ordered by locality at different
resolution levels. However, when the dimensions of the simulation
data are not an even power of 2, parallel HZ ordering produces
sparse memory and network access patterns that inhibit I/O
performance. This work presents a new technique for parallel HZ
ordering of simulation datasets that restructures simulation data
into large (power of 2) blocks to facilitate efficient I/O aggrega-
tion. We perform both weak and strong scaling experiments using
the S3D combustion application on both Cray-XE6 (65,536 cores)
and IBM Blue Gene/P (131,072 cores) platforms. We demonstrate
that data can be written in hierarchical, multiresolution format
with performance competitive to that of native data-ordering
methods.

I. INTRODUCTION

Techniques for I/O of large-scale simulation data have
strong demands, requiring scalability for efficient computation
during simulation as well as interactivity for visualization
and analysis. Hierarchical representations have been shown to
provide this level of progressive access in an efficient, cache-
oblivious manner. One such format, IDX, relies on a hierar-
chical Z order (HZ order) that reorders standard row-major
data into a one-dimensional format based on locality in any
arbitrary dimension, at various level-of-detail resolutions [1],
[2]. While successful APIs such as ViSUS have adopted
IDX to fields such as digital photography and visualization
of large scientific data [3], [1], these are serial in nature.
Extending them to parallel settings, the Parallel IDX (PIDX)
library [4], [5] provides efficient methods for writing and
accessing standard IDX formats by using a parallel API.

The levels of resolution in HZ order are logically based
on even powers of 2, typical of level-of-detail schemes. If
the original dataset is a power of 2 in each dimension (i.e.,
2x×2y ×2z), then the resulting ordering will be dense. How-
ever, many scientific simulations, such as S3D [6], Flash [7],
and GCRM [8], do not normally produce datasets with even,
power-of-2 dimensions. For clarity in exposition throughout
the paper, we will use the term irregular to describe datasets

that have non-power-of-2 dimensions (e.g., 22 × 36 × 22) and
regular to describe datasets that have power-of-2 dimensions
(e.g., 323).

Naive parallel HZ encoding of both regular and irregular
datasets results in noncontiguous file access. This problem
was addressed in previous work [5] with aggregation strategies
that perform some amount of network I/O before disk I/O.
However, parallel IDX encoding of irregular datasets results
in an additional challenge: not only is the file access noncon-
tiguous, but the memory buffer each process used for encoding
is sparse and noncontiguous as well. Even if aggregation is
used to improve the file access pattern, the memory buffer
access pattern results in too many small messages sent on the
network during aggregation and too much wasted memory on
each process for PIDX to achieve acceptable performance for
irregular datasets.

In this paper we present an algorithm to enable efficient
writing of irregular IDX datasets from a parallel application.
This algorithm extends the two-phase writing (aggregation and
disk I/O) used for regular data [5] with a three-phase scheme
that restructures irregular data in preparation for aggregation.
In our work we have used both synthetic microbenchmarks and
the S3D production combustion simulation code to evaluate
PIDX on irregular data. We also perform a case study to
understand the effects of two of the important parameters
that influence the performance of PIDX API - the power-of-
2 block size used for restructuring and the number of blocks
per file. We present a comparison of PIDX performance across
two leadership systems: Hopper, a Cray XE6 at NERSC, and
the Intrepid Blue Gene/P at Argonne National Laboratory.
We compare the performance of PIDX with other leading
popular output methods such as PnetCDF and Fortran I/O for a
production application. Our results show both weak and strong
scaling at 65,536 processes (Hopper) and 131,072 processes
(Intrepid). The results also illuminate some of the fundamental
challenges involved with performing efficient disk I/O with a
minimal amount of network overhead.

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 c©2012 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a) (b) (c) (d) (e)

Fig. 1. HZ ordering (indicated by box labels and curves) at various levels for an 8x8 dataset. (a) levels 0, 1, and 2. (b)-(e) levels 3-6, respectively.

II. RELATED WORK

Several I/O libraries are available to aid in structuring
and efficiently accessing large-scale scientific simulation data.
Parallel NetCDF [9] and HDF5 [10] are two prominent
examples. The library HDF5 allows developers to express
data models in a hierarchical organization. While HDF5 and
PnetCDF are both more general-purpose and more widely
used than PIDX, the chief advantage of PIDX lies in its
ability to enable real-time, multiresolution visualization. Both
HDF5 and PnetCDF leverage MPI-IO collective I/O operations
for data aggregation. PIDX instead has a custom MPI one-
sided communication phase for data aggregation. In PIDX
parallel I/O data is split across multiple files. The number
and size of the files can be tuned with the help of some IDX
parameters. A similar subfiling scheme was implemented for
PnetCDF in [11] with an approach that performs aggregation
by using default MPI-IO collective operations on independent
communicators rather than a custom aggregation algorithm.
ADIOS is another popular library used to manage parallel I/O
for scientific applications [12]. A key feature of ADIOS is that
it decouples the description of the data and transforms to be
applied to that data from the application itself.

Wang, Gao, and Shen have presented work in parallel
visualization [13] of multiresolution data. Their algorithm
involves conversion of raw data to a multiresolution wavelet
tree and focuses more on parallel visualization rather than
a generic data format as in PIDX. By comparison, PIDX
attempts to solve the multiresolution visualization problem by
first solving the storage problem in a way that is amenable to
both efficient data I/O and hierarchical data access for analysis.

The PIDX library described in this work maintains full
compatibility with the IDX file format used by ViSUS. IDX
is a desirable file format for visualizing large-scale high-
performance computing (HPC) simulation results because of
its ability to access multiple levels of resolution with low la-
tency for interactive exploration [1], [2]. HZ ordering is the key
idea behind the IDX data format. An HZ order is calculated
for each data element by using the spatial coordinates of that
element (see Fig. 1). An HZ level (corresponding to a level of
resolution) is assigned to all positions. With each increasing
level, the number of elements increases by a factor of 2. Data
in an IDX file is written with an increasing HZ order.

