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Our understanding of the development, connectivity and function of the nervous system has been 

facilitated by gene targeting technology. Here we summarize the historic background and the 

current state of this experimental approach with specific regard to neuroscience research. 

I. The Pioneering Experiments. Random mutagenesis is a very powerful method for elucidating 

gene function in simpler model organisms. Given the size of the genome and slow reproductive 

cycles, however, a more direct approach is required for mammalian models. This need was met 

in the early 1980’s by establishing gene targeting in embryonic stem cells, later nicknamed 

mouse knockout. This technology was born at the confluence of two lines of experimentation: 

Firstly, the capacity of most mammalian somatic cells to carry out homologous recombination 

between endogenous loci and exogenous DNA was discovered. Secondly, pluripotent embryonic 

stem cell lines have been established that maintained the ability to intermingle with the early 

mouse embryo and contribute to the germline, thereby conferring heritability, even after 

extensive culturing in vitro. 

The process of homologous recombination had been known to exist in yeast, and during the 

prophase I of meiotic cell division during gametogenesis. In somatic cells, however, this faculty 

was generally believed to be absent, until curious results of gene conversion in human fetal 

globin genes (Slightom et al., 1980) and head-to-tail concatemerizations of microinjected 

plasmid DNA copies in the process of genomic integration (Folger et al., 1982) strongly 

suggested that this mechanism is operating in any cell. Subsequently, unequivocal evidence was 

furnished (Folger et al., 1984; Smithies et al., 1985), opening the door for specific gene 

modifications in somatic mammalian cells. 

In a concurrent and intellectually stimulating experimental advancement, embryonic stem (ES) 

cells were isolated from normal mouse blastocysts (Evans and Kaufman, 1981; Martin, 1981). 
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Unlike the previously characterized embryonic carcinoma (EC) cells, which were derived from 

testicular teratocarcinomas and also displayed some pluripotent features but never made germ 

cells (Hogan, 2007), the ES cells maintained their potential to substantially contribute to the 

mouse embryo after blastocyst injection (Bradley et al., 1984). ES cells could be cultured for 

several generations in vitro, genetically modified and subsequently introduced in the mouse germ 

line, which predestined them for introducing targeted the genetic modifications in the mouse as 

heritable traits (Capecchi, 1989b; Evans, 1989; Koller and Smithies, 1992; Robertson, 1991).  

II. Mouse Strains and Stem Cells Used in Gene Knockout Technology. ES cells afford a 

fascinating experimental opportunity to perform in essence any conceivable genomic 

modification in vitro and pass it on to live, behaving animals. Presently, ES cells are defined by 

two criteria: (i) unlimited symmetrical proliferation in vitro (ii) pluripotent developmental 

potential in vivo. The capacity for sustained and complete pluripotency of these cells is critical; 

without the ability of the genetically modified ES cell to eventually form sperm or egg, the 

genetic changes would be obviously limited to a single animal. For surmounting the barrier of 

germline transmission, no mouse strain had a greater significance than 129. The 129 mice are 

genetically predisposed to develop congenital testicular germ cell tumors that resemble relatively 

rare pediatric germ cell tumors in humans (Oosterhuis and Looijenga, 2005). The proclivity of 

strain 129 to testicular teratomas was first discovered by Stevens and Little (Stevens and Little, 

1954). In their original report, they showed that teratomas arise spontaneously in the testes of 

~1% of 129 male mice. Although the susceptibility genes causing these tumors have nor been 

identified yet, it is known that an additional defect in the Ter locus (Stevens, 1973), affecting the 

Dnd1 gene (Youngren et al., 2005), increases the incidence of testicular teratocarcinomas in the 

129 genetic background up to 94% (Noguchi and Noguchi, 1985). Teratocarcinomas can be 

serially transplanted between mice and eventually, conditions were developed that allowed the 

culture of these cells, later known as EC cells, in vitro (Kahan and Ephrussi, 1970).  

The 129 teratocarcinoma-derived EC cells are pluripotent and can differentiate, somewhat 

haphazardly, into cartilage, neural tissue, myocardium etc. Curiously, they never contribute to 

the tissue of origin - the germ line - after injection into a host blastocyst to generate a chimera. 

Further refinement of culture techniques, especially the introduction of cell feeder layers of 

mitotically inactivated embryonic fibroblasts, allowed Evans and Kaufman to establish a cell 

culture from the inner cell mass of 129 blastocyst (Evans and Kaufman, 1981). In this major 
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experimental breakthrough, the preimplantation blastocysts were collected at a state of 

developmental diapause, induced by ovariectomy, and subsequently cultured in vitro. The cell 

cultures derived from the cylinder-like structures had the resemblance and general growth 

characteristics of feeder-dependent EC cells, but unlike the tumor-derived EC cells, the embryo-

derived ES cells gave rise to high-proportion of germ-line chimeras (Bradley et al., 1984). This 

success immediately turned the 129-derived stem cells into the vehicle of choice for genomic 

modifications in the mouse (Johnson et al., 1989; Koller et al., 1989; Robertson et al., 1986; 

Schwartzberg et al., 1989; Thomas and Capecchi, 1990; Thompson et al., 1989; Zijlstra et al., 

1989). 

As a result, the vast majority of mice genetically modified by gene targeting thus far have a 

portion of129 genome in their genetic background. Unfortunately, 129 mice are poor breeders, 

and have abnormal anatomy (Wahlsten et al., 2006), immunology (McVicar et al., 2002), and 

behavior (Crawley et al., 1997). Genetic variability among more than half a dozen 129 substrains, 

and as many ES cell lines (e.g., EK.CCE, AB1, AB2.2, D3, HM1, J1, mEMS32, R1) is also 

considerable and has been a confounding factor in interpretation of the resulting phenotypes 

(Simpson et al., 1997). One illuminating example is the strain’s tendency to develop corpus 

callosum defects that erroneously implicated the Emx1 homeobox gene in the formation of this 

major axon bundle (Qiu et al., 1996; Yoshida et al., 1997). Although the Emx1 mutants 

manifested acalllosal phenotype in the 129 background, after 10 generations of backcrossing 

with C57BL/6 this defect was reversed and all Emx1
-/-

 mice developed corpus callosum normally 

(Guo et al., 2000). Therefore, caution should be exercised whenever neuroanatomical or 

behavioral phenotype is evaluated in animals with a high share of 129. Backcrossing to a more 

robust strain is typically carried out as a corrective measure. It is, however, very time consuming; 

in order to achieve >99% congenicity, backcrossing for 10 generations is necessary, which 

requires about 3 years. It can also be very costly; Speed Congenic projects guided by genome-

wide DNA maker scans can achieve a similar level of congenicity in 5-6 generations, but the 

associated cost is high. Even more disturbingly, genetic context close to the targeted gene (~10 

cM) is always that of the stem cell, even after extensive backcrossing (Hospital, 2001). If strain-

specific cis-regulatory mutations exist, expression of the targeted gene will always reflect the 

