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A Nonparametric Procedure for Comparing the
Areas Under Correlated LROC Curves
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Abstract—In contrast to the receiver operating characteristic
(ROC) assessment paradigm, localization ROC (LROC) analysis
provides a means to jointly assess the accuracy of localization and
detection in an observer study. In a typical multireader, multicase
(MRMC) evaluation, the data sets are paired so that correlations
arise in observer performance both between readers and across
the imaging conditions (e.g., reconstruction methods or scanning
parameters) being compared. Therefore, MRMC evaluations mo-
tivate the need for a statistical methodology to compare correlated
LROC curves. In this paper, we suggest a nonparametric strategy
for this purpose. Specifically, we find that seminal work of Sen
on U-statistics can be applied to estimate the covariance matrix
for a vector of LROC area estimates. The resulting covariance
estimator is the LROC analog of the covariance estimator given
by DeLong et al. for ROC analysis. Once the covariance matrix is
estimated, it can be used to construct confidence intervals and/or
confidence regions for purposes of comparing observer perfor-
mance across imaging conditions. In addition, given the results of
a small-scale pilot study, the covariance estimator may be used to
estimate the number of images and observers needed to achieve a
desired confidence interval size in a full-scale observer study. The
utility of our methodology is illustrated with a human-observer
LROC evaluation of three image reconstruction strategies for
fan-beam X-ray computed tomography.

Index Terms—Confidence intervals, image quality, receiver op-
erating characteristic (ROC), U-statistics.

I. INTRODUCTION

F OR the purpose of evaluating and optimizing medical
imaging technology, task-based image quality assess-

ments employing receiver operating characteristic (ROC)
analysis [1]–[3] are widely utilized in the medical imaging
community [4]. However, traditional ROC lesion detection
studies have the limitation that they do not incorporate the
results of lesion localization, i.e., knowledge of whether or
not the lesion is correctly localized is not used in the analysis.
This limitation has motivated the development of assessment
methodologies that evaluate overall detection performance
together with the accuracy of lesion localization.
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Two popular image quality evaluation strategies that assess
both lesion localization and detection performance are the
localization ROC (LROC) [5] and the free-response ROC
(FROC) paradigms [6], [7, Ch. 8]. In an LROC experiment,
each image contains at most one lesion, and the observer
scores and marks the most suspicious location. The FROC
paradigm is more general than the LROC approach in that an
unknown number of lesions is present in each image, and the
observer scores and marks a potentially unlimited number of
suspicious locations. An advantage of the FROC paradigm
over the LROC approach is discrimination power, which may
be stronger in some settings due to the greater complexity of
the task [8]. On the other hand, the LROC paradigm offers the
advantages of simplicity and lower cost and may still provide
better discrimination power than conventional ROC analysis,
as demonstrated under specific modeling assumptions in [8]
and [9]. Both approaches, FROC and LROC, are regularly
used in the medical imaging community, e.g., see [10]–[13]
for applications of FROC methodology and [14]–[18] for
applications of LROC analysis. Note that aside from LROC
and FROC methodology, other approaches have been proposed
to analyze lesion localization and detection performance; for
example, the ROI approach of Obuchowski et al. [19] can be
considered. In this work, we focus on LROC analysis.
Just as the area under the ROC curve ( ) is a useful figure

of merit for ROC studies [20], the area under the LROC curve
( ) is a suitable figure of merit for LROC analysis [21]. In an
influential paper, Swensson [21] suggested a semiparametric
“binormal” estimation strategy for the LROC curve and its area,
. Unfortunately, because Swensson’s estimation strategy

makes relatively strong assumptions regarding the observer’s
search process, it is not always applicable. More recently,
Popescu [9] introduced a family of nonparametric estimators
for the LROC curve and that avoid the restrictive assump-
tions of Swensson. Also, Popescu [9] provided corresponding
variance estimators for his area estimates. In subsequent in-
vestigations, a nonparametric estimator of Popescu was
studied and generalized by Tang et al. [22], [23]. The papers
[9] and [21]–[23] are limited to consideration of uncorrelated
LROC curves. Because correlations in observer performance
arise in typical multireader, multicase (MRMC) study designs,
it is necessary to use statistical methodologies that can account
for these correlations. One way to deal with this problem is to
employ general ANOVA-based methodologies developed for
MRMC analysis, e.g., [24]–[26].
Here, we present a simple, fully nonparametric approach for

MRMC analysis of areas under LROC curves. To do this, we
first observe that one nonparametric estimator of introduced
by Popescu [9] can be rewritten as a generalized U-statistic that
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is similar to the Mann-Whitney U estimator for .1 This ob-
servation enables us to apply the seminal work of Sen [28] on
U-statistics to estimate the covariances between correlated esti-
mates of . The resulting nonparametric covariance estimator
is the LROC analog of the popular covariance estimator of De-
Long et al. [29] for ROC analysis.
An important consideration in the design and analysis of an

