

Stephen Greene

OBJECTIVES

- Develop mathematical models to better understand the changes in sea ice as it pertains to global climate
- Compare Diffusion Limited Aggregates (DLA) and Electrorheological (ER) fluids to sea ice microstructures

Composite Microstructures and Climate Change

Stephen Greene and Kenneth Golden Department of Mathematics

THE UNIVERSITY OF UTAH

Fluid flow through sea ice microstructure governs many processes critical to global climate change

Sea ice microstructures share exciting similarities to many high tech composite structures like ER Fluids

RESULTS AND FUTURE RESEARCH

 Calculation of the spectral measure for DLA structures:

 $F(S) = \int_{0}^{1} \frac{d\mu(z)}{s-z}$ Simplification of complex structures Digitization and calculations for both ER fluids and sea ice microstructures

Tony Cummings Community Based Research Scholar

Kenneth Golden

Horizontal cross-section of sea ice

ER Fluid