129 pattern. 
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 Neuro-behavioral researchers have been gradually shifting the focus towards ES cells derived 

from other genetic strains, mainly the C57BL/6 strain that was developed by Clarence Cook 

Little in 1921. There are numerous reasons why C57BL/6J is widely used. Since it was the first 

strain to have its genome completely sequenced, comprehensive genetic resources are widely 

accessible. Most notably, high-quality bacterial artificial chromosome (BAC) libraries have been 

constructed (Osoegawa et al., 2000), end-sequenced (Zhao et al., 2001), and aligned against the 

mouse genome by the UCSC genome browser (Zweig et al., 2008). These publicly available 

resources have reduced the time required for the identification and acquisition of isogenic DNA 

for the construction of targeting vectors to minutes and days, respectively. From the anatomical 

and behavioral point of view, C57BL/6J mice suffer from age related hearing loss 1 (Ahl) due to 

mutations in the Cdh23 gene, with an onset after 10 months of age (Johnson et al., 2000). The 

C57BL/6J strain is also mutant for nicotinamide nucleotide transhydrogenase (Nnt), which 

contributes to glucose intolerance, resulting in mild to moderate hyperglycemia and 

hyperinsulinemia, and susceptibility to diet-induced obesity (the C57BL/6N substrain carries the 

wild type allele for this locus). Curiously, C67BL/6J mice prefer 10% ethanol to water (Fuller, 

1964). Other traits include a high incidence of microphthalmia, low bone density, increased 

incidence of hydrocephalus, as well as hair loss associated with overgrooming and barbing. Yet, 

good longevity, fertility, low susceptibility to tumors and good performance on cognitive and 

learning tasks make C57B/6 a very useful model for neurobiology studies that can be interpreted 

in the context of a large body of research. 

Although 129 ES cells consistently outperform other mouse strains in terms of their potential to 

colonize developing embryos, their culture vigor and relative tolerance to genetic background of 

recipient blastocysts, many C57BL/6 ES lines have demonstrated a surprisingly high germ line 

transmission and good breeding performance in chimeras with otherwise low (10-40%) coat 

color contribution (Seong et al., 2004). Certain C57BL/6 ES cell lines (Bruce4, BL/6-III) have 

been available for almost two decades (Kontgen et al., 1993; Ledermann and Burki, 1991) and 

are still in productive use despite of reports on their genetic heterozygosity and aneuploidy 

(Hughes et al., 2007). It commonly requires more attempts to generate chimeric mice with 

C57BL/6 ES cells, and therefore, hybrid ES cells from 129 x C57BL/6 F1 crosses have been 

introduced to circumvent this problem (George et al., 2007). These hybrid ES cells (termed G4) 

are capable of generating 100% ES cell-derived animals if combined with electrofusion-induced 
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tetraploid carrier embryos (tetraploid embryo complementation assay) (George et al., 2007). 

However, this approach compromises the purity of the genetic background and, hence, the 

pursuit of robust C57BL/6 ES lines continues (Keskintepe et al., 2007). With optimized culturing 

techniques, high rates of germline transmission have been obtained using all three major 

methodological approachesblastocyst injection, tetraploid complementation and co-culture 

aggregation with diploid 8-cell embryos with several new C57BL/6 ES lines (Tanimoto et al., 

2008).  Importantly, the C57BL/6 strain had been chosen for the production of mutant alleles by 

large-scale international knockout programs, such as KOMP or EUCOMM (Collins et al., 

2007b). More recently, JM8 embryonic stem cells of C57BL/6N origin have been developed that 

appear to meet the strict requirements for these ambitious projects (Pettitt et al., 2009). 

 III. Gene Targeting in Other Rodent Species. The serendipity of the presence of 

teratomas in the 129 strain uncovered the path towards gene targeting in the mouse, which until 

recently has been the sole mammal amenable to this protocol. However, in order to better 

appreciate the causality of gene expression in nervous system specialization, particularly in the 

evolutionary context, it will be necessary to extend this approach to other mammalian models. 

New discoveries in the field of molecular and developmental biology carry a promise of 

achieving this goal in the near future. Remarkably, standard laboratory mice are in fact 

recombinant strains with unequal contributions from all three major subspecies of Mus musculus 

(M. m. domesticus, M. m. musculus and M. m. castaneus) which undergo spontaneous genetic 

exchanges at the boundary of their natural geographic ranges (Galtier et al., 2004). The closest 

relative to M. musculus is the North African Mus spretus, that is only cross-fertile with M. 

musculus through the female lineage. Inbred strains of M. spretus have been established and M. 

spretus x M. musculus crosses had been very instrumental during the pre-genomic era in 

unambiguously mapping hundreds of genes by haplotype analysis, owing to the 2% genome 

sequence divergence between the two species. Moreover, strong phenotypes observed in M. 

spretus that are related to various immunological and behavioral aspects potentially expand the 

phenotypic polymorphism available in laboratory rodents (Dejager et al., 2009). Germline-

competent ES cells have been established from M. spretus (SPRET/Ei) x C57BL/6J hybrid 

(Hochepied et al., 2004), providing access to gene targeting in this valuable model. Analogous 

approaches will likely be adaptable for other mouse species capable of generating F1 hybrids 

with M. musculus.  
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 Given the advantage of size and physiological accessibility, the rat is one of the premier 

animal models for neuroscience, but its experimental potential has been limited by the lack of the 

key reagent: germline-competent ES cells. This situation is changing rapidly now, although it 

took almost 25 years to overcome the case-specific strategies developed for the 129 strain of 

mice. The recent work on ES cells has made it clear that in order to maintain the ground state of 

“stemness” in ES cells, it is essential to repress several key pathways towards differentiation – 

particularly those governed by fibroblast growth factor (FGF) and glycogen synthase kinase 3 

(GSK3) signaling (Ying et al., 2008). Effectors of these signaling pathways are ubiquitously 

present in fetal calf serum, a common component of ES cell media, which has been used along 

with the leukemia inhibitory factor (LIF) and bone morphogenetic proteins (BMP) to promote 

ES cell proliferation and self-renewal. The 129 strain and some other murine ES cells can endure 

these conditions, but as it turned out, rat and presumably other mammalian ES cells absolutely 

require additional active repression of GSK3 and mitogen-activated protein kinase (MEK/ERK) 

activities, which would otherwise respond to extrinsic and autocrine FGFs and drive the cells 

towards commitment. By supplementing the serum-free ES media with specific small molecule 

inhibitors of GSK3 and MEK/ERK pathways, authentic rat ES cells have been isolated and their 

germline potential has been confirmed (Buehr et al., 2008; Li et al., 2008). Undoubtedly, this 

discovery heralds a new era for the rat model in experimental neuroscience. Moreover, induced 

pluripotent stem (iPS) cells have been derived from adult rat fibroblasts using the newly 

established technique of genetic reprogramming with a cocktail of four transcription factors 

(Oct4, Sox2 c-Myc and Klf4) (Li et al., 2009; Liao et al., 2009). Although germline competence 

of rat iPS cells has not been demonstrated yet, it can be expected in the near future, promising to 

further expand availability of genetic targeting to particular strains of rats or mice and potentially 

to other species. 