Each data element in the IDX format may be a single value
(1 data sample) or a compound type, such as a 3D vector
(3 data samples). Elements that are contiguous in HZ space

are grouped together into fixed-size blocks. IDX blocks are in
turn grouped together into a collection of files. The files are
distributed over a directory hierarchy with a metadata file at
the top level used to describe various properties of the data
set, such as the element type and bounding box. In this work,
we fix the elements-per-block parameter at 215 but vary the
blocks-per-file parameter in order to alter the number of files
and level of inter-file concurrency used to write an IDX data
set in parallel.

III. EXISTING TECHNIQUES FOR WRITING IDX DATA IN
PARALLEL

In our previous work [4], we demonstrated the use of PIDX
in coordinating parallel access to multidimensional, regular
datasets, and we explored various low-level encoding and file
access optimizations. In a subsequent work [5], we introduced
a new API that enabled more efficient expression of HPC data
models. We also introduced a two-phase I/O strategy [14].
Each client first performed a local HZ encoding of its own
data. The HZ-encoded data was then aggregated to a subset of
processes that in turn wrote the data to disk. The aggregation
phase transformed the small-sized, suboptimal file accesses
from each process into large, contiguous accesses performed
by a few chosen aggregator processes.

A. Regular Datasets

The technique for writing IDX data in parallel, described
in [5], begins by performing HZ encoding of the local data at
each compute node. Each node calculates an HZ range, which
is the smallest and largest HZ index that will be produced by
HZ encoding the local data. The HZ bound is the difference
between the upper and lower values in the HZ range. Each
process allocates enough memory to hold HZ bound elements
of data in order to guarantee that sufficient buffer space is
available to encode the data, even though this buffer may be
larger than the actual amount of data encoded. This approach
has a compelling advantage, in that data elements within the
resulting HZ buffer map directly to the data in an IDX file,
whereas a dense HZ buffer would require explicit, costly
tracking of the appropriate file offset for every element.

HZ encoding is logically based on even powers of 2;
Hence, for regular datasets, the number data samples after
HZ encoding always equals the HZ bound. This is further
illustrated in Fig. 2a, which shows parallel conversion of a
regular 8 × 8 2D row major dataset to IDX format using four
processes. Each process, indicated by a different color, handles

(a) (b) (c)

(a)

(b)

(c)

Fig. 2. (a) HZ computation and traversal of a 8 × 8 2D regular data performed in parallel by 4 processes. Numbers in the box stand for HZ indices of the
highest resolution, while empty boxes are for lower-resolution data (not shown). Within every process, all HZ indices are spanned by one Z curve, producing
a dense and continuous disk layout (below). (b) HZ computation and traversal of a 6 × 6 irregular dataset. Dashed boxes are for nonexistent data points.
Since HZ encoding requires dimensions in powers of 2; a sparse, interleaved, and overlapping disk level layout is produced (below). (c) By restructuring the
data, the interleaving of each process’s data is reduced despite the fact that loads on the boundary have different sizes.

TABLE I
HZ RANGES FOR THE DATA LAYOUTS SHOWN IN FIGURE 2

HZ Range Sample # (HZ Bound)
Process (a) (b) (c) (a) (b) (c)

P0 32:39 32:36 32:39 8(8) 3(5) 8(8)
P1 40:47 34:44 40:45 8(8) 6(11) 4(5)
P2 48:55 39:57 56:57 8(8) 6(19) 2(2)
P3 56:63 37:49 48:51 8(8) 3(13) 4(4)

a 4 × 4 block of data. For the purpose of simplicity and clarity,
we have shown only indices for the highest resolution level
(HZ level 6). The remaining HZ levels are not shown here;
they are represented by empty boxes - the parallel conversion
scheme can be similarly applied to the lower HZ levels. From
the figure one can see that for all four processes (P0, P1,
P2, P3), the number of sample points (8) is equal the HZ
bound of 8. This is a dense and continuous mapping from
the two-dimensional Cartesian space to the HZ space. This
mapping ensures allocation of a minimal memory (8 samples)
to store the HZ-encoded data. Table I additionally indicates
this in the regular dataset, in which it shows the HZ ranges
and bounds are such that each process for the data layout
in Fig. 2a requires a tight usage of memory. In addition, the
HZ ranges of all processes are always nonoverlapping. This
approach provides the opportunity for large, noncontentious
I/O operations.

B. Irregular Datasets

Unlike regular datasets, the HZ encoding of irregular local
data produces a sparse, noncontiguous HZ buffer at each
process. Furthermore, the HZ indices stored in that buffer
are logically interleaved with the HZ indices stored at other
processes. This configuration causes two problems. First, it
is wasteful of limited memory resources at each compute

node. Second, it leads to inefficient memory access and a high
volume of small messages when the PIDX library attempts to
aggregate the encoded data for two-phase I/O.

Figure 2b illustrates this by showing a parallel conversion
of an irregular 6 × 6 two-dimensional row order data to
IDX format by four processes. Each process, indicated by a
different color, handles a 3×3 irregular block of data. Since
HZ encoding is based on even powers of 2, we must use
the closest power-of-2 (regular) box (8 × 8) to compute the
HZ indices, matching the HZ indexing scheme in Fig. 2a,
but skipping the dashed boxes. Examining the arrangement of
data within each process, it is apparent that it does not lie
on a single, connected piece of the Z curve. For example,
process P0 has only three sample points, sparsely placed in
two pieces. Examining the disk-level layout clearly shows the
sparse, noncontiguous and overlapping data pattern of the four
processes. In addition, the HZ bounds of the processes (and
therefore the amount of memory consumed by each process) is
much larger than the actual number of samples that they hold,
as summarized in Table I. For the regular layout (a), each
process stores 8 samples using a range of memory values. For
irregular data (b), each process stores less data but requires a
larger range of HZ indices. After restructuring (c), samples are
redistributed, but the maximum size of each HZ range shrinks
because they are nonoverlapping.