MRMC study is whether readers should be treated as a fixed or
random effect [7, p. 132]. If readers are modeled as a random
effect, they are assumed to be randomly drawn from a larger
population. In this case, the statistical analysis must account for
the variability due to reader sampling. On the other hand, when
readers are modeled as a fixed effect, such variability is not in-
cluded. Both types of analyses have their uses, depending on
the goals of the study, i.e., whether inference is to be made for
a large reader population or for a smaller, fixed pool of readers.
From a practical viewpoint, treating readers as a random effect
results in larger confidence intervals [7, p. 132] and therefore
requires more readers and images to attain acceptable statistical
power. For the purpose of early-stage evaluations, smaller study
designs are more practical, and it is often preferable to treat
readers as a fixed effect. Like the application of the DeLong
et al. approach [29] to MRMC ROC analysis [30], the proce-
dure presented in this paper for LROC analysis treats readers as
a fixed effect.
Another aspect in the design of an LROC study is whether to

use a continuous scale or an ordinal (discrete) scale for the ob-
server ratings. In the ROC literature, there is evidence that using
an ordinal scale can lead to unreliable, highly variable perfor-
mance estimates if not used properly by the reader [31], [32].
Consequently, according to Metz [3], continuous rating scales
are generally recommended for observer studies by many ex-
perts. For this reason and for expositional clarity, the develop-
ment in this paper focuses on LROC studies with a continuous
rating scale. However, it turns out that the present work also
applies to ordinal rating data with only slight modifications. For
the interested reader, the necessary modifications for ordinal rat-
ings are discussed in Appendix A.

II. BACKGROUND: LROC CURVES

This section summarizes LROC curves together with mate-
rial needed to present our results. For further details regarding
LROC curves and their interpretation, see [5], [9], [21], and
[33].
Consider a lesion detection and localization task in which, for

a given image, the observer: 1) decides whether or not a lesion
is present and 2) identifies the most likely position of a lesion.
Here, each image either contains exactly one lesion or does not
contain a lesion. For the purpose of characterizing observer per-
formance on a detection and localization task, Starr et al. [5] in-
troduced the localization ROC (LROC) curve. An LROC curve
plots the joint probability of a true positive and correct lesion
localization, i.e., the true positive localized fraction (TPLF), as
a function of the probability of a false positive, i.e., the false

1The Mann-Whitney statistic is a particular example of a U-statistic, which
is a general type of unbiased, nonparametric statistic. For this reason, it is often
called the “Mann-Whitney U statistic;” see [27].

Fig. 1. Example of an LROC curve.

positive fraction (FPF), [5]. An example of an LROC curve is
plotted in Fig. 1.
To measure an observer’s LROC curve, an observer is pre-

sented with a sequence of images. For each image, the observer
is asked to mark the most probable location of a lesion and
to provide a rating regarding their confidence that a lesion is
present. Suppose that the confidence rating is continuous-valued
with higher ratings indicating a preference for a lesion-present
image. According to the usual model, it is assumed that the
observer decides in favor of lesion presence if the confidence
rating is larger than a threshold , and in favor of lesion absence
otherwise [5].
Denote the set of images without a lesion as class 1 and the set

of images with a lesion as class 2. In addition, denote the rating
statistic for a class-1 image as , the rating statistic for a class-2
image as , and the event that the lesion in a class-2 image
is correctly localized as . Here, and are independent,
continuous random variables, and any event defined only with
is independent of . In general, and any event involving
are dependent.
In this setting, the FPF as a function of the decision threshold
is FPF . (Note that throughout the text we
use the notation to denote the probability of an event .)
Similarly, the TPLF as a function of is TPLF

, where is the probability
of correct localization. By definition, the LROC curve plots
TPLF versus FPF as varies over the range .
To emphasize the functional dependence of TPLF on FPF, we
will also use the notation TPLF FPF for the LROC curve. From
the previous formula for TPLF, it follows that the value of the
LROC curve at FPF is the probability of correct localiza-
tion, i.e., TPLF FPF TPLF . As
an aside, observe that is usually less than one, and there-
fore, the LROC curve does not generally end at the (1, 1) point,
unlike the ROC curve; this is a fundamental difference between
LROC and ROC curves.
The area under the LROC curve, , is a useful figure of

merit that has a probabilistic interpretation as described by the
following theorem. This well-known result was first observed
without proof in an early paper by Metz et al. [34] and was
later proved in [35] under restrictive assumptions. A simpler and
fully general proof is given as follows.
Theorem 1: If and are independent, continuous random

variables, and is independent of any event defined only with
, then .
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Proof: Denote the probability density function (pdf) of
by . By definition, TPLF FPF . The expres-
sions for TPLF and FPF given earlier imply that

(1)

Since and any event involving are independent, and since
and are independent,

.
Recall that when and are independent, contin-

uous random variables, the area under the ROC curve is
[20, Result 4.6, p. 78]. Therefore, the pre-

vious theorem implies that , where
the superscript “ ” denotes the event complement. If additional
modeling assumptions are made for the observer’s search
and decision process, then more specific relationships can be
derived between and , e.g., see [21]. Here, we avoid
additional assumptions on the observer to maintain generality.