 IV. Strategies to Specific Gene Inactivation. To specifically modify the eukaryotic 

genome, one has to introduce foreign DNA with extensive sequence homology, termed targeting 

vectors, into the cell nucleus. Initially, this was done by adding crystals of calcium phosphate 

with co-precipitated plasmid DNA to the cultured cells (Graham and van der Eb, 1973). 

However, this approach has a very low efficiencyapproximately one in one million cells. This 

deficiency was dramatically improved by microinjecting DNA directly to the cell nucleus 

through glass micropipettes (Capecchi, 1980), producing targeted recombinants at a frequency of 
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about 1 per 1,000 injected cells or better (Thomas et al., 1986). Until today, this technique 

remains unsurpassed regarding the success rate of the desired DNA modifications, which is 

probably related to an optimal (limited) number of exogenous DNA molecules per cell.  Because 

microinjection is laborious and difficult to automate, it was eventually replaced by other mass 

delivery methods, out of which electroporation approximates best the ideal method. In our 

laboratory, one to ten
 
million ES cells in one milliliter of the buffer are electroporated with fifty 

micrograms of linearized targeting vector and plated onto six ten-centimeter plates with 

confluent irradiated feeder cells for selection. Drug-resistant cells give rise to clones that are 

further expanded and analyzed. 

 Once introduced into the nucleus, the exogenous DNA molecule frequently becomes 

integrated in a host’s chromosome by one of the two principal mechanisms: either by a non-

specific integration that involves random chromosome breakage and non-homologous end-

joining (NHEJ), or by homologous recombination (HR) that utilizes alignment of extensive 

sequence homology between the recipient DNA molecule and exogenous DNA. The NHEJ 

process is of vital importance since it is believed that a single unrepaired DNA break can induce 

cell death (Rich et al., 2000). The double-stranded end repair involves two Ku70/Ku80 

complexes, two DNA-PKcs molecules and is repaired by the DNA ligase IV/XRCC4 complex 

(Lieber, 2010; Wyman and Kanaar, 2006). The homologous recombination employs the 

activities of Rad51 (the mammalian homologue of RecA) as well as Rad52, Rad54 and tumor 

suppressor genes Brca1 and Brca2 (San Filippo et al., 2008). This mechanism is essential for 

DNA repair, preservation of DNA replication fork, telomere maintenance, and chromosome 

segregation in meiosis I. Since it normally uses sister chromatids as homologous templates, this 

mechanism is mainly available during the S and G2 phases of the cell cycle. The relative 

proportion between NHEJ and HR activities determines the success of specific gene targeting 

event. Surprisingly, the principal barrier to efficient gene targeting is not the low frequency of 

HR, but rather the high frequency of NHEJ.  

 Indeed, the unexpected finding that homologous recombination can occur with 

substantial frequency between the exogenous DNA and endogenous mammalian chromosomes 

turned gene targeting in embryonic stem cells into a powerful genetic tool (Capecchi, 1989a; 

Smithies et al., 1985; Thomas and Capecchi, 1987). Soon it was established that a key parameter 

affecting the frequency of legitimate homologous integration is the length and quality of the 
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regions of sequence homology. Extending the length of the homology arms up to about 15 kb 

consistently increases the frequency of homologous recombination (Deng and Capecchi, 1992; 

Scheerer and Adair, 1994; Shulman et al., 1990), whereas shortening the homology under 1 kb 

decreases the targeting efficiency precipitously (Thomas et al., 1992). Similarly, the degree of 

sequence identity plays a role in properly aligning the homologous regions and 97% or greater 

identity is necessary for maximum efficiency, stressing the importance of using isogenic DNA 

for the construction of targeting vectors, especially in the intronic and intergenic regions. Two 

basic types of gene targeting vehicles have been devised, sequence insertion vectors (ends-in) 

and sequence replacement vectors (ends-out). Both techniques have specific uses. For example, 

sequence insertion vectors have been employed to generate gene duplications to study gene 

dosage effects during development (Boulet and Capecchi, 2002). The sequence replacement 

vectors have a comparable targeting efficiency, are more intuitive, and are more suitable for most 

common applications. They constitute a principal targeting approach today. Very few genes 

provide the opportunity to directly select for their loss of function, which was a convenient 

feature of initial targeting experiments in the Hprt locus counter-selected with 6-thioguanine 

(Doetschman et al., 1987; Doetschman et al., 1988). Gene conversion events are rare 

(approximately 1 in 1,000,000 cells) and therefore, they have to be enriched using a suitable 

positive selection marker. The amino 3'-glycosyl phosphotransferase (neo) gene in a combination 

with the neomycin analog G418 (geneticin) is a highly effective and most commonly used 

selection, whereas the puromycine and hygromycine selection systems are also effective, but 

tend to be harsher to the cells. 

 The targeting frequency remains the least predictable variable of genetic manipulations. 

The incidence of successful homologous recombination in a specific locus varies widely (~0.01 

to 40%), and it is widely believed that it reflects ongoing transcription activity in the particular 

locus of the ES cell host. Great efforts have been directed towards improving this limiting step 

across the genome, with partial success (Vasquez et al., 2001). Invariably, linearization of the 

targeting vector prior to electroporation improves the targeting frequency, presumably by 

exposing free DNA ends. However, further treatment of the DNA ends, such as addition of 

dideoxynucleotides or using enzymatic conversion to leave single-strand tails, has not yielded a 

substantial practical advantage. Similarly, interfering with individual components of the NHEJ or 

HR pathways to suppress non-specific integration of targeting vectors and enhance homologous 
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recombination has so far proved inefficient or deleterious to the pluripotency of ES cells. This is 

exemplified by the virus-induced chicken B cell line DT40 that displays 10-100% targeting 

efficiency without any selection (Buerstedde and Takeda, 1991),. On the other hand, a 

commonly used mechanism that consistently increases the percentage of correctly targeted 

clones several-fold among the pool of G418-resistant colonies is negative selection. This strategy 

is mostly used in conjunction with the sequence replacement vectors and relies on the inclusion 

of a conditional toxin gene in the targeting vector outside the homology regions. In case of 

illegitimate integration, the herpes virus thymidine kinase HSVTK1 gene and subsequent 

gancyclovir treatment (Mansour et al., 1988) or diphtheria toxin DT gene (Yagi et al., 1993) 

eliminate the illegitimate integrations. If homologous strand exchange takes place, the negative 

selection gene does not integrate and the clone survives. 

 Several alternative strategies improving the gene targeting productivity deserve special 

mention. First, gene trapping greatly increases the percentage of successfully targeted clones. 