IV. THREE-PHASE I/O
The two-phase aggregation algorithm for PIDX [5] dis-

tributes data to a subset of processes after the HZ encoding
step. This technique is efficient only in cases in which the
local HZ encoding at each process produces a dense buffer.
To effectively handle irregular data sets that do not exhibit this
characteristic, we must introduce an additional restructuring
phase to the algorithm before HZ encoding and two-phase

Fig. 3. (A) One-Phase I/O: (A).1 HZ encoding of irregular data set leads to sparse data buffers interleaved across processes. (A).2 I/O writes to underlying
IDX file by each process, leading to a large number of small accesses to each file. (B) Two-Phase I/O: (B).1 HZ encoding of irregular data set leads to sparse
data buffers interleaved across processes. (B).2 Data transfer from in-memory HZ ordered data to an aggregation buffer involving large number of small sized
data packets. (B).3 Large sized aligned I/O writes from aggregation buffer to the IDX file. (C) Three-Phase I/O: (C).1 Data restructuring among processes
transforms irregular data blocks at processes P0, P1 and P2 to regular data blocks at processes P0 and P2. (C).2 HZ encoding of regular blocks leading to
dense and non-overlapping data buffer. (C).3 Data transfer from in-memory HZ ordered data to an aggregation buffer involving fewer large sized data packets.
(C).4 I/O writes from aggregation buffer to a IDX file.

aggregation. This additional restructuring phase alters the
distribution of data among processes while the data is still
in its initial multidimensional format. The goal is to distribute
the dataset such that each process holds a regular, power-of-2
subset of the total volume. This distribution can be performed
by using efficient, large, nearest-neighbor messages. Once the
data has been structured in this manner, the subsequent local
HZ encoding at each process will produce a dense HZ-encoded
buffer that can be written to disk efficiently using two-phase
aggregation.

Figure 2c, further elucidates the effect of the data restruc-
turing phase. Comparing Figure 2c with Figure 2b, one can
see how the restructuring phase transforms the dimensions
of process P0, from a (3 × 3) irregular box to a (4 × 4)
regular box. The HZ encoding of data in this layout produces
an efficient, dense memory layout. The only exceptions are
relatively small boundary regions of the data, which do not fit
into even power-of-2 subvolumes; but even in that case, the
restructuring at least eliminates interleaving of HZ-encoded
data across processes.

Figure 3 illustrates the three I/O phases in detail, compared
with the one-phase or two-phase I/O. Data-restructuring is a lo-
calized phase involving only neighboring processes, at the end
of which we have a set of processes handling regular boxes.
With this scheme of data-restructuring, barring a few boundary
blocks, almost every irregular data block is transformed into
a regular one. In our current scheme we use independent I/O
of IDX block sizes to write the irregular edge blocks. Our
implementation is both scalable and efficient because of the
localized nature of communication among processes. For any
any imposed regular box, only a group of neighboring process
can participate in the restructuring phase.

To restructure data, we impose a virtual grid of regular
boxes over the entire volume set. These regular boxes are
then used to redistribute the irregularly stored data on each
process. To resolve the different boundaries, we judiciously
exchange data among processes. We use point-to-point MPI

communication (using MPI Irecv and MPI Isend) to transfer
data among processes. After this data-restructuring, we end
up with a grid of regular data boxes stored on some subset of
processes.

Algorithm 1 Data Restructuring
1: All-to-all communication of data extents.
2: Compute dimension of regular box.
3: Compute All intersecting regular boxes.
4: for All intersecting regular boxes do
5: Compute all other intersecting processes.
6: for All intersecting processes do
7: Assign receiver and sender process set.
8: Find offset and counts of transferable data chunks.
9: end for

10: Proceed with data communication.
11: end for

The pseudocode of the restructuring algorithm is given in
Algorithm 1. The process consists of four steps. Initially,
each process communicates its data extents (line 1) using
MPI Allgather to exchange data-extents information (global
offset and count of data it is handling). In doing so, each
process builds a consistent picture of the entire dataset and
where each piece is held. Next (lines 2-3), these extents are
used to compute (1) the extents of the imposed regular boxes
(by rounding irregular boxes up to the closest power-of-2
number) and (2) all other imposed regular boxes that intersect
that process’s unique piece of the data. The third step (lines
5-7), involves selecting which process chooses to receive data
for each imposed box. In the current scheme, the process
that has the maximum intersection volume with the regular
box is chosen as the receiver, this is a greedy scheme that
minimizes the amount of data-movement. Finally (lines 8-
10), every process calculates the extents of the pieces it will
send to receivers, while the receiver allocates a buffer large
enough to accommodate the data it will receive. MPI point-

to-point communication (using MPI Irecv and MPI Isend) is
used among processes for data exchanges.

V. ALGORITHM EVALUATION

In this section, we evaluate the performance of the re-
structuring algorithm compared to previous algorithms, and
we measure the overhead of writing irregular versus regular
datasets. We also perform a sensitivity study to evaluate the
impact of key tuning parameters.