III. NONPARAMETRIC ESTIMATION OF THE AREA
UNDER THE LROC CURVE

Over the course of an LROC study, suppose that an ob-
server generates independent, identically distributed (i.i.d.)
class-1 ratings and i.i.d. class-2 ratings

. Denote the ratings of class-2 images with cor-
rect lesion localization as , which is a length
subsequence of with . Since lesion local-
ization for a class-2 image results in either success or failure, it
can be modeled as a Bernoulli trial with probability of success,

. Hence, it follows that the number of correctly
localized class-2 images, , is a binomial random variable
with parameters and . To estimate the area under the LROC
curve, , Popescu [9] introduced the nonparametric estimator

(2)

where if the proposition is true and
otherwise. Popescu [9] gave an expression for the variance of

and showed that is an unbiased estimator of , i.e.,
. Additional investigations pertaining to the esti-

mator in (2) were also performed by Tang et al. [22], [23].
Since U-statistics are a well-understood class of nonpara-

metric estimators with nice optimality properties, it is desir-
able to estimate with a U-statistic. Unfortunately, when
is written in the form of (2), it does not fit the definition of a
U-statistic because

(3)

(4)

and because the summation over in (2) involves a random
number of terms, , whereas U-statistics are only defined with
fixed-length summations, i.e., sums that have a fixed (determin-
istic) number of terms.

However, we have found that can be reformulated as a
U-statistic, as explained in the following. For ,
let be equal to one if the lesion is correctly localized in the
th class-2 image and zero otherwise. The are assumed to be
i.i.d., but note that and are generally dependent. With this
definition for the localization results, can be rewritten as

(5)

Observe that the unbiasedness of follows immediately from
(5), since

(6)

(7)

where the last equality is due to Theorem 1. Because (5) in-
volves summations of fixed length and

, the estimator is a generalized U-statistic [36]
with kernel , where
is a Bernoulli random variable with probability of success

. More precisely, is a two-sample U-statistic with
a kernel that is a function of and the vector .

IV. NONPARAMETRIC COVARIANCE ESTIMATION

A. Estimator Definition

Suppose we wish to compare correlated LROC area esti-
mates from different LROC observer experiments. Denote
the ratings and localization results for these experiments
as , , and for ,
and , respectively. For ease of notation, let

. Also,
denote the estimated area under the LROC curve for the th
experiment as , which takes the compact form

(8)

In this section, we introduce an estimator for the covariance
matrix of the vector .
A formula for the covariance between two estimates and
is given by the next theorem proved in Appendix B.
Theorem 2: Suppose that for experiment , is computed

from i.i.d. class-1 ratings and i.i.d. class-2 ratings and lo-
calization results. Then the covariance between the LROC area
estimates for experiments and is

where with ,
with , and .
Note that because the U-statistic kernel is bounded above

by 1 and below by 0, it follows that the covariances , ,
and all have values in the interval [ 1, 1]. The covariance
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formula in the previous theorem is similar to the covariance for-
mula for the Mann-Whitney U statistic given by DeLong et al.
[29] but with a different U-statistic kernel. As a special case,
the proof in Appendix B also yields the Mann-Whitney result,
which was not proved in [29].
Sen [28] introduced a very general nonparametric strategy

that we use here to estimate and . First, define the “struc-
tural components”

(9)

(10)

Observe that each structural component has mean . Also, it
can be shown that for and

for . Hence, the struc-
tural components are asymptotically uncorrelated. Following
the approach of Sen [28], [37, p. 82], we define

(11)

(12)

The quantities and are the Sen estimators for and
. Note that and are simply sample covariances com-

puted from the structural components.
From Theorem 2, it is easy to see that for large and ,

. Hence, the desired covari-
ance between and can be estimated as

(13)

Let , and be matrices with entries given by ,
and , respectively, for . With this no-

tation, the nonparametric Sen estimator for the covariance
matrix of the vector is

(14)

From (11) and (12), it is clear that and can be written
as sums of vector outer products. Hence, it follows that and

are semipositive definite matrices and consequently, that
is semipositive definite.
In the context of ROC analysis, DeLong et al. [29] applied

Sen’s approach to develop a similar covariance estimator for the
Mann-Whitney U statistic. The DeLong estimator is recovered
from the above covariance estimator if the condition
is removed from . When , the covariance estimator in
(13) reduces to a variance estimator that is an alternative to the
variance estimator of Popescu [9] for .

B. Theoretical Analysis

The bias of our covariance estimator, , is characterized by
the following theorem that is proved in Appendix C.