The gene trapping method, also known as promoter trapping, hijacks the endogenous 

transcription activity of the targeted locus to express a promoter-less selection marker included 

in the targeting vector (Chen and Soriano, 2003; Joyner et al., 1992; Sedivy and Dutriaux, 1999; 

Stanford et al., 2001). This refinement eliminates the majority of false positive clones that 

normally result from random intergenic insertion in a standard experiment, because they fail to 

express the selection gene. If regions of specific DNA homology are included in the gene trap 

vector, gene targeting of the selected locus will be highly enriched. However, one drawback of 

this technique is that the gene of interest must be transcriptionally active in embryonic stem cells, 

which is unfortunately not true for many important genes functioning in the adult nervous system. 

More recently, new gene trap technology has emerged, based on a DNA transposon from 

cabbage looper moth Trichoplusia ni. This mobile element, named piggyBac (Fraser et al., 1996), 

was found to be highly active in vertebrate cells (Ding et al., 2005). It is precisely excised and 

integrated into TTAA sites through the activity of piggyBac transposase. Importantly, new 

integration sites have a high preference for the first intron of transcription units (Ding et al., 

2005). Hence, with appropriately modified piggyBac, random mutagenesis can be accomplished 

in vivo without any selection (Wu et al., 2007). Other transposon systems have been employed to 

study mammalian genomes, such as the Sleeping Beauty transposon recovered from salmonid 

fish (Ivics et al., 1997), that exhibits a stronger tendency for local “hopping”. 
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Second, targeting with bacterial chromosomes (BACs) harboring extensive DNA homology has 

been introduced (Valenzuela et al., 2003; Yang and Seed, 2003). Standard plasmid DNA-based 

targeting vectors usually accommodate up to about 20 kb of sequence homology. In contrast, 

BACs have a ten-fold greater capacity and the vector is maintained at 1-2 copies per E. coli cell, 

which improves the stability of recombinant mammalian DNA. Moreover, partly because of the 

low copy number, BACs can be predictably modified by homologous recombination, directly in 

the prokaryotic host (Muyrers et al., 2001; Muyrers et al., 1999; Zhang et al., 1998; Zhang et al., 

2000), enabling the construction of versatile targeting vectors in a short time (Fu et al., 2010; Lee 

et al., 2001; Testa et al., 2003). This adaptation of homologous recombination in E. coli is often 

referred to as Red/ET cloning or recombineering (Copeland et al., 2001), and it is based on 

precise regulation of lambda phage (or Rac prophage) recombinogenic genes (bet, gam and exo) 

as well as several positive and negative selection markers (Warming et al., 2005) to seamlessly 

join heterologous DNA fragments using as little as 45-55 bp of sequence homology. This affords 

a much-needed technological breakthrough that lessens the burden of targeting vector 

preparation. The task has traditionally relied on restriction enzyme digestion, PCR, and ligation 

of DNA fragments. This sequence used to take months, whereas recombineering reduces the 

time required to a week or two and can be applied to any size vectors (Wu et al., 2008). As 

previously mentioned, BAC clones carrying a gene of interest can be identified with the UCSC 

genome browser (Zweig et al., 2008) and obtained from several sources (ATCC, BACPAC 

Resources) that greatly facilitate the preparatory work. However, aside from several unique 

advantages, such the possibility to target several distant loci with one targeting vector (Testa et 

al., 2003) or targeted replacement of very large genes (Capecchi et al. unpublished data) the 

large-size targeting vectors did not dramatically enhance the targeting efficiency (Valenzuela et 

al., 2003). BACs are more difficult to handle and prepare in large quantities. Unequivocal 

verification of a correct homologous recombination event is also more complex. Extensive 

homology arms make the standard Southern blotting procedure with external hybridization 

probes nearly impossible, and alternative methods must be used (quantitative real-time PCR or 

FISH to determine the copy number of the DNA in question (Valenzuela et al., 2003; Yang and 

Seed, 2003)). 

Third, zinc finger nucleases are changing the ways gene targeting can be implemented. In 

molecular biology’s vocabulary, zinc fingers are 30-amino-acid sequence repeats containing two 
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invariant pairs of cysteins and histidines (C2H2) structurally stabilized with one Zn
2+

 ion. They 

were first recognized in the transcription factor IIIA (TFIIIA) from frog oocytes (Klug, 2010). 

Evolutionarily, this domain has proven to be a very successful molecular design, as it is present 

in 3% of all genes of the human genome. Zinc finger proteins bind DNA by virtue of the variable 

region of each zinc finger that recognizes three specific base pairs of DNA. Linear clusters of 

zinc fingers bind consecutive triplets (Pabo et al., 2001), and three to four fingers provide a 

sufficient range to recognize 9-12 base pairs with a good specificity. Moreover, variable portions 

have been thoroughly diversified by mutagenesis and zinc fingers have been isolated that bind 

most of the 64 possible triplets (Dreier et al., 2001; Dreier et al., 2005; Liu et al., 2002; Segal et 

al., 1999). Utilizing these biochemical properties of zinc fingers, Zinc Finger Nucleases (ZFNs) 

have been engineered as protein fusions between several designer zinc finger modules and a non-

specific cleavage domain derived from the type II restriction enzyme FokI (Kim et al., 1996). 

Since the FokI cleavage domain must dimerize to cleave DNA, ZFNs are designed and applied 

as heterodimers. The unique advantage of these artificial protein hybrids is that they can be 

rationally designed to introduce double-strand breaks to specific sequences in pre-selected loci. 

As a consequence, cellular DNA repair pathways are strongly activated, stimulating gene 

targeting in a given locus 100- to 10,000 fold (Durai et al., 2005; Porteus and Carroll, 2005), 

which is perhaps the greatest targeting frequency boost presently achievable. The repair can 

occur by either NHEJ or HR pathways. Repair mediated through NHEJ is error prone, often 

leading to frame-shift mutations and consequently mutant alleles of the targeted gene. With 

ZFNs, knockout animals have been obtained in models not easily amenable to genetic 

modifications, including zebrafish (Meng et al., 2008). ZFNs can be introduced in ES cells, iPS 

cells or even early stage rat embryos (Geurts et al., 2009) to achieve gene disruption. If a 

targeting vector is co-introduced that is homologous to the target locus on both sides of the 

double-strand break, the site can be repaired by homology-directed repair, which allows specific 

genetic replacements and insertions of exogenous sequences (Hockemeyer et al., 2009). 

