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Abstract—uAnalyzeSM is a web-based tool for analyzing high-resolution melting data of PCR products. PCR product sequence is

input by the user and recursive nearest neighbor thermodynamic calculations used to predict a melting curve similar to uMELT

(http://www.dna.utah.edu/umelt/umelt.html). Unprocessed melting data are input directly from LightScanner-96, LS32, or HR-1

data files or via a generic format for other instruments. A fluorescence discriminator identifies low intensity samples to prevent

analysis of data that cannot be adequately normalized. Temperature regions that define fluorescence background are initialized

by prediction and optionally adjusted by the user. Background is removed either as an exponential or by linear baseline

extrapolation. The precision or, “curve spread,” of experimental melting curves is quantified as the average of the maximum

helicity difference of all curve pairs. Melting curve accuracy is quantified as the area or “2D offset” between the average

experimental and predicted melting curves. Optional temperature overlay (temperature shifting) is provided to focus on curve

shape. Using 14 amplicons of CYBB, the mean þ=� standard deviation of the difference between experimental and predicted

fluorescence at 50 percent helicity was �0:04þ =� 0:48�C. uAnalyze requires Flash, is not browser specific and can be accessed

at http://www.dna.utah.edu/uv/uanalyze.html.

Index Terms—Melting curve analysis, high-resolution melting, biology and genetics, modeling and prediction, software

Ç

1 INTRODUCTION

HIGH-RESOLUTION PCR product melting analysis is a

simple and powerful method with many applications

in molecular biology [1]. Melting curves with multiple
domains can be predicted by recursive nearest neighbor

thermodynamics as implemented in POLAND [2], Stitch-

profiles [3], MeltSim [4], DINAMelt [5], and uMELTSM [6]

and is beneficial to amplicon design and assessment of

experimental results. However, before experimental fluor-

escent melting data are compared to predicted curves,

background fluorescence must be removed and normal-

ization performed. The background fluorescence is pro-
duced by interaction of the dye with primers and

approximates an exponential [7], [8]. Further processing of

experimental curves by overlay (temperature shifting) is

often performed to focus on curve shape because absolute

temperatures can be affected by reaction components such

as the fluorescent dye, sample position, and ionic strength

[9]. Direct visual comparison requires that both predicted

and processed experimental curves are plotted on the same
graph. uAnalyze processes experimental melting curves for

comparison to predicted helicity in a quick, flexible web
interface (Fig. 1). Numerical metrics are provided to assess

the precision of experimental replicates and the accuracy of

theoretical prediction to the experimental melting curves.

2 METHODS

2.1 Nearest Neighbor Thermodynamics

Recursive nearest neighbor calculations are used for in silico
prediction of melting curves to account for multiple domains.
The theoretical melting predictions displayed in uAnalyze
are calculated as described previously [6] with unified
nearest neighbor parameters [10] and default loop entropy
effects [11] to predict helicity as a function of temperature.

2.2 Amplification by PCR and Product Melting

PCR was performed in 10 �l reactions containing 50 mM Tris
(pH 8.3), 500 �g=ml bovine serum albumin, 200 �M of each
deoxynucleotide triphosphate, 0.4 units KlenTaq polymer-
ase (Ab Peptides), 1 X LCGreen Plus (Biofire Diagnostics),
0:5 �M each PCR primer and 50 ng human genomic DNA.
Fourteen human gene segments covering the 13 exons of
CYBB were amplified and melted as previously described
[12] using the above PCR reagents, 3 mM MgCl2, 8.8 ng/uL
anti-Taq antibody (Clontech), and certain primer sequences
modified as detailed in Supplementary Table 1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2012.112).
ACADM exon 2 (primers GATTATCAGTAGTCTCTTATCT-
GATTAATGTTTAACTTATAAATTT and TTTAAAGT-
CAAAAGATAGAACCGAAC) and exon 6 (primers
AATTATAG CATCTCTGAATTTACATATCC and
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GTGAAATAAAGCGGCAGTT) were amplified as above

except with 2.7 mM MgCl2 and 64 ng/ml anti-Taq antibody

(eEnzyme) with denaturation at 95�C for 15 s, annealing at

64�C for 15 s, and extension at 72�C for 30 s for 40 cycles.