Theorem 3: Let , , and be as in Theorem 2. Then

The previous theorem implies that is asymptotically un-
biased. Observe that the sign of this bias depends on the values
of , , and , which are in the interval [ 1, 1].
A stronger characterization of the convergence of is

provided by the next theorem. Its proof, which is given in
Appendix D, generalizes an argument given by Sen [37, p.
80–82] for one-sample U-statistics to the present context.
Theorem 4: Suppose that and

, where and are fixed constants that are
independent of . Then as , the estimator
converges with probability one to , i.e.,

In the terminology of estimation theory, the previous theorem
shows that is a strongly consistent estimator [38, p. 48] of

. The consistency of and a standard result re-
garding asymptotic normality for a vector of generalized U-sta-
tistics [39, Lemma 3.1] together yield the next theorem, which
is proved in Appendix E.
Theorem 5: Let and

. Also, suppose that
and , where and are fixed constants
that are independent of . Then as , the
random vector converges in distribution
to multivariate normal vector with mean zero and identity
covariance matrix.
As a corollary, note that any linear combination of

is also asymptotically normal.
Theorem 5 justifies the construction of confidence intervals
or confidence regions with standard approaches based on
asymptotic normality [20, p. 107],[40]. An example involving
confidence intervals is given in Section VI-B.

V. MONTE CARLO EVALUATION

Supplementing the theoretical results of Section IV-B, we
now present a Monte Carlo study of confidence intervals based
on our covariance estimator. More specifically, coverage proba-
bilities of confidence intervals for a difference of two values
are evaluated. This section begins with a description of the
model used to generate random LROC ratings, followed by the
Monte Carlo study results. In the following, if a 1 random
vector, follows a multivariate normal distribution with mean
vector and covariance matrix , we write .

A. Ratings Model

To generate random, correlated ratings and localization re-
sults for two LROC observer experiments, we used a straightfor-
ward generalization of Swensson’s binormal model for LROC
data arising from a single LROC experiment [21]. In the expla-
nation of this generalized Swensson model, note that we depart
from Swensson’s original notation [21].
Consider two LROC experiments, referred to as experiments
and , respectively, and let superscripts and indicate
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Fig. 2. Box plots of estimated coverage probability for approximate 95% confidence intervals for . Each box plot summarizes coverage probability for
375 combinations of , , and . Left: . Center: . Right: .

quantities associated with these experiments. The class-1 and
class-2 observer rating variables are collected in the vectors

and , respectively, and the
localization results are written as .
For the generalized Swensson model, the class-1 ratings are

assumed to follow a bivariate normal distribution with zero
mean and covariance matrix, , i.e., , where

(15)

and is a correlation coefficient. To describe the class-2 ratings
and localization results, it is necessary to first introduce two la-
tent rating variables, and .
Here, is interpreted as the maximum observer rating over all
nonlesion locations and is the observer rating for the lesion
location. The latent variables and are assumed to be in-
dependent with and , where

and

(16)

The class-2 ratings are then defined as
and , respectively. Further, for a given
image, the localization result is defined to be one if

and zero otherwise. Similarly, is one if and
zero otherwise.
The previous model thus describes the correlated LROC rat-

ings for two experiments with five parameters: , , ,
and . For the case of a single LROC experiment, the previous
model reduces to the two-parameter Swensson binormal model
[21]. Using formulas in Swensson’s paper [21], it is straightfor-
ward to calculate the LROC areas, and , and the local-
ization probabilities, and , for the two experiments from
, , , and .

B. Confidence Interval Validation

Given a random sample of observer ratings and localization
results, an approximate, Wald-style 95% confidence interval for
the difference of LROC areas, , was calcu-
lated as

(17)

where . To get , the covariance
estimator of Section IV-A was used to estimate each term in

(18)

For the Monte Carlo evaluation, random LROC ratings
and localization results were generated with the generalized
Swensson model described previously, for a large number
parameter combinations. Specifically, for ,

, and , and for
, we took

with , where , and
with , where

. Thus, for three choices of and , and
six choices of , we evaluated the coverage probability for

different combinations of , , ,
and .
For each parameter combination, the coverage probability

for the approximate 95% confidence interval in (17) was esti-
mated from 100 000 Monte Carlo trials, so that each estimate
of the coverage probability had a standard deviation of 0.0007.
Fig. 2 contains box plots summarizing the estimated coverage
probabilities for , and for
different values of . The box plots were generated with the
MATLAB command boxplot. To interpret the plots, note that
the edges of each box are the 25% and 75% percentiles, and the
horizontal line inside the box is the median. The length of each
whisker is at most 1.5 times the distance between the 75% and
25% percentiles, and data points outside this range are plotted
individually.
The plots in Fig. 2 indicate that the coverage probabilities

are generally reliable, with better accuracy as the number of
images increases. Moreover, even for the case with 75 images
( ), the coverage probabilities are relatively
close to 95%. The largest variations in the coverage probabilities
were observed for . However, even in this case, the
plots indicate that for each pair of and , the majority of
the 375 parameter combinations yielded coverage probabilities
within 0.005 of the desired 0.95.

VI. APPLICATION

The covariance matrix estimator defined by (14) can be ap-
plied to estimate confidence intervals (or regions) for a vector
of figures of merit. In addition, it can be used together with the
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results of a pilot study to estimate the sample size and number
of observers required to attain a particular confidence interval
size. These topics are discussed further and are illustrated with
an example.