Considering the high, selection-independent modification efficiency in target loci, ZFN-based 

approaches are bound to rapidly expand the range of rat knockouts available and move us closer 

to clinical applications aspiring to correct inborn mutations in adult stem cells (Lombardo et al., 

2007). 
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 Using these technologies, thousands of specific mouse genes have been disrupted, 

providing an increasingly detailed model of mammalian brain development and function. During 

this phase, the selection of genes to target was exclusively determined by individual research 

groups pursuing their specific interests. Inevitably, a coordinated international effort to 

systematically mutate all protein-coding mouse genes has become a logistical necessity (Collins 

et al., 2007b). In 2007, the International Knockout Mouse Consortium (IKMC, 

http://www.knockoutmouse.org) was established to curate the progress summary of four 

participating programs: the Knockout Mouse Project (KOMP) (Austin et al., 2004), the European 

Conditional Mouse Mutagenesis Program (EUCOMM) (Friedel et al., 2007), the North 

American Conditional Mouse Mutagenesis Project (NorCOMM), and the Texas A&M Institute 

for Genomic Medicine (TIGM) (Collins et al., 2007a). IKMC is based in the Jackson Laboratory, 

Bar Harbor, ME, and is maintained under the auspices of the Mouse Genome Database (Bult et 

al., 2009). As of March 2011, according to the information provided by IKMC, nearly 16,000 

genes (out of ~25,000 registered) have been mutated in ES cells, employing a variety of 

strategies including gene trapping and conditional mutagenesis that will be discussed in the next 

section. Only a fraction of these cell lines has been made into mouse lines, but virtually all major 

neuroreceptors and developmentally important transcription factors have been mutated and their 

phenotypes have been studied at some extent. However, a more precise understanding of specific 

gene functions will continue to require case-by-case customized targeting approaches to address 

experimental questions ranging form assessing point mutations in animal models of human 

diseases (Zeiher et al., 1995) to evaluating functional equivalence of evolutionary related genes 

(Greer et al., 2000; Tvrdik and Capecchi, 2006). Predictably, large-scale and small-scale gene 

targeting strategies will coexist, and their complementary strengths will benefit the diversity of 

neuroscience research. 

 V. Conditional Gene Inactivation and Genetic Labeling in the Nervous System.  

Numerous genes that are involved in the patterning and function of the nervous system also play 

essential roles in the embryonic development. If targeted inactivation of such a gene halts 

embryogenesis, studies on its adult brain functions are impossible. One illuminating example is 

the case of Fgf8, which is absolutely required for gastrulation. As a result, the Fgf8 mouse 

mutant embryos die on day 8.5. However, conditional mutagenesis demonstrated that Fgf8 plays 

additional essential roles in areas such as limb outgrowth (Lewandoski et al., 2000; Moon and 
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Capecchi, 2000). In the nervous system, Fgf8 signaling is required for the formation of the 

midbrain/hindbrain boundary (isthmus) (Sato and Joyner, 2009) or for the patterning of the 

telencephalon (Storm et al., 2006).  

 Standard conditional mutagenesis techniques in the mouse utilize the exquisitely specific 

interaction between the site-specific Cre recombinase and its cognate loxP sequences. As first 

demonstrated by Sauer and Henderson (Sauer and Henderson, 1988), the bacteriophage P1-

derived Cre (causes recombination) is highly active in mammalian cells and low expression 

levels are sufficient to mediate recombination between two 34-base-pair long loxP sites. Each 

loxP consists of two 13 base-pair palindromic arms and one 8-base-pair asymmetric spacer, 

which determines the orientation. Recombination between two loxP sites in direct orientation 

leads to an excision of the intervening sequence; inverted orientation results in perpetual 

inversions of the intervening sequence. Moreover, lox sites with mutant asymmetric spacers have 

been identified, such as lox2272, which can mediate recombination between themselves with a 

high efficiency, but not between mutant and wild type loxP (Langer et al., 2002; Lee and Saito, 

1998). These heterologous lox sites are used in parallel with wild type loxP sites if several 

alternative recombination events are desired, for example in the Brainbow mouse (Livet et al., 

2007), or to achieve an irreversible inversion of the intervening sequence (Schnutgen et al., 

2003).  

 In order to generate a conditional (“floxed”) allele, at least two cognate loxP sequences 

(in the same orientation) have to be introduced by homologous recombination in the genome. 

This process is governed by same gene targeting principles that were mentioned previously, with 

some additional considerations. Importantly, the loxP sites have to be engineered in the targeting 

vector to flank an essential exon in the gene. At the same time, the placement of the loxP sites 

must not elicit any adverse effects on gene activity before the recombination and that is usually 

accomplished by choosing insertion points in the flanking introns. Meeting both requirements 

can be occasionally challenging, such as in the case of very large or highly conserved genes with 

dense regulatory elements. In the targeted ES clone, it is essential to verify the presence of both 

the proximal loxP site (usually near the neo selection marker) and the distal loxP site, which 

becomes co-integrated at about half the frequency of the neo marker.  Recombination between 

widely spaced loxP sites (>10,000 base pairs), or loxP sites embedded in heterochromatin 

requires greater intracellular concentration of Cre. However, with a sufficiently strong Cre 
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expression, such as that in the HPRT-knockin mouse (Tang et al., 2002), very large intra-

chromosomal deletions, or even interchromosomal recombinations and syntenic replacements 

can be achieved (Wallace et al., 2007; Wu et al., 2007).  

 The spatial precision of a conditional mutagenesis is determined by the expression pattern 

of Cre that is either governed by an endogenous gene or by a randomly integrated exogenous 

promoter. Cre insertions in endogenous loci (gene replacements or “knock-ins”) reliably follow 

the pattern of the driver gene expression. One of two strategies is usually selected: Cre is either 

inserted in the exon 1 of the gene of interest, or it is “appended” in the last, untranslated exon of 

the gene, using a viral element known as internal ribosomal entry site (IRES). This latter design 

is very reliable and results in a bicistronic, independent translation of two separate proteins, the 

endogenous gene product and Cre. The former approach makes it possible to study a cell lineage 

that is mutant for the gene, if the animal carries the Cre replacement in both alleles. However, 

targeted approaches require a significant investment of time and effort. To accelerate access to a 

greater variety of Cre lines for the neuroscience community, the GENSAT Project at the 

Rockefeller University streamlined a method to generate Cre lines of mice using bacterial 

artificial chromosomes (BACs) (Gong et al., 2010). Hundreds of these lines, many of which have 

been characterized (http://www.gensat.org), enable researchers to genetically modify various 

regions of the mouse brain with good specificity. 

 In one cluster of applications, conditional Cre/loxP recombination is used to turn on 

expression of a reporter gene, rather than delete a conditional allele of a gene of interest. This is 

usually achieved by inserting a loxP-flanked transcriptional stop/polyadenylation signal inside a 

ubiquitously active gene, to disrupt its expression. Cre removes the transcriptional block and 

enables synthesis of a reporter molecule. Among several implementations of this basic principle, 

one stands out for its reliability and wide-spread use; this is the use of a conditional lacZ reporter 

gene, encoding beta-galactosidase, in the endogenous ROSA26 locus (Soriano, 1999). Beta-

galactosidase forms blue precipitate from colorless X-gal substrate and this enzymatic reaction 

has no background activity in mouse nervous system. ROSA26 was identified by gene trapping 

experiments in embryonic stem cells, which revealed that this gene has a low-to-moderate but 

nearly ubiquitous expression, and that its gene product is dispensable in development. One or 

two copies of the gene are lost in each experiment using genetic tools targeted in this locus. The 

phenotype of ROSA26 mutant is very mild, but unfortunately it is poorly understood since the 
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gene function is not well characterized. Similar to lacZ, the ROSA26 gene has been used to 

express, in a Cre-dependent fashion, hundreds of genes of interest. 