Melting for both CYBB and ACADM amplicons used the

LightScanner (Biofire Diagnostics) under default conditions.
Small amplicon genotyping and melting of MTHFR

c:1286A > C (HGVS), also known as 1298A > C (legacy),

was performed on the LS32 (Biofire Diagnostics). Rapid

cycle PCR [13] was performed using the above reagents with

primers GGAGGAGCTGACCAGTGAAG and GGTAAA-

GAACGAAGACTTCAAAGACAC, 2 mM MgCl2 and no

antiTaq antibody for 40 cycles of denaturation at 95�C for 0 s,

annealing at 66�C for 0 s, and extension at 74�C for 0 s.
Experimental and predicted melting curves are displayed

in uAnalyze as helicity versus temperature. Experimental

data is processed by removal of fluorescence background,

normalization, and optional temperature overlay. A linear

correlation of fluorescence to helicity after background

subtraction and normalization is assumed in uAnalyze. All

amplicon sequences and data files used in this report are

provided as Supplemental Data, available online.

2.3 Background Subtraction and Normalization of
Experimental Melting Curves

Options for background subtraction include linear baseline

extrapolation [14] and estimation of the background as an

exponential [7], [8], [15]. In both methods, regions below

and above the melting transitions are identified where only

background fluorescence is present. These 1�C regions have

their positions initially set with inner limits at 98 percent

and 0.1 percent of predicted helicity and may be optionally

adjusted by horizontal sliders on the X-axis. Slopes within

each region are calculated and used to estimate and remove

background fluorescence according to each method. Curves

with low relative fluorescence that cannot be adequately

normalized are identified by an intensity discriminator

(20 percent of the maximum fluorescence of samples) that is

controllable by the user.

2.4 Overlay

In order to directly compare curve shapes, uAnalyze

provides overlay options including, 1) a shift of the predicted

curve to the experimental curve average, and 2) a shift of all

experimental curves to the experimental curve average

(Supplemental Fig. 1, available online). In both options,

curves are translated along the X-axis based on the mean
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Fig. 1. uAnalyze: a web application to compare experimental high-resolution melting data to thermodynamic predictions. The DNA sequence
(exon 6, ACADM) is pasted into the interface and experimental data files are imported with a file upload dialogue. Samples are selected by their
instrument position and their normalized melting curves (green), along with the predicted melting curve (black) are shown. A helicity slider on the
Y -axis prevents normalization of low fluorescence samples. Temperature sliders on the X-axis select background regions for normalization.
Adjustable options include the interval and range of the temperature axis, monovalent cation, free Mgþþ and DMSO concentrations, and selections
for curve overlay and normalization method. Data metrics (curve spread and 2D offset) quantify precision and accuracy. Icons allow downloading the
graph image (.png) and normalized data (.txt). Cursors were set at 73�C and 87:5�C.



integral temperature difference between curves over a range

of helicities. The predicted curve is shifted to the experi-

mental curve average between 10 and 90 percent helicity.

Experimental curves are shifted to their average between 5

and 15 percent helicity to better reveal heteroduplexes [7].

The shifts are performed by first inverting the fluorescence

versus temperature curves (to temperature versus fluores-

cence) and finding the least squares quadratic fit of points

within the helicity range. If less than three points are within

the range, additional points nearest to the range are added.

Then, the integral means of the quadratics are found to define

the necessary shifts.

2.5 Metrics

Two analysis metrics are introduced. The match between

experimental and predicted curves is quantified as the two-

dimensional (2D) offset, calculated as the area between the

predicted and average experimental curves in units of

%� �C. The dispersion or precision of a set of experimental

curves is quantified as the “curve spread,” calculated as the

average maximum helicity difference of all curve pairs

within the set.

2.6 Spatial Correlation

Melting curves are mapped to their physical sample

locations on rectangular and circular format instruments.

For generic and single sample instruments where the

physical format is unknown or irrelevant, the samples

are listed sequentially. Melting curves with low fluorescence

that are not normalized are shown in a different color and

identified by that same color on the physical sample map.

The user can interactively select/deselect samples, rows or

columns on the spatial representations to reduce the number

of curves visible on the graph. Metrics are calculated on all

currently selected samples that are normalized.

3 RESULTS

Analysis of 96 different DNA samples after amplification of
exon 6 of ACADM is shown in Fig. 1. Two columns and two
rows have been deselected for demonstration. After
exponential background removal and normalization, the
experimental samples cluster closely with a curve spread of
4.22 percent before temperature overlay and 0.72 percent
after overlay. The experimental curves are shifted 0:75�C (at
50 percent helicity) above the thermodynamic prediction
with a 2D offset of 114%� �C.

The precision (curve spread) and accuracy (2D offset)
metrics are illustrated in Fig. 2. For precision, the maximum
helicity difference is determined for all possible pairs of
curves, one of which is shown in Fig. 2A. The curve spread
is the average of this value across all possible curve pairs
(there are N(N-1)/2 curve pairs for N curves). The accuracy
of the thermodynamic prediction or 2D offset (Fig. 2B), is
the total area between the thermodynamic prediction and
the average of the experimental curves, even if these lines
cross one or more times. Both metrics may be calculated
before overlay to assess both position and shape differences,
or after overlay to focus on curve shape.