A. Confidence Intervals and Study Design

As before, suppose that we wish to compare correlated re-
sults from LROC observer experiments. Denote the vector
of (true) LROC areas corresponding to the experiments as

. Also, define to be a ma-
trix so that the 1 vector contains the desired fig-
ures of merit that are to be used for inference. Now, let

be the estimate of and let be
the estimate of . Estimating the covariance matrix of with
from (14), we can estimate the covariance matrix for as

. The diagonal entries of are variance estimates
for the corresponding components of . Confidence intervals (or
regions) for the components of can be constructed with these
variance estimates using standard approaches based on asymp-
totic normality with or without logit transformation [20, p. 107],
[40].
For purposes of study design, it is often advantageous to con-

duct a preliminary pilot study with a small number of images
and observers. For example, suppose that an LROC study is
to be executed to evaluate reader-averaged performance for
different imaging conditions with a fixed pool of readers ex-
amining class-1 images and class-2 images, where , ,
and need to be determined. Denote the 1 vector of LROC
area estimates for the th reader as
and the vector of reader-averaged LROC area estimates as

. Also, let and be the covariance ma-
trices for and , respectively. If can be reliably estimated
from a pilot study as a function of , , and , then the values
of , , and required to achieve a desired statistical precision
can be predicted.
In the case of a partially paired design, in which the image sets

for distinct observers are independent (which is preferable for
assessing reader-averaged performance), the covariance matrix
for takes the form

(19)

where is the reader-averaged covariance
matrix. Suppose that a pilot study is carried out in which
readers are each given (generally correlated) sets of images,
with each image set corresponding to one of the imaging
conditions. From the results of this pilot study, we can use (11)
and (12) to compute the matrices and for the
th observer, which we denote as and , respectively.
Applying (14) to estimate as , the
reader-averaged covariance matrix, , can be estimated as

. Inserting this expression into (19), we see
that for any values of , , and , the covariance matrix can
be estimated with

(20)

Confidence intervals for the desired figures of merit can be con-
structed from and the reader-averaged LROC area estimates
from the pilot study. Thus, the procedure can be used to predict
the values of , , and needed to achieve a desired confidence
interval length.
If a fully paired design is to be used in which the readers all

look at the same images, then detection performance will nec-
essarily be correlated between readers. In this case, if the de-
sired number of readers is known, then the estimator in (14) can
still be utilized in conjunction with a pilot study to estimate the
number of images, and , needed to achieve a given confi-
dence interval size. Namely, a pilot study with imaging con-
ditions can be conducted with all readers to be used for the
fixed-reader study, and the full matrices and
can be estimated with (11) and (12). Hence, for any choice of
and , (14) yields an covariance matrix, , that can be
utilized together with reader-averaged LROC area estimates to
estimate confidence interval sizes.

B. Example

To illustrate the utility of the LROC covariance estimator, we
conducted a fixed-reader human observer LROC study to com-
pare three filtered backprojection (FBP) image reconstruction
algorithms for fan-beam CT [41], [42]:
1) full-scan direct FBP reconstruction;
2) short-scan direct FBP reconstruction (240 );
3) full-scan indirect FBP reconstruction using rebinning to
parallel-beam geometry.

The full-scan indirect FBP was implemented with factor of two
upsampling in the rebinning step so that resolution was matched
near the center of the imaging field of view for all three algo-
rithms. In the LROC evaluation, algorithms A and C were antic-
ipated to yield comparable observer performance, whereas ob-
server performance for algorithm B was expected to be worse
due to the fact that it uses less CT data, and therefore produces
noisier images.
Fan-beam data sets were simulated for the head phantom

shown in Fig. 3, which has the same dimensions as the FOR-
BILD head phantom, but with a uniform attenuation value (50
HU) for the region inside the skull. The CT data simulation
was carried out as described in [43], including Poisson noise,
modeling of finite X-ray source and detector sizes, and a bowtie
filter model. The photon level was chosen to be 85 000 and the
bowtie filter was designed for a circular water cylinder of radius
14 cm. Lesion-present sinograms were generated by inserting
a 5-mm-diameter circular lesion with a random contrast in the
range of [25, 35] HU at a random location inside the skull. Note
that the lesion location was such that the lesion never intersected
the skull. All reconstructions were produced on a 400 400 grid
with pixel size mm.
LROC training and testing was conducted with a MATLAB

graphical user interface, a screen capture of which is shown in
Fig. 3. The images were displayed with a grayscale window
of [ 25, 125] HU, centered on the brain tissue of the head
phantom. A continuous rating scale in the range [0, 100] was
used, with higher values corresponding to more certainty that a
lesion was present. In addition, a lesion was deemed to be cor-
rectly localized if the reader correctly marked its location within
10 pixels; this criterion was determined by inspecting plots of
the readers’ true localized fraction versus localization radius, as
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Fig. 3. Screen capture of observer study software. Grayscale range of displayed
image is [ 25, 125] HU.