 Albeit rather weak in certain glia, ROSA26 is expressed throughout the entire nervous 

system across the adult life span. As a result, even transient expression of Cre becomes 

permanently recorded in the genome of the reporter cell and subsequently in the entire clonal 

population derived from this cell. Hence, this genetic technique reveals, in a cumulative fashion, 

the extent and fate of specific cell lineages derived from the expression domain of a certain gene. 

This information is important for an understanding of morphogenesis and function in normal 

organ development and disease, and cannot be easily attained by other methods. However, if the 

Cre-labeled gene has several waves of expression associated with multiple developmental roles, 

this method will not differentiate the staining derived from individual stages. Because of this, 

numerous efforts have been made to impose temporal control over Cre recombination. Currently, 

the most widely used system takes advantage of a protein fusion with a member of the nuclear 

hormone family of intracellular receptors, the estrogen receptor (ER). In the absence of estrogen 

receptor ligands, the CreER fusion is localized in the cytoplasm, thereby preventing Cre from 

mediating recombination. ER-specific ligands cause a translocation of the protein fusion to the 

nucleus and subsequent loxP recombination by Cre. Through several rounds of optimization, 

three amino acid substitutions were introduced in the ER moiety in a way that alters its 

specificity from endogenous estradiol to tamoxifen (Feil et al., 1996; Feil et al., 1997). Thus, a 

single intraperitoneal injection of tamoxifen can elicit loxP recombination in CreER expressing 

cells within hours of the administration. Unfortunately, tamoxifen also has unwanted biological 

effects, often leading to pregnancy loss in embryonic studies. Moreover, this approach has to 

balance two opposing requirements, one to minimize background leakage and another to 

maximize recombination after induction. Illegitimate recombination in the absence of tamoxifen 

can be improved by joining the ER moiety on either end of Cre (Matsuda and Cepko, 2007), but 

the induction efficiency never approaches 100% and CreER-mediated recombination is typically 

mosaic. The active metabolite causing nuclear translocation is actually 4-hydroxytamoxifen, 

which is converted from tamoxifen in the liver. Synthetic 4-hydroxytamoxifen is much more 

costly but its use is warranted if it can be localized, such as in the case of stereotaxic injections in 

the mouse brain (Weber et al., 2001). Analogous to ER, progesterone receptor (PR) CrePR 

fusions have been developed that can be induced by the antiprogesteron RU486 (mifepristone). 
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CrePR inserted in the tau locus has been shown to induce recombinase activity in neurons in a 

RU486-dependent fashion (Hashimoto et al., 2008).  

 The great impact of Cre/lox technology has stimulated a search for alternative site-

specific recombinases with distinct sequence specificities. FLP, isolated from the 2-micron circle 

of Saccharomyces cerevisiae, is the second most common recombinase used in mouse genetics 

(Dymecki, 1996). FLP binds to FRT, its cognate sequence that is similar in size and structure to 

loxP. FLP/FRT operates similarly to Cre/lox, but both systems show no mutual cross-reactivity. 

FLP applications have included excision of residual neo markers by breeding with FLP deleter 

mouse (Rodriguez et al., 2000), genetic labeling of FLP-dependent lineage (Dymecki and 

Tomasiewicz, 1998), and precise intersectional manipulations of the brainstem in conjunction 

with Cre/lox system (Kim et al., 2009). Initial studies were compromised by very low activity of 

the yeast FLP in mammalian cells due to thermolability of the wild type protein. A more stable 

FLPe was engineered by cycling mutagenesis using error-prone PCR and DNA shuffling 

(Buchholz et al., 1998) and its activity in mammalian  cells was further increased five fold in the 

FLPo version by codon optimization (Kranz et al., 2010; Raymond and Soriano, 2007). Dre, a 

more recently discovered recombinase that shares many similarities with Cre, interacts with a 

distinct recognition target termed rox (Sauer and McDermott, 2004). The Dre/rox system appears 

to be as effective as Cre/lox (Anastassiadis et al., 2009), and could become an ideal complement 

to Cre in the toolbox of intersectional genetics with or without temporal control. Lastly, PhiC31 

deserves a special mention as it has been used in genome engineering application (Belteki et al., 

2003) and optimized for expression in the mouse (Raymond and Soriano, 2007). PhiC31 belongs 

to a distinctive family of large serine site-specific recombinases that mediate directional 

recombination between two asymmetrical sites attP and attB. PhiC31 recombination is more 

prone to error than the tyrosine family of recombinases represented by Cre, Dre and FLP. 

However, PhiC31 proved useful in removing residual neo selection markers from complex 

alleles (Sangiorgi et al., 2008). The use of site-specific recombinases has had a significant impact 

on modern neuroanatomy and is also discussed in the Chapter 3.  

 In its most common implementation, site-specific recombination is irreversible and 

causes a permanent activation or inactivation of a gene of interest. However, in many 

experimental paradigms it is desirable to toggle between the On-State and Off-State with regard 

to a specific gene function. The most widely used technology meeting this requirement is the Tet 
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regulatory system developed by Herman Bujard’s group (Gossen and Bujard, 1992). The Tet 

system is a binary system consisting of two components, a synthetic transcription factor based on 

tetracycline-controlled repressor from Escherichia coli Tn10 transposon, and a composite 

promoter containing a cytomegalovirus (CMV) minimal promoter linked to multiple tetracycline 

operator (tetO) DNA binding sites. The promoter has been progressively improved by empirical 

modifications from the original Ptet-1 to a low noise Ptet-14 (aka Ptight) to the currently best 

performing third generation Ptet-T6 (Loew et al.). This promoter displays minimal background 

activity while maintaining a near maximum of inducibility over 5 orders of magnitude. 

Transcription of the Ptet-T6 promoter can be controlled with several tetracycline-dependent 

transcription factors that have been manipulated to function in different modes. The DNA-

binding domain of the Tet-OFF (tTA) (Urlinger et al., 2000) transactivator binds the tetO site in 

the absence of tetracycline, whereas Tet-On (rtTA) (Zhou et al., 2006) binds DNA in the 

presence of tetracycline. The DNA-binding moiety is typically fused to the VP16 transactivation 

domain from herpes simplex virus that stimulates transcription of the adjacent gene. However, 

either DNA domain can be fused to a transcription silencer domain, such as the Kruppel-

associated box (KRAB) domain of the Kid-1 zinc finger protein, which results in silencing of 

transcription initiation within 3,000 base pairs (Freundlieb et al., 1999). Together, Tet system 

provides exceptional versatility to genetic induction or silencing of genes of interest in the 

nervous system. Although the Tet system was originally developed using tetracycline as an 

antibiotic, doxycycline proved to be a more efficient and better-tolerated inducing antibiotic; 

concentrations of doxycycline as low as 5-10 ng/ml are effective with Tet-Off as well as the 

latest generation of Tet-On (Zhou et al., 2006). This level of sensitivity enables efficacious gene 

induction in the brain. Transactivators can be introduced by gene targeting or by random 

transgenesis and specific brain expression can be can be further increased by combining the Tet 

system with Cre/lox. By using a combination of these systems, Nakashiba et al. (Nakashiba et al., 

2009; Nakashiba et al., 2008) have been able to achieve CA3-specific inducible gene expression 

of tetanus toxin leading to the inhibition of synaptic vesicle exocytosis and block of 

neurotransmission. This genetic technology allowed the authors to provide new insight in the 

role of CA3 in learning and memory consolidation. 