Exponential and baseline subtraction for normalization
are compared in Fig. 3, using an exon 2 amplicon of
ACADM from 96 individual DNA samples. Exponential
normalization resulted in better precision with an experi-
mental curve spread of 3.55 percent compared to
5.05 percent for baseline normalization. Accuracy was
also better after exponential (2D offset 71:5%� �C) versus
baseline normalization (176%� �C). The baseline method
underestimates the relative contribution of the first
melting domain to helicity when compared to either the
exponential method or to the thermodynamic prediction.
The second melting domain of the experimental data
exceeds the prediction by 0:53�C (exponential) or 1:07�C
(baseline) at 50 percent helicity.
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Fig. 2. Illustrations of curve spread (A) and 2D Offset (B). Curve spread is a measure of melting curve precision and is defined as the average
maximum helicity difference for all experimental pairwise combinations. One curve pair is shown (panel A) that displays the maximum helicity
difference (vertical gray line) between two curves. When more than two curves are present, the average of all pairwise curve spreads is used. For
N curves, the curve spreads of N(N-1)/2 pairs of curves are averaged. The 2D Offset (panel B) is a measure of accuracy (closeness to prediction)
and is calculated by finding the area (shaded) between the experimental average curve and the thermodynamic prediction. The curves shown are
illustrative and do not correlate to any particular sequence.



To test uAnalyze in a typical mutation scanning applica-
tion for the detection of heterozygotes [12], the 13 exons of
CYBB were amplified in 14 fragments. All exons of three
individuals, each in duplicate, were analyzed on one plate.
The individuals were all normal in sequence at CYBB, except
for one heterozygous variant in one exon of one individual.
The resulting curve spreads (after overlay), 2D offsets, and
temperature difference from predicted at 50 percent helicity
for the 14 amplicons are shown in Table 1. Typically, the
curve spreads are between 0.5 and 1.5 percent using default
cursor placement. Curves spreads higher than 1 percent
generally indicate less than optimal cursor placement, which

is the case for amplicon 6 and 10 (exponential) and amplicon

5 (baseline). For example, manual adjustment of the default

cursors for amplicon 10 reduced the curve spread to

0.76 percent. The outlier is amplicon 9b with a curve spread

of about over 6 percent. This high curve spread identifies an

amplicon where one of the three DNA samples (in

duplicate) is heterozygous at CYBB c:1090G > C. The

overlaid melting curves of amplicon 9b are shown in Fig. 4

with distinct clustering of the 2 c:1090G > A samples away

from the four wild type samples.
Excluding the two heterozygous samples, CYBB ampli-

con melting curve accuracy and precision were similar using
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Fig. 4. uAnalyze melting curve analysis identifies heterozygous c.
1090G > A in exon 9 (amplicon 9b) of CYBB after experimental curve
overlay. Experimental data (green curves) are normalized after
exponential background subtraction and overlaid between 5 and
15 percent helicity. Hovering over the abnormal curves pops up a box
that reveals the physical sample locations, along with the temperature
and fluorescence of the cursor. The black curve is predicted by
thermodynamics and shows the two domains also observed in the
experimental curves.

TABLE 1
Curve Metrics for CYBB Amplicons

Fig. 3. Comparison of normalization methods in uAnalyze applied to
melting data of exon 2 of the ACADM gene without experimental
overlay. Ninety-six different DNA samples were analyzed. The
exponential background removal method (green) better fit the predicted
(black) melting curve than the linear baseline method (gray), especially
at the first, low temperature, melting domain. Vertical cursors (gray)
indicate the regions used to normalize the data. Cursors were set at
71�C and 86�C with no overlay.



either exponential or baseline normalization. Neither the
curve spreads nor the 2D offsets were significantly different
after exponential or baseline normalization. Although the
melting temperatures (taken as the temperature at 50 percent
helicity) were significantly different by the paired t-test, the
difference between exponential (�0:34þ =� 0:52�C) and
baseline methods (�0:04þ =� 0:48�C) was only 0:3�C.

Application of uAnalyze to genotyping by small ampli-
con melting (MTHFR c. 1286A > C) is shown in Fig. 5.
Exponential normalization was used but the data were not
overlaid in order to better distinguish homozygous variants
from homozygous wild type samples. Multiple wild type
samples were present about 1�C higher than the thermo-
dynamic prediction and a single homozygous variant curve
was present a further 1�C. Several melting curves from
heterozygous samples show bimodal transitions that
crossed both the predicted curve and the wild type cluster.