in [14] and [15]. Plots of true localized fraction versus local-
ization radius are provided later in this section for the full-scale
study (see Fig. 5).
1) Pilot Study: Before conducting the full-scale LROC

evaluation, a pilot study was performed with two readers.
Each reader was shown 40 training images followed by 60
testing images for each reconstruction algorithm with a 5 min
break between each of the three reading sessions. In both the
training and testing sets, two-thirds of the images contained a
lesion. The testing images in the pilot study were generated
in a partially paired manner so that the images sets shown to
distinct readers were statistically independent, but the images
sets for each algorithm shown to the same reader were sta-
tistically dependent. Namely, two independent groups of 60
fan-beam data sets were created for testing, with each of the 60
fan-beam sinograms subsequently reconstructed with the three
algorithms, yielding two independent groups of 3 60 images,
i.e., one group for each reader.
Denote the LROC areas for algorithms A, B, and C and reader
as , and , respectively. Also, define the reader-aver-
aged LROC areas as , ,
and . Letting , our vector of
figures of merit was chosen to be , i.e.,

, where is a 3 3 matrix.
The pilot study results were used to compute the 3 3 covari-

ance matrix estimate, , as given by (20), for various values of
, , and . Confidence intervals for the entries of were sub-

sequently estimated from the diagonal entries of and ,
the estimate of based on .More specifically, an asymmetric
confidence interval for the first entry was estimated with the
logit-transformation approach advocated by Pepe [20, p. 107],
and symmetric confidence intervals for the second and third en-
tries were estimated with the conventional Wald method [20, p.
107]. The coverage probability for each confidence interval was
selected to be 98.33% so that the joint coverage probability for
the three intervals together was at least 95% by the Bonferroni
inequality.2

For the case of two readers, Fig. 4 (left) contains a plot of the
estimated confidence interval lengths as a function of the total
number of images, , where . From this plot, we
see that even with 250 images per reconstruction method, the

2For arbitrary events , the Bonferroni inequality [44, eq. (1.2.
10), p. 13] takes the form .

Fig. 4. Lengths of 98.33% confidence intervals predicted by pilot study.
Left: confidence interval length for two readers plotted versus with

. Right: confidence interval length for readers with
and .

Fig. 5. Plots of true localized fraction versus localization radius for full-scale
study. The twelve plots shown correspond to all combinations of the four readers
and three reconstruction strategies.

confidence interval length for was predicted to be greater
than 0.1. Since it was desired to have all confidence interval
lengths less than 0.1 with 250 images or less, more than two
readers were evidently needed. Fig. 4 (right) plots the estimated
confidence interval lengths for 250 images ( and
) as a function of the number of readers, . This plot pre-

dicted that four readers should yield confidence intervals less
than 0.1 in length for all figures of merit.
2) Full-Scale Study: Based on the results of the pilot study, it

was decided that the full-scale study would use four readers and
250 images per reconstruction method, with two-thirds of the
images containing a lesion. Like the pilot study, the testing im-
ages in the full-scale study were generated in a partially paired
manner so that the images sets shown to distinct readers were
statistically independent, but the image sets for each algorithm
shown to the same reader were statistically dependent. Specifi-
cally, four independent groups of 250 fan-beam data sets were
created for testing, with each of the 250 fan-beam sinograms re-
constructed with the three algorithms, yielding four independent
groups of 3 250 images, i.e., one group for each reader. The
image reading sessions for each observer were split over two
days, where each day of reading consisted of three sessions, one
reconstruction method per session. Each reading session was
comprised of 40 training and 125 testing images, followed by a
10 min break.
Plots of true localized fraction versus localization radius for

the full-scale study are shown in Fig. 5. As mentioned earlier
in this section, a lesion was deemed to be correctly localized if
it was marked within ten pixels, based on the observation that
the true localized fraction plateaued for localization radii larger
than ten pixels for all reader evaluations. Using this localiza-
tion criterion, we estimated the area under the LROC curve for
each reader and reconstruction algorithm combination. Table I



WUNDERLICH AND NOO: NONPARAMETRIC PROCEDURE FOR COMPARING AREAS UNDER CORRELATED LROC CURVES 2057

TABLE I
ESTIMATED VALUES AND STANDARD DEVIATIONS (IN PARENTHESES)

FOR EACH READER AND RECONSTRUCTION STRATEGY IN EXAMPLE

lists each LROC area estimate, together with an estimate of
its standard deviation, which was obtained with the method of
Section IV-A.
Denote the vector of values for each reader and recon-

struction method as

(21)

where the letters correspond to the reconstruction method, and
the subscripts denote the reader number. Using this notation,
define the reader-averaged values for methods A, B, and C
as , ,
and , respectively. Confidence
intervals were estimated for , , and ( was
included to provide a reference value). Let