 VI. Genetic Tools for Functional Dissection of Neuronal Circuits. The isolation and 

expression of the gene for Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria 
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ushered a new era of in vivo imaging of live neurons (Chalfie et al., 1994). On the heels of this 

discovery, searches for additional fluorescent proteins resulted in the identification of a new 

families of genes, such as those from non-bioluminiscent red mushroom coral Discosoma (Matz 

et al., 1999). Initially, the use of wild type fluorescent proteins in mammalian cells was limited 

by technical problems, including dim fluorescence, poor photo stability and folding at 37°C, 

inconvenient excitation spectra, and cellular toxicity due to aggregation, especially prominent in 

coral-derived proteins. Largely due to the efforts of Roger Tsien and colleagues, fluorescent 

proteins have been optimized for brightness, emission spectra, and stability and have become the 

most widely used tracer molecules (Shaner et al., 2005). In addition to the optimized green 

fluorescent protein (EGFP), tdTomato, an especially bright head-to-tail dimer of the original 

DsRed protein, has gained popularity. For example, Cre reporter mice with the tdTomato tracer, 

generated at the Allen Institute for Brain Science (Madisen et al., 2010), provide exceptionally 

bright and detailed picture of neuronal anatomy, in both live and fixed tissue (Figure). In 

addition, emission spectra of several fluorescent protein reporters have been extended to the 

near-infrared region, which allow deeper in vivo imaging (Shcherbo et al., 2010; Shu et al., 2009). 

However, the utility of these tools for brain imaging remains to be investigated.  

 If the density of Cre-positive cells is too high, fluorescent tracing may results in a poorly 

differentiated signal in which individual cells are difficult to distinguish. To overcome this 

deficiency, Jeff Lichtman’s and Joshua Sanes’s laboratories designed a technology to express 

random combinations of different color fluorescence reporters with Cre/lox technology (Livet et 

al., 2007). Depending on a specific design (Brainbow 1 or Brainbow 2), a combination of up to 

four different fluorescent proteins is re-shuffled by the use of compatible and/or heterologous 

loxP sites positioned in between the genes. Cre makes alternative use of these loxP sites and 

stochastically determines which fluorescent protein is juxtaposed to the promoter. If multiple 

copies of Brainbow cassettes are integrated in the genome, about 100 individual color hues can 

be distinguished. This technology provides an unprecedented possibility to uniquely identify and 

follow neuronal projections over long distances (Livet et al., 2007). 

 Another powerful strategy using fluorescent tracing, named Mosaic Analysis with 

Double Markers (MADM) was developed by Liqun Luo’s laboratory (Zong et al., 2005). They 

have introduced, by gene targeting, Green-loxP-Red and Red-loxP-Green chimeric fluorescent 

proteins at an equivalent locus in two homologous chromosomes. The chimeric proteins are 
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colorless. But in the process of mitosis, directed Cre expression can mediate recombination 

between two different chromosomes, which will result in the reconstitution of fluorescent 

proteins. An opportune segregation will result in daughter cells of two distinct colors, Green-

loxP-Green and Red-loxP-Red. If the progenitor cell harbors a heterozygous mutation on the 

telomeric side of the green marker, the green daughter cell will inherit both mutations and will be 

mutant, whereas the red daughter cell can serve as an internal heterozygous control. The fate of 

the green mutant cell progeny can be then precisely followed in the context of normal brain 

development. This method will strongly facilitate the task of unraveling the roles of individual 

genes in brain development and functioning. 

 Genetically encoded reporters have also improved the sensitivity and specificity of 

several principal in vivo brain imaging techniques, including magnetic resonance imaging (MRI), 

positron emission tomography (PET) or optical imaging (OI). For example, endogenous 

expression of either human heavy chain of ferritin or bacterial iron transporter from 

Aquaspirillum magnetotacticum (magA) has been shown to improve MRI visualization of cells 

positive for these reporters by accumulating iron intracellularly (Cohen et al., 2007; Zurkiya et 

al., 2008). More recently, a nonmetallic, lysine rich–protein (LRP) reporter has been developed 

which conveys similar contrasting benefits using so-called chemical-exchange saturation transfer 

(MRI-CEST) that has less adverse effects on cellular metabolism (Gilad et al., 2007).  For PET 

imaging, the herpes simplex virus type 1 thymidine kinase (HSV1-tk) is most common reporter 

gene used in conjunction with a series of radiolabeled substrates (Min and Gambhir, 2008). 

Optical imaging uses relatively inexpensive CCD cameras to detect bioluminescent signal 

generated by the firefly or Renilla luciferases following administration of the substrate luciferin. 

Remarkably, neural activity in the barrel cortex of anesthetized mice was recorded with 

luciferase driven by the promoter of immediate early gene c-fos (Wada et al., 2010). The special 

and temporal resolution of these methods is unfortunately rather poor due to their inherent 

technical limitations. 

 Great advances in imaging of neural activity were recently made with genetically 

encoded biosensors based on optimized fluorescent proteins. Of particular importance is the 

monitoring of calcium transients that are widely used as a proxy for neuron activity. Genetically 

encoded calcium indicators (GECIs) have been dramatically improved in the past few years, 

exploiting several alternative strategies. The first design utilized pH-sensitive variant of green 
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fluorescent protein to measure loss of protons associated with synaptic vesicle fusion and 

neurotransmitter release, termed synapto-pHluorin. Although this tool did not allow monitoring 

the activity at individual synapses, it was very instrumental in deciphering odor-induced patterns 

of glomerular activation in the olfactory bulb (Bozza et al., 2004; Miesenbock et al., 1998). A 

next generation approach has employed Förster resonance energy transfer (FRET) between cyan 

and yellow fluorescent proteins that are connected through a linker consisting of calmodulin 

(CaM) and CaM-binding peptide of myosin light-chain kinase (M13). In the presence of calcium, 

M13 binds CaM and bends the flexible linker, bringing the fluorescent proteins closer together 

and causing energy transfer from cyan to yellow. Remarkable sensitivity and dynamic range has 

been achieved in several variants of these so-called Yellow Cameleons (Horikawa et al., 2010; 

Nagai et al., 2004). More recently, a particularly efficient calcium sensor has been engineered 

from a single green fluorescent protein. This strategy relies on circularly permuted GFP: The 

original N and C termini are fused and new termini are generated in the middle of the protein, 

one joined with CaM and the other with M13 (Baird et al., 1999; Nakai et al., 2001). To reflect 

its modular structure, this calcium indicator was named G-CaM-P. Calcium stimulates 

dimerization of CaM and M13, which in turn stabilizes the chromophore in the centre of the GFP 

barrel and increases its intrinsic fluorescence by several-fold. The newly optimized variant 

GCaMP3 shows robust fluorescence responses to calcium transients and faster kinetics than 

previous constructs (Tian et al., 2009). (Figure) Using powerful deep tissue imaging with two 

photon excitation (Svoboda and Yasuda, 2006),  Dombeck et al. were able to monitor the activity 

of place neurons in the CA1 region of the hippocampus in mice navigating through a virtual 

maze (Dombeck et al., 2010).  Together with rapidly improving genetically targeted voltage-

sensitive fluorescent proteins (Akemann et al., 2010), these new sensors will enable a new level 

of performance for monitoring the activity of large neuronal assemblies in freely behaving 

animals.  