The experiments presented in this work have been per-
formed on both the Hopper system at the National Energy Re-
search Scientific Computing (NERSC) Center and the Intrepid
system at the Argonne Leadership Computing Facility (ALCF)
Hopper is a Cray XE6 with a peak performance of 1.28
petaflops, 153,216 cores for running scientific applications,
212 TB of memory, and 2 petabytes of online disk storage.
The Lustre [15] scratch file system on Hopper used in our
evaluation consisted of 26 I/O servers, each of which provides
access to 6 object storage targets (OSTs). Unless otherwise
noted, we used the default Lustre parameters which stripe each
file across two OSTs. Intrepid is a Blue Gene/P system with
a total of 164K cores with 80 terabytes of RAM, and a peak
performance of 557 teraflops. The storage system consists of
640 I/O nodes that connect to 128 file servers and 16 DDN
9900 storage devices. We used the GPFS [16] file system
on Intrepid for all experiments. The Intrepid file system was
nearly full (95% capacity) during this evaluation. We believe
that this significantly degraded I/O performance on Intrepid.

A. Comparison of PIDX I/O Algorithms

We developed a microbenchmark to evaluate the perfor-
mance of PIDX for various dataset volumes. We then com-
pared three techniques for writing IDX data in parallel. The
first is a naive implementation, in which each process performs
an HZ encoding and writes its data directly to disk. The second
uses two-phase aggregation after the HZ-encoding step. The
third algorithm introduces a data-restructuring phase prior to
HZ encoding. The aggregate performance on Hopper and the
per process memory load of each implementation are shown
in Figure 4. The per process data volume was set to 603, with
each element containing two variables, with four floating-point
samples per variable. This configuration produced 13.18 MiB
of data per process.

The naive one-phase implementation performed poorly be-
cause of the combination of both discontiguous memory
buffers after HZ encoding and discontiguous file access with
small write operations. At 256 processes it achieved 85 MiB/s.
Each process consumed approximately 64 MiB of memory
(nearly five times the size of the original data volume) because
of the sparse HZ encoding.

A two-phase I/O aggregation scheme mitigates the disk
access inefficiencies due to small, noncontiguous file access
by aggregating buffers into larger block-aligned buffers. This
optimization improved throughput from 85 to 1100 MiB/s. The
implementation performance still suffers from small network
transfers during the aggregation phase due to the sparse HZ

(a) (b)

Fig. 4. (a) [Microbenchmark] Throughput for weak scaling of the three
PIDX implementation phases, with 603 block size (log-linear scale). (b)
[Microbenchmark] Per process memory footprint of weak scaling of the three
PIDX implementation phases, with 603 block size (log-linear scale)

(a) (b)

Fig. 5. [Microbenchmark] Size and number of data packets sent during the
aggregation phase by process with rank 0, at process count 256 (from Fig. 4a),
for both (a) 2-phase and (b) 3-phase I/O. The effect of the data restructuring
phase can be seen as all small data packets gets bundled into a small number
of packets and the maximum packet length increases.

encoding. This is illustrated in Figure 5a, which shows the
frequency and size of messages sent from rank 0 as an
example. There are almost 10,000 messages of less than four
bytes. In addition, the scheme consumes even more memory
than the previous implementation because of the extra buffer
used for aggregation. The aggregation buffer size varied from
32 to 64 MiB depending on the overall data volume.

By restructuring the data before aggregation and using a
three-phase I/O scheme, significant performance gains can
be made; specifically, additional 25% performance improve-
ment over the two-phase aggregation algorithm, reaching
1400 MiB/s. Figure 5b illustrates the frequency and size
of messages sent from rank 0 during aggregation after the
restructuring phase. The message size is significantly larger,
leading to fewer total messages and significantly improved
overall performance. In addition, the memory consumption
per process is reduced in comparison to that of the two-phase
algorithm because of the dense HZ encoding that is performed
on restructured, power-of-2 data.

B. Performance of Regular and Irregular Datasets

In our next experiment, we compared the performance of
PIDX when writing an irregular dataset with a comparably
sized regular one. We used the same microbenchmark and
variable configuration as in previous experiments, but we
varied the per process volume from 1283 (a regular volume) to
1263 (an irregular volume) and measured the impact at larger

Fig. 6. [Microbenchmark] Weak scaling performance comparison of irregular
dataset (per process block 1263) with a comparably sized regular dataset (per
process block 1283)

scales. We also compared PIDX to the IOR benchmark [17]
configured to write a similar volume to unique files. IOR does
not perform any data encoding and is used in this case to
provide a baseline for I/O performance.

The weak scaling results for all three cases are shown in
Fig. 6. From the figure we see that at 8,192 processes, PIDX
achieves a maximum throughput of 21 GiB/s to write the
irregular dataset (0.95 terabyte per timestep) and a comparable
maximum throughput of 22.08 GiB/s achieved to write the reg-
ular one (1 terabyte per timestep). At the same process count
for both regular and irregular datasets, we have respectively
achieved 94% and 89% of the IOR throughput.

C. PIDX Parameter Study

The two tunable parameters in PIDX that have the most
profound impact on runtime behavior are the box size used
for power-of-2 restructuring and the number of IDX blocks
per file. The former parameter affects network traffic, while
the latter affects file system traffic. The two parameters can
therefore be tuned independently to reflect the characteristics
of the network and storage infrastructure on a given system.

1) Imposed Box Size: Our API provides some flexibility
for controlling the size of the imposing regular box during the
data restructuring phase. Specifically, we have a parameter that
switches between the default imposed box and an expanded
box. The default imposed box size is calculated at runtime
by rounding up the data volume at each process to the
nearest power-of-2. The expanded box size doubles the size
of the box in each dimension. This parameter affects both the
restructuring phase of the algorithm and the aggregation phase
of the algorithm as follows:

1) Data-Restructuring Phase: change in the time needed to
distribute the data as it is being transmitted to different
numbers of intermediate nodes.

2) Data-Aggregation Phase: change in time needed to send
the data to the aggregator nodes as the data is coming
from different numbers of intermediate nodes.