, so that where is a 3 12 matrix.
Each entry in was estimated with (5) to get the vector of esti-

mated LROC areas, . Next, the 12 12 covariance matrix for
was estimated using (14). Because the study was designed with
independent image sets for distinct readers, the covariance ma-
trix for had a block-diagonal structure, with four 3 3 blocks
on the diagonal. Therefore, the off-diagonal blocks of the co-
variance matrix estimate, , were replaced with zeros to re-
move unnecessary statistical variability. (Note that since each
estimated block was semipositive definite, the resulting block
diagonal estimate was also guaranteed to be semipositive def-
inite.) Confidence intervals for the entries of were estimated
from and the diagonal elements of . More
specifically, an asymmetric confidence interval for was esti-
mated with the logit transformation approach described by Pepe
[20, p. 107], and symmetric confidence intervals for and

were estimated using the conventional Wald method [20,
p. 107]. As in the pilot study, the coverage probability for each
confidence interval was selected to be 98.33% so that the joint
coverage probability for the three intervals together was at least
95% by the Bonferroni inequality.
The estimated confidence intervals for , , and

are shown in Fig. 6. The numerical values of the 98.33% confi-
dence intervals were [0.752, 0.823] for , [ 0.380, 0.285] for

, and [ 0.016, 0.042] for . Note that the confidence
intervals all had lengths less than 0.1, which is consistent with
the prediction of the pilot study. Examining the results, we see
that the reader-averaged performance for method B was worse
than method A with statistical significance. However, no statis-
tically significant difference was observed between methods A
and C. These observations are in agreement with the aforemen-
tioned expectations.

VII. DISCUSSION AND CONCLUSION

We introduced a nonparametric strategy to compare the areas
under correlated LROC curves. Our approach relied on refor-
mulating an LROC area estimator of Popescu [9] as a general-

Fig. 6. Confidence intervals for reader-averaged performance in the example.
Circles denote point estimates of the figures of merit. Each confidence interval
has a coverage probability of 98.33% so that the joint coverage probability of
all three intervals is at least 95%.

ized U-statistic so that we could apply the theory of Sen [28]
to construct a covariance estimator. Furthermore, additional re-
sults of Sen [37], [45] were applied to prove that the covariance
estimator is strongly consistent. The application of our covari-
ance estimator to confidence interval estimation was supported
with a theorem on asymptotic normality and with aMonte Carlo
simulation study. Last, our methodology was illustrated with a
human observer study comparing lesion detectability for three
fan-beam CT reconstruction algorithms.
The present work may be viewed as a generalization of the

covariance estimator of DeLong et al. [29] developed for ROC
analysis. Our proof of strong consistency implies the strong
consistency of DeLong’s estimator as a special case. (Note that
strong consistency was not proved in [29].) Like DeLong’s
method, our covariance estimator is applicable to the analysis
of performance estimates for any fixed set of readers. As
mentioned in Section I, studies with a fixed reader pool are best
suited for early stage evaluations, i.e., when extensive studies
with large numbers of readers and images are not practical.
Nevertheless, extension of our approach to random-reader
inference is of high interest and will be investigated in the
future. Results in [46]–[48] may prove useful in the derivation
of such an extension.
For the special case of a single LROC area estimate, the co-

variance estimator in (13) with reduces to a variance
estimator that may be seen as an alternative to the variance es-
timator of Popescu [9] for . In a limited set of Monte Carlo
simulation studies, we have observed that the variance estimator
defined by (13) performs similarly to that of Popescu [9]. How-
ever, unlike the variance estimator of Popescu [9], the estimator
in (13) is known to be strongly consistent.
In addition to strong consistency, our covariance matrix

estimator has the satisfying property that it is semipositive
definite, which guarantees that any variance estimate obtained
as described in Section VI-A will be nonnegative. Moreover,
this property implies that both rectangular and ellipsoidal
confidence regions can be reliably constructed for a vector of
figures of merit. Additional positive features of our covariance
estimator are its conceptual simplicity and computational
efficiency, which together enable straightforward sample size
predictions for purposes of study design. Although not dis-
cussed here, our estimator can also be used to estimate the
optimal ratio of lesion-absent to lesion-present images that
minimizes variability in an LROC study. We hope to report on
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this issue in the future, thereby generalizing a result of [9] for a
single LROC curve.
Last, as mentioned in Section I, the estimation theory pre-

sented here for continuous-valued ratings also applies to ordinal
ratings with only minor modifications. The extension of our ap-
proach to ordinal rating data is given in Appendix A.

APPENDIX A
EXTENSION TO ORDINAL RATINGS

In Section II, the LROC curve was defined as the plot of
TPLF versus FPF , where TPLF and
FPF . For continuous-valued ratings, and
are continuous random variables and the threshold takes

values in the range . Instead, if a finite number of
ordinal rating categories are used, then and are discrete
random variables and , where is a finite subset of the
real line. In this case, the LROC “curve” is a discrete function,
consisting of a finite set of points. The discrete LROC func-
tion for ordinal data is analogous to the discrete ROC function,
which is discussed in [49] and [20, Sec. 4.5.5]. As in the ROC
case [20], it is possible to define a continuous LROC curve for
ordinal ratings by assuming a semiparametric model like that of
Swensson [21]. Alternatively, motivated by the following the-
orem, which is closely related to Theorem 1, one can define
a figure of merit for discrete LROC functions without making
such assumptions. This theorem is analogous to a well-known
result for discrete ROC functions [20, Result 4.10, p. 92], [49].