 Ultimately, gene targeting provides means to specifically manipulate neuronal activity in 

behaving experimental models.  Numerous attempts have been made to dissect the role of 

neuronal circuits with endogenously expressed effectors, ranging from complete genetic ablation 

with Cre-dependent diphtheria toxin (Wu et al., 2006) to more subtle alterations of neural 

functions with e.g. other naturally occurring neurotoxins, heterologous ligand-gated channels (Li 

et al., 2002), or designer G protein coupled receptors (Rogan and Roth, 2011). For example, the 
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previously mentioned tetanus toxin gene has been used in conjunction with Cre- and FLPe-

dependent intersectional genetics to probe the role of rhombomere-specific groups of brainstem 

neurons in serotonin- modulated behaviors (Kim et al., 2009). Inducible expression of 

genetically encoded conotoxins (from cone snail venoms) or spider agatoxins has been used to 

specifically inhibit Cav2.1- and Cav2.2-mediated calcium currents in dopaminergic and 

nociceptive modulatory circuits (Auer et al., 2010). However, the kinetics of these approaches is 

generally slow and does not allow experimental interrogation of dynamic neural networks.  This 

deficiency has been addressed by the introduction of a toolbox of light-gated ion channels 

collectively referred to as optogenetics (Deisseroth, 2011). Although the phenomenon of light-

activated channels directly controlling the flow of ions across the plasma membrane was known 

for decades, its usefulness for precise control of neuronal activity had not been generally 

accepted until a landmark report was published in 2005 (Boyden et al., 2005). Two classes of 

light-sensitive opsins have been harnessed for expression in mammalian cellsactivating 

(depolarizing) channelrhodopsins, and silencing (hyperpolarizing) halorhodopsins and 

bacteriorhodopsins. Channelrhodopsin-2 (ChR2) from green alga Chlamydomonas reinhardtii, a 

sodium channel-controlling gene, is the most widely used opsin that causes membrane 

depolarization when exposed to blue light. The protein function has been thoroughly exploited 

by random mutagenesis, yielding variants with a faster spiking pattern (ChETA) and a greater 

light sensitivity (CatCh) (Gunaydin et al., 2010; Kleinlogel et al., 2011). Among hyperpolarizing 

opsins, which are yellow light-driven chloride or proton pumps, the halorhodopsin eNpHR3.0 

(Gradinaru et al., 2010) or archaerhodopsin-3 (Arch) from Halorubrum sodomense (Chow et al., 

2010) are particularly useful for in vivo experiments. Successful attempts have even been made 

to create protein chimeras between bovine retina rhodopsin and adrenergic G protein coupled 

receptors, to control distinct signaling pathways (intracellular calcium concentration or cyclic 

AMP) in response to light (Airan et al., 2009). Using a combination of viral and transgenic 

techniques, optogenetic tools have been used in freely moving animals to begin elucidating the 

circuits underpinning complex behaviors and disorders such as conditioned fear, depression 

anxiety or aggression (Covington et al., 2010; Haubensak et al., 2010; Lin et al., 2011; Tsai et al., 

2009; Tye et al., 2011).  

 In synergy with further technological breakthroughs in the physics of two photon 

excitation (Grewe et al., 2010), biochemistry of light-controlled protein interaction, such as split 
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Cre dimerization (Kennedy et al., 2010) or cell biology of virus dependent mono-trans-synaptic 

labeling techniques (Miyamichi et al., 2010), gene targeting will continue to play an important 

role in providing a precise spatial and temporal platform for increasingly sophisticated 

experiments to unravel how information is represented and processed in different neural 

assemblies of the brain.  
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FIGURE. Genetically encoded fluorescent reporters used in studies of brain development 

and function. (A–D) Enhanced green fluorescent protein (EGFP) has been used in 

countless application to illuminate live cells of interest. In this example, a tauEGFP 

protein fusion was knocked in the endogenous Hoxb1 locus via internal ribosomal entry 

site (IRES). This genetic modification allows direct visualization of Hoxb1-governed 

processes in the mouse embryo, including the specification of the rhombomere 4 (r4) in 

the developing hindbrain and outgrowth of the facial motor nerve (7n). The tauGFP 

reporter is enriched in the axons by virtue of its interaction with microtubules. E denotes 

the day of gestation. Modified from Tvrdik and Capecchi (Tvrdik and Capecchi, 2006). 

(E) Red fluorescent protein variants, such as tdTomato engineered from the original 

DsRed prototype, are superior neuronal tracers. Avery bright tdTomato Cre reporter 

mouse line was developed by the Allen Institute for Brain Science (Madisen et al., 2010). 

In the crosses with the Hoxb8-IRES-Cre driver, which is expressed in the spinal cord, 

ascending spinal projections in the brain can be directly imaged by confocal microscopy 

in fresh or fixed sagittal sections, including the most rostral spinothalamic tract (ST). (F) 

In addition, Hoxb8 is expressed in the definitive hematopoietic system (Chen et al., 2010). 

As a result, many cortical microglia are also distinctly labeled and readily identifiable 

with this pancytoplasmic tdTomato reporter. (G) Using a different fluorescent reporter 

line, in which ubiquitously expressed plasma membrane-associated tdTomato becomes 

specifically replaced with membrane-bound EGFP in Cre-expressing cells (Muzumdar et 

al., 2007). Early postnatal infiltration of Hoxb8-positive microglia through the blood 

vessels into brain parenchyma can be directly observed with two photon imaging. P 

indicates postnatal age in days. (H–K) Most recently, circularly permuted GFP has been 

transformed into a very sensitive calcium indicator dubbed GCaMP3, which enables 

monitoring of neural activity in live brain tissue (Tian et al., 2009). In these rat brain 

slices, a GCaMP3 gene was incorporated in the DNA of rat embryonic brain cells using 

piggyBac transposase and in utero electroporations. After pharmacological stimulation, 

transfected neurons and astrocytes in the cortex show robust two photon signal changes 

reflecting calcium transients. Two photon imaging was performed by Mike Economo, the 

GCaMP3 data is courtesy of John White’s and Karen Wilcox’s labs, University of Utah. 
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