As an example to illustrate the impact of this parameter,
consider an experiment in which 4,096 processes each hold
a 153 volume. The default number of participating processes
holding the distributed data after the restructuring phase can be
calculated; 4096× (153))/(163) = 3375. If an expanded box
size is used instead, then the number of participating processes
after restructuring will be 4096 × (153)/(323) ≈ 422, with
each of those processes handling a larger load. This parameter
can therefore be used to help strike a balance between load
balancing and message size needed for communication.

(a)

(b)

Fig. 7. [Microbenchmark] [log-linear scale] Weak scaling results on Hopper
as the restructuring box size is varied. (a) A small load of 153 per process
with a default and expanded box size of 163 and 323, respectively. (b) A
larger load of 603 per process with default and expanded box size of 643

and 1283 respectively.

To understand the behavior of this PIDX parameter, we ran
a set of experiments varying both scale and load. We used a
small per process load of 153 as well as a relatively larger
load of 603. As in earlier experiments, each element consisted
of two variables, each in turn containing four floating-point
values. The small and large volumes were 0.2 MiB and 13.18
MiB, respectively. Figure 7 shows the performance of these
two scenarios as the microbenchmark is scaled from 1,024
to 16,384 processes for the smaller load, and from 1,024 to
32,768 for the larger load; the box size is toggled between the
default and expanded setting.

We found that the time consumed by the restructuring
phase was not greatly affected by the box size. For example,
at 16,384 processes it varied from 0.012 seconds with a
default box and 0.018 seconds with an expanded box. The
reason is that this algorithm is well distributed and involves
communication with neighboring processes. As a result, we
focused our attention on the impact of the aggregation phase.
Figure 7 illustrates both the aggregate performance of the
algorithm and the time consumed in the aggregation phase
of the algorithm.

For the smaller load, both box sizes follow similar trends,
but the performance gap between the default and expanded
setting increases at scale. This result can best be explained by
looking at the histogram of time spent during the aggregation
phase with both the default and expanded box (Fig. 7a).
From the graph one can clearly see the increasing amounts
of time spent performing aggregation with the default box.
At process count 4,096, for example, the aggregation phase
with the expanded box involves fewer processes (422) with
relatively larger loads (2 MiB), as opposed to the default
box where aggregation involves too many processes (3,375)
each with a smaller load (256 KiB). Thus, the difference in
performance can be attributed to the extra overhead caused by
having too many nodes transmitting small data volumes during
aggregation.

The larger load exhibits a different performance trend. In
this case, the default box performs better than the expanded
box up to process counts of 8,192, after which its performance
starts to decline. The expanded box, on the other hand,
continues to scale at higher process counts. Looking at the
adjoining histogram of time spent during aggregation, we see
that when fewer processes are involved, aggregation with the
default box requires less time than with the expanded box,
creating a relatively higher throughput. In this example, with
a larger dataset, the best strategy at small scale is to use the
default box in order to involve enough processes in aggregation
to distribute the load evenly. The best strategy at larger scale
is to use an expanded box to limit message contention.

Fig. 8. [Microbenchmark] [log-log scale] Intrepid (BG/P) results for weak
scaling with per process data block of size 153. The default box size is 163,
and the expanded box size is 323

The results from a single system (Hopper) seem to indicate
that this parameter could be tuned automatically based simply
on the data volume and scale of an application. However,
we find that this is not necessarily the case when we repeat
the experiment on Intrepid, which has a different network
infrastructure. The results of this experiment are shown in
Figure 8. In this case, the performance improvement from
using an expanded box is negligible as the scale is increased.
This indicates that the Intrepid network is less sensitive to
variations in the number and size of network messages.

These results indicate that the restructuring box size param-
eter should be selected to reflect characteristics of both the data
set and the computing system.

2) Blocks Per File: The second notable PIDX parameter
is the number of blocks per file used in the IDX file format.

Varying this parameter changes the number of underlying files
stored as part of an IDX dataset. In the case of two-phase
aggregation in PIDX, it also alters the number of aggregators
involved in writing data. PIDX uses n aggregators per file,
where n is the total number of samples per data element. Each
aggregator writes to a contiguous, block-aligned portion of the
file.

(a) (b)

Fig. 9. [Microbenchmark] Weak scaling on (a) Hopper and (b) Intrepid with
per process data block of size 603 done with parameter configuration A (64
blocks per file) and parameter configuration B (512 blocks per file)

To illustrate the effect of this parameter, we executed a
weak-scaling microbenchmark on both Hopper and Intrepid
and varied the blocks per file from 64 to 512. The data volume
per process was set to 603 and the number of variables in
each element was set to the same configuration as in previous
experiments. The results are shown in Figure 9. Each data
point is also labeled with the number of files and number of
aggregators that were involved at each scale, based on the
global volume and the blocks-per-file parameter.

For Hopper, the performance of the lowest scale (512) is
most optimal with 64 blocks per file, creating 64 files and
using all 512 processes as aggregators. However, at the largest
scale (16,384) the best performance used 512 blocks per file
(creating 256 files using only 2,048 aggregators). On Intrepid,
in contrast, 512 blocks per file consistently outperforms 64
blocks per file. As in the sensitivity study of the imposed
box size parameter, we find that the blocks per file parameter
should be chosen based not just on characteristics of the run-
time data set but also characteristics of the system itself.
This example illustrates the difference in tuning strategy for
different file systems (Lustre and GPFS) and different storage
hardware.