Theorem 6: Suppose that and are independent, dis-
crete random variables, and that is independent of any event
defined only with . Then the area under the curve formed
by linearly interpolating the discrete LROC function is

.
Proof: The proof is essentially the same as that of Bamber

[49] for discrete ROC functions and is therefore omitted.
Note that when and are continuous random

variables, since in that case, . Motivated by
its close relationship to the area under the continuous LROC
curve, can be adopted as a figure of merit for discrete LROC
functions.
For the case of ordinal ratings, we define an unbiased esti-

mator of for the th LROC experiment as

(22)

where
. It is straightforward to see that the results of

Sections III and IV for also apply to , with replaced
by . Therefore, ordinal ratings can be handled with only
minor modifications to our approach. (A similar observation
was made by Popescu [9] for his estimators.)

APPENDIX B
PROOF OF THEOREM 2

From (8) and the linearity of the expectation operator

(23)

Let denote the Kronecker delta function for which
if and if . Since

it follows that

(24)

which implies

(25)

Using the definitions of , , and and the fact that
yields

(26)

(27)

The desired covariance formula follows from (27).

APPENDIX C
PROOF OF THEOREM 3

The proof of Theorem 3 relies on the following two lemmas.
The definitions of , , and can be found in the state-
ment of Theorem 2.

Lemma 1: Suppose that and are computed
from i.i.d. class-1 ratings and i.i.d. class-2 ratings and lo-
calization results from the th LROC experiment. Then for fixed
and
(a)

(b)

Proof: We prove part (a). The proof of part (b) is similar

(28)
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(29)

(30)

(31)

Lemma 2: Suppose that for experiment , , and
are computed from i.i.d. class-1 ratings and i.i.d.

class-2 ratings and localization results. Then for fixed and

Proof: The proof is analogous to that for Theorem 2 and is
therefore omitted.
Next, observe that

(32)

(33)

Using Lemma 1(a), Lemma 2, and Theorem 2 together yields

(34)

Similarly, it is straightforward to show that

(35)

Finally, applying (13), (34), and (35) together with Theorem 2
gives the stated result for Theorem 3.

APPENDIX D
PROOF OF THEOREM 4

Recall that a sequence of random variables is
said to converge with probability one to a limit, , if and only
if [38, p. 6]. In this case, we write

as . Our proof of Theorem 4 depends on the
following lemma.

Lemma 3: As and

and

Proof: The convergence proof for is given as follows.
For the proof, we apply an argument introduced by Sen [37,
p. 80–82] in the context of one-sample U-statistics to our two-
sample setting. The convergence proof for follows similar
steps, and is therefore omitted.

By definition, is such that

Since , the previous equation be-
comes

(36)

The first term can be rewritten as

(37)

where

(38)

(39)

To apply Sen’s convergence argument, we need to inter-
pret and as U-statistics. Recall that a generalized
two-sample U-statistic has a kernel that is a function of two
sets of arguments, where the kernel is symmetric with respect
to elements of each set, although the roles of the two sets
need not be symmetric [36, p. 64–65]. Define the vectors

and . Then can
be interpreted as a two-sample U-statistic with the (trivially)
symmetric kernel when written as

(40)

For , define the kernel
. Note that ,

so is a symmetric. Hence, can be interpreted as a two
sample U-statistic when written in the form

(41)
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Furthermore, observe that
and .

Because the kernels and are
bounded above by 1, it follows that and

. Therefore, results of Sen [45] on
generalized U-statistics imply that and converge with
probability one to their means, i.e., as

and (42)

Hence, as , and (37) and (42) thus
imply that as

(43)

Also, since , it follows from [45] that

as , and . These re-
sults with (36), (43), and the continuous transformation prop-
erty for sequences that converge with probability one [38, p.
24], allow us to conclude that as .
Recall that and are fixed

positive constants. Lemma 3 and the continuous transformation
property for sequences that converge with probability one [38,
p. 24] imply that

as (44)

Using the expression for in Theorem 2, it is then
straightforward to show that as

(45)

and hence, .

APPENDIX E
PROOF OF THEOREM 5

In the following, denotes a sequence of random vec-
tors that converges in distribution to a limit , as

[38, p. 8]. Following standard convention, if
with , we write .
First, recall that ,

, and ,
where and are fixed positive constants. Also, let be the

matrix with entry . Our
proof for Theorem 5 relies on the following lemma.

Lemma 4: as

Proof: Since is a vector of two-sample U-statistics,
the statement results from a standard theorem on generalized
U-statistics [39, Lemma 3.1],[50, pp. 142–143].
Now, from (44), we have as
. Using the fact that convergence with probability one implies

convergence in distribution [38], together with the continuous

transformation property for sequences that converge in distri-
bution [38, p. 24], we obtain

as (46)

where is the identity matrix. Also, the continuous trans-
formation property for convergence in distribution [38, p. 24]
and Lemma 4 imply that as

(47)

Again, using the continuous transformation property for se-
quences that converge in distribution [38, p. 24] with (46) and
(47), we find that

as

i.e., .
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