4 DISCUSSION

uAnalyze provides an interactive web interface to analyze
and compare high resolution melting data with thermo-
dynamic predictions and physical sample location. Prior
attempts to correlate experimental to predicted melting
curves have been variably successful [16], [17]. For example,
previous work using the POLAND algorithm [2] with CYBB
amplicons [16] and baseline normalization showed most
experimental curves 5-6�C higher in temperature than

thermodynamic predictions and relative attenuation of
fluorescence in low temperature domains [16].

The thermodynamic predictions in uAnalyze are based
on uMelt, a prediction tool designed for high resolution
melting of PCR products [6]. Similar to other web
applications that predict melting curves, uMelt uses nearest
neighbor parameters and recursive calculations to identify
melting curve domains [2], [3], [4], [5]. While many software
programs exists for theoretical melting curve prediction,
uAnalyze provides a singular interface for the display,
normalization, and quantitative analysis of experimental
data in context of theoretical predictions for assay valida-
tion and assessment. uAnalyze implements a unified
nearest neighbor parameter set [10] with adjustments for
monovalent cation concentration, free Mgþþ concentration
and DMSO percentage. Free, unchelated Mgþþ is calculated
by subtracting the total dNTP concentration from the total
Mgþþ concentration [18].

Melting temperatures (Tms) are often identified as peaks
on derivative plots. However, when multiple domains are
present in a melting curve, this metric becomes less useful.
The relative temperatures of melting curves of similar shape
can still be assessed as the fluorescence at 50 percent helicity.
Using the fluorescence at 50 percent helicity and baseline
normalization, the mean and standard deviation of the
temperature difference between experimental and predicted
curves of the 14 CYBB amplicons was �0:04 þ =� 0:48�C,
indicating minimal systematic bias and a standard deviation
less than 0:5�C in this data set. This is substantially more
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Fig. 5. Small amplicon melting of MTHFR c:1286A > C. A 50 bp product was amplified from 31 different DNA samples. A no template control (gray
sample, well 32) was included that does not meet the fluorescence threshold for normalization. Graphical representation of the circular sample
format allows for quick identification and removal of the no template control from the analysis. Cursors were set at 70�C and 83�C with no overlay.



precise than the best oligonucleotide “all or none” Tm
predictions with a standard deviation of 1:6�C [19]. The high
prediction accuracy of PCR amplicons may result from their
longer lengths compared to short oligonucleotides. The
unified parameter set and/or better treatment of the Mgþþ

effect may explain the improved accuracy over prior
attempts [16]. No adjustments for the dye LCGreen Plus or
other assay factors were incorporated.

This paper introduces the metrics, curve spread and 2D
offset, to quantify melting curve precision and prediction
accuracy. In the analysis of 14 CYBB amplicons (Table 1),
exponential normalization resulted in better precision (as
measured by curve spread) and accuracy (as measured by
2D offset) than baseline normalization. However, this
difference was not significant because of high variability
across amplicons. Similar results were obtained when single
domain and multiple domain curves were considered
separately (Supplementary Table 2, available online). In
some cases (e.g., Fig. 3) exponential was clearly better than
baseline because it better matched predicted intensity ratios
of different domains, a concern previously mentioned [16].
Therefore, exponential normalization was selected as the
default method. However, the temperature at 50 percent
helicity was best matched by baseline normalization.
Pending more definitive data, we elected to provide both
exponential and baseline normalization as options.

Additional features of uAnalyze include overlay options
to evaluate shape differences independently of temperature,
and curve correlation to physical sample position. Curve
overlay (also known as temperature shifting) is used
extensively in mutation scanning as the best way to identify
heterozygotes [16]. Curve overlay is typically not used in
genotyping where it decreases the differences between
homozygous variants. Spatial representations match curves
to physical samples and allow easy selection of curve
subsets for display.

Visual and quantitative comparisons between experi-
mental curves and thermodynamic predictions is helpful in
PCR optimization, mutation scanning, and genotyping. By
comparing the predicted curve to the experimental curve,
amplification of the correct product can be verified, reducing
or eliminating the need for electrophoresis and/or sequen-
cing. As additional data formats for other instruments are
incorporated, more instruments will be directly supported,
although melting resolution between instruments varies
greatly [20]. An interesting addition, though computation-
ally intensive for a web application, would include optimal,
autonomous cursor placement rather than default placement
by theoretical prediction. Finally, one of the more interesting
extensions of uAnalyze will be to predict composite melting
curves amplified from heterozygotes.

5 CONCLUSION

uAnalyze is a user-friendly web application that provides
visual and quantitative comparison of theoretical and
experimental high resolution melting data.
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