VI. S3D

S3D is a continuum-scale, first-principles, direct numerical
simulation code that solves the compressible governing equa-
tions of mass continuity, momenta, energy and mass fractions
of chemical species including chemical reactions. The compu-
tational approach in S3D is described in [6]. Each rank in S3D
is responsible for a portion of the three-dimensional dataset; all
MPI ranks have the same number of grid points and the same
computational load under a Cartesian decomposition. S3D can
be compiled with support for several I/O schemes, which are
then selected at runtime via a configuration parameter. In this
study we used an I/O kernel derived from S3D (S3D-IO) that

(a) (b)

Total Processes with Aggregator
Processes Restructured Data Processes

1024 843 64
2048 1688 128
4096 3375 256
8192 6750 512

16384 13500 1042
32768 27000 2048
65536 54000 4096
131072 108000 8192

(c)

Fig. 10. [S3D I/O Benchmark] (a) Intrepid results for weak scaling of different I/O mechanisms including PIDX, Fortran I/O, and PnetCDF generating
irregular datasets with block size 303. The total data volume ranges from 3.29 GiB to 422 GiB. (b) The proportion of time taken by the aggregation phase
and the I/O write phase at each scale. (c) The number of processes responsible for restructured data and the number of aggregator processes at each scale

allows us to focus our study on the checkpointing performance
of S3D. We modified S3D-IO to include support for PIDX
alongside the other supported I/O modules. Unless otherwise
noted, we configured the I/O kernel to operate on a volume
of size 303 per process, which approximates the data volume
per process used at scale for S3D production use at NERSC.

In all cases we compared PIDX performance with that of
both the Fortran I/O and PnetCDF modules in S3D. In the
case of Fortran I/O, data is written in its native format to
unique files from each process. In the case of PnetCDF, data
is written to a single, shared file in structured, NetCDF format.
In terms of file usage, PIDX lies somewhere between these two
approaches in that the number of files generated is based on
the size of the dataset rather than on the number of processes.
In addition to S3D-IO results, we show IOR results in which
IOR has been configured to generate a similar amount of data
to that produced by S3D. These results are intended to provide
a baseline for shared-file and file-per-process performance.
Default file system striping parameters were used in all cases,
except for the PnetCDF and shared-file IOR results on Hopper,
in which the Lustre striping was increased to span all 156
OSTs available on that system.

A. Weak Scaling

In this section we evaluated the weak scaling performance
of PIDX when writing irregular S3D datasets on both Intrepid
and Hopper. In each run, S3D writes out 20 timesteps wherein
each process contributes a 303 block of double-precision data
(3.29 MiB) consisting of 4 variables; pressure, temperature,
velocity (3 samples), and species (11 samples). On Hopper,
we varied the number of processes from 1,024 to 65,536, thus
varying the amount of data generated per timestep from 3.29
GiB to 210.93 GiB. On Intrepid, we varied the number of
processes from 1,024 to 131,072, thus varying the amount of
data generated per timestep from 3.29 GiB to 421.875 GiB.
We respectively used 256 and 512 blocks per file for all our
experiments with PIDX on Intrepid and Hopper.

Weak scaling results for PIDX and other parallel file formats
on Intrepid are shown in Figure 10a. At the time of these
experiments, the Intrepid file system was nearly full (95%

capacity) which is believed to have seriously degraded I/O
performance for all experiments. While each of the output
methods showed scaling, none of the output methods ap-
proached the expected throughput of Intrepid at scale. We used
the default restructuring box size of 323 in all cases.

Looking at the performance results in Figure 10a, we
observe that PIDX scales well up to 65,536 processes, and
that for all process counts, it performs better than PnetCDF and
Fortran I/O. This behavior is an artifact of PIDX aggregation,
which finds a middle ground between shared-file and file-
per-process I/O. Fortran I/O uses a unique file per process
and places all files in the same subdirectory. This approach
caused a high degree of metadata contention and serialization.
In contrast, PIDX creates a hierarchy of subdirectories at rank
0 and coordinates file creation to avoid directory contention.
The IOR unique file case appears to perform well because
the measurements did not include directory creation time.
IOR was configured with the uniqueDir = 1, which creates
a separate subdirectory for each file in an attempt to show
throughput in the absence of metadata contention at file
creation time. However, this simply shifted the contention to
directory creation time (which is not measured by IOR) instead
of file creation time. As a result, we were able to run IOR with
unique files only up to a scale of 16,384 despite its apparent
performance because subdirectory creation was taking as much
as three hours to complete at the largest scale.

Figure 10c shows the number of processes that are re-
sponsible for restructured data as well as the number of I/O
aggregators. Both numbers grow linearly as the application
scales. Scalability of aggregation on Intrepid can also be
seen from Figure 10b, which shows the normalized timings
of aggregation and I/O write phases. The restructuring, HZ
encoding, and file creation phases are not shown because they
are small in comparison. These indicate a low overhead of the
PIDX network phases, as most of the PIDX write time is spent
on disk I/O.

Weak scaling results for Hopper are shown in Figure 11a.
As described in Section V-C1, aggregation scaling on Hopper
is affected by the size of the imposed regular box. Using
an expanded box during the data-restructuring phase changes

(a) (b)

Total Processes with Aggregator
Processes Restructured Data Processes

(Def.) (Exp.)
1024 843 105 32
2048 1688 210 64
4096 3375 422 128
8192 6750 843 256

16384 13500 1688 512
32768 27000 3375 1024
65536 54000 6750 2048

(c)

Fig. 11. [S3D I/O Benchmark] (a) Hopper results for weak scaling of different I/O mechanisms including PIDX, Fortran I/O, and PnetCDF generating
irregular datasets with block size 303. (b) The proportion of time taken by the aggregation phase and the I/O write phase as we scale from 1,024 processes
(3.29 GiB) to 65,536 processes (210.93 GiB) for both default and expanded box. (c) The number of processes responsible for restructured data when using
the default (Def.) and expanded (Exp.) imposed box as compared with the number of aggregator processes.

the distribution of data, effectively altering the number of
processes participating in aggregation. Hence, on Hopper
we performed two set of experiments, using both a default
imposed box and an expanded one, with dimensions 323 and
643, respectively.

We see comparable performance for default and expanded
boxes at lower process counts. This behavior corresponds to
the case when the aggregation phase takes a similar amount of
time, regardless of the number of processes participating, also
supported by the phase-wise partition graph in Figure 11b.
With increasing process counts, aggregation using the default
box fails to scale, whereas aggregation with the expanded box
continues to scale even at higher process counts. Figure 11c
indicates how the number of processes responsible for re-
structured data varies significantly with the default and the
expanded box. For instance, at process count 32,768, the data
is redistributed to 27,000 processes as opposed to only 3,375
processes with the expanded box. These two different process
counts lead to aggregation phases with very different runtimes.
As Figure 11b shows, aggregation at 32,768 processes take the
majority of time when using the default box, whereas with the
expanded box it takes under 10% of the total PIDX write time.

Compared with other file formats PnetCDF and Fortran
I/O, PIDX appears to lag in the lower process count ranges
(≤ 8192); but as the number of processes increases PIDX
outperforms them. This lag in performance for the lower
process counts can be attributed to lack in aggregators. We
saw in Figure 9a how at lower process counts Hopper yields
higher throughput with relatively large number of aggregators
controlled by blocks per file. For lower process counts, PIDX
performed optimally with 64 blocks per file, transcending into
a larger set of aggregators, whereas in the experiments here we
used 512 blocks per file. Comparing performance numbers, we
see at process count 65,536 that PIDX achieves a throughput of
around 19.84 GiB/sec which is approximately three times that
of Fortran I/O (7.2 GiB/sec) as well as PnetCDF (6.5 GiB/sec).
We also remark that throughput performance for file formats
that use one file per process (IOR unique and Fortran I/O) is
lower than expected because of the small amount of data (3.29

MiB) written to each file relative to the cost of creating the
file.

B. Strong Scaling

(a) (b)

Fig. 12. [S3D I/O Benchmark] Strong scaling for PIDX, PnetCDF, and
Fortran I/O for generating irregular datasets of dimension 9603 on (a) Hopper
and (b) Intrepid BG/P.

In this section, we compared the strong scaling results of
PIDX with Fortran I/O and Parallel NetCDF on both Hopper
and Intrepid. In all our experiments we used a total 3D domain
size of dimension 9603. We varied the number of processes
from 4,096 to 32,768, thereby strong-scaling the block size
per process from 603 (4,096 processes) down to 303 (3,2768
processes). The datasize per time-step is 105.46 GiB, and we
configured S3D to write out 20 timesteps. The results of this
evaluation are shown in Figure 12.

Similar to weak scaling, for all our experiments on Hopper
we used both a default and expanded imposed box during

TABLE II
NUMBER OF PROCESSES RESPONSIBLE FOR RESTRUCTURED DATA IN S3D

STRONG SCALING EXAMPLES.

Total Imposed Box Processes with
Processes Dimension Restructured Data

(Default) (Expanded) (Default) (Expanded)
4096 64 128 3375 422
8192 64 128 3375 422
16384 64 128 3375 422
32768 32 64 27000 3375

the data restructuring phase, as opposed to just using the
default box on Intrepid. Table II shows the effects of using the
two different imposed boxes in terms of number of processes
that are responsible for restructured data once it has been
distributed. For process counts 4,096, 8,192 and 16,384 with
the default box, this number equals to 3,375 processes. This
setting yields throughput in the range of 10 GiB/sec to 14
GiB/sec for the three process counts, whereas the expanded
box causes distribution of data across far fewer processes
(422) at similar process counts, leading to less throughput
compared with that of the default box. This performance
pattern is similar to the one observed in the weak scaling
results. Looking further at Table II, for process count 32,768,
the default box causes the entire data to be distributed across
27,000 processes. This approach renders aggregation unscal-
able and causes aggregation time to increase, resulting in poor
performance throughput. Similar to weak scaling, the use of
an expanded box at this process count leads to a relatively
small set of processes participating in aggregation: 3,375. This
number, obtained by the use of an expanded box at 32,768
processes, exactly matches the number of processes obtained
by using the default box at process counts 4,096, 8,192
and 16,384. With aggregation settings similar to the smaller
process counts, using an expanded box yields comparable
throughput of 14.2 GiB/sec.

PIDX outperforms PnetCDF at all process counts on both
Hopper and Intrepid. On both platforms, at process count
32,768, PIDX achieves an almost two-fold improvement over
PnetCDF, achieving a throughput of 5.1 GiB/sec and 14.2
GiB/sec on Intrepid and Hopper as opposed to 2.6 GiB/sec
and 6.02 GiB/sec achieved by PnetCDF. On Hopper, compared
with PIDX, Fortran I/O yields higher performance at process
counts 4,096 and 8,192, but decreases steeply as we scale to
higher process counts, and PIDX outperforms at process count
16,384 and 32,768. Since Fortran I/O performs unique file I/O,
at higher process counts (16,384 and 32,768) the data volume
per process becomes so small that the file creation takes a
larger fraction of the time and hence the performance drops
steeply. PIDX, on the other hand, writes fewer files and does
not face such issues.

VII. FUTURE WORK AND CONCLUSION

In this work we have discussed a new parallel algorithm
to write irregular datasets in the IDX file format. With S3D
I/O we have shown PIDX to scale up to 131,072 processes on
Intrepid BG/P and up to 65,536 on Hopper, with performance
competitive to other commonly used parallel file formats,
Fortran I/O and PnetCDF. In addition to its performance,
we think that one of the major benefits of PIDX is that it
strikes a balance between efficient read I/O for multiresolution
visualization as well as effective write I/O for large-scale
simulation.

Since PIDX implements a multiphase scheme, understand-
ing the behavior of its parameters is important. Exploring the
nature of how these parameters need to be chosen has indicated
that they can be both application dependent and architecture

dependent. In fact, knowing the effects of a combination of
these two factors is often necessary in order to achieve high
amounts of efficiency.

For data that is unevenly distributed among processes, PIDX
offers a generic scheme for evening out the distribution. This
applies to data consisting of irregularly sized blocks, regularly
sized blocks, and their combinations.

We plan to improve the aggregation strategy of PIDX
in future work. One limitation of the current algorithm is
that the number of aggregators can be modified only by
changing the number of blocks per file. A dynamic aggregation
scheme would improve upon this algorithm by providing
more fine-grained control over the number of aggregators
and the aggregation buffer size. In this work, however, we
favored using a more straightforward scheme and still achieved
positive results. Similarly, we think that additional levels of
control over the size of the imposed box are important. In this
work, we experimented with two options, a default and an
expanded box size, which were most appropriate for our target
application of S3D. It is possible that an even larger imposed
box would be appropriate in other use cases, especially where
the per-process volume is small.

We think that our algorithm would benefit from more
sophisticated schemes for data-restructuring as well as nom-
inating which process acquires the data block. Our current
implementation selects the process that owns the largest piece
of the original data. In the case of conflicts, we resolve
this scheme in a way by which some processes may have
multiple blocks if they happen to own the majority in two.
In this scheme, balancing the load would make more sense;
however, to do so efficiently requires good measurements of
data locality as well as providing good measures to resolve
conflicts.

Acknowledgments This work was supported by the Of-
fice of Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357 and an Argonne National Laboratory Director
Fellowship. This research used resources of the Argonne Lead-
ership Computing Facility at Argonne National Laboratory,
which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

REFERENCES

[1] V. Pascucci and R. J. Frank, “Global static indexing for real-time explo-
ration of very large regular grids,” in Conference on High Performance
Networking and Computing, archive proceedings of the ACM/IEEE
Conference on Supercomputing, 2001.

[2] V. Pascucci, D. E. Laney, R. J. Frank, F. Gygi, G. Scorzelli, L. Linsen,
and B. Hamann, “Real-time monitoring of large scientific simulations,”
in ACM Symposium on Applied Computing, 2003, pp. 194–198.

[3] B. Summa, G. Scorzelli, M. Jiang, P.-T. Bremer, and V. Pascucci,
“Interactive editing of massive imagery made simple: Turning atlanta
into atlantis,” ACM Trans. Graph., vol. 30, pp. 7:1–7:13, April 2011.

[4] S. Kumar, V. Pascucci, V. Vishwanath, P. Carns, R. Latham, T. Peterka,
M. Papka, and R. Ross, “Towards parallel access of multi-dimensional,
multiresolution scientific data,” in Proceedings of 2010 Petascale Data
Storage Workshop, November 2010.

[5] S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V. Pascucci,
R. Ross, J. Chen, H. Kolla, and R. Grout, “PIDX: Efficient parallel
I/O for multi-resolution multi-dimensional scientific datasets,” in IEEE
International Conference on Cluster Computing, 2011.

[6] C. S. Yoo, R. Sankaran, and J. H. Chen, “Three-dimensional direct
numerical simulation of a turbulent lifted hydrogen jet flame in heated
coflow: flame stabilization and structure,” Journal of Fluid Mechanics,
pp. 453–481, 2009.

[7] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb,
P. MacNeice, R. Rosner, and H. Tufo, “FLASH: An adaptive mesh
hydrodynamics code for modelling astrophysical thermonuclear flashes,”
Astrophysical Journal Supplement, vol. 131, pp. 273–334, 2000.

[8] B. Palmer, A. Koontz, K. Schuchardt, R. Heikes, and D. Randall,
“Efficient data I/O for a parallel global cloud resolving model,” Environ.
Model. Softw., vol. 26, no. 12, pp. 1725–1735, Dec. 2011.

[9] J. Li, W.-K. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF:
A high-performance scientific I/O interface,” in Proceedings of SC2003:
High Performance Networking and Computing. Phoenix, AZ: IEEE
Computer Society Press, November 2003.

[10] “HDF5 home page,” http://www.hdfgroup.org/HDF5/.
[11] K. Gao, W.-K. Liao, A. Nisar, A. Choudhary, R. Ross, and R. Latham,

“Using subfiling to improve programming flexibility and performance
of parallel shared-file I/O,” in International Conference on Parallel
Processing, 2009. ICPP ’09, September 2009, pp. 470–477.

[12] J. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible
IO and integration for scientific codes through the adaptable IO system
(ADIOS),” in Proceedings of the 6th International Workshop on Chal-
lenges of Large Applications in Distributed Environments, CLADE ’08.
New York: ACM, June 2008, pp. 15–24.

[13] C. Wang, J. Gao, L. Li, and H.-W. Shen, “A multiresolution volume
rendering framework for large-scale time-varying data visualization,” in
Fourth International Workshop on Volume Graphics, 2005, June 2005,
pp. 11 – 223.

[14] J. M. del Rosario, R. Bordawekar, and A. Choudhary, “Improved parallel
i/o via a two-phase run-time access strategy,” SIGARCH Comput. Archit.
News, vol. 21, pp. 31–38, December 1993.

[15] “Lustre home page,” http://wiki.lustre.org/index.php/Main Page.
[16] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large

computing clusters,” in Proceedings of the 2002 Conference on File and
Storage Technologies (FAST), 2002, pp. 231–244.

[17] H. Shan, K. Antypas, and J. Shalf, “Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark,” in Proceedings of Supercomputing, November 2008.

