
Understanding the Behavior of Pthread Applications

on Non-Uniform Cache Architectures

Gagandeep S. Sachdev, Kshitij Sudan, Mary W. Hall & Rajeev Balasubramonian

School of Computing, University of Utah

Why is it important?

• As number of cores in a processor scale up, caches would become banked
• Keeps individual look-up time small.
• Allows parallel accesses by different cores.

• Present shared programming model assumes a flat memory.
• Unaware application can have sub-optimal performance.

Experiments

Core

Slice of shared
last level cache

Private caches

Tile

Long access delay

Smaller access delay

Chip Multi-Processor

Non-Uniform Cache Access(NUCA) architecture

Solution Approaches

Analysis of PARSEC Benchmarks

• Oracle and Migration perform close to Ideal (Blackscholes)

• Good static mapping perform as good as Migration!
• Threads work on independent partitions of a large data structure.

• OS can allocate partitions to optimal banks.
• First Touch fails

• Main thread might have initialized .

• Oracle better than Migration (Canneal, Freqmine, Streamcluster)

• Migration is not ideal or there is a better static mapping.
• Canneal has uniform sharing on a large data structure.
• In Streamcluster, threads work primarily on their partition

• Makes accesses to other partitions too.
• Migration will migrate pages unnecessarily

• Based on activity within an epoch.

• OS can map data partitions to dominant accessor.

• Migration better than Oracle (Bodytrack, Ferret, Fluidanimate,
 Swaptions, X264)

• Ferret and Bodytrack
• Dynamic scheduling of threads.
• Use global queue to pass work to different pipeline stage.
• Run-time allocation without data locality

• Static mapping becomes unsuitable.
• Don’t have a first-in, first-out queue.

• Data affinity in scheduling tasks needed.
• Swaptions

• Pages allocated dynamically from malloc calls
• Same page allocated to different threads.
• Static mapping unsuitable.

•Thread-Private heaps should be used.

• First Touch
• Page mapped to the core making first access.

• Migration
• First touch followed by migrating few pages.
• Highly accessed pages are chosen.

• Oracle-Two pass simulation
• First run measures accesses, Second run measures performance.
• Oracle_High – Page placed in the bank yielding most local hits.
• Oracle_COG – Page placed at the center of gravity of sharers.

• Ideal
• Ignores placement and assumes local bank access time for every LLC access.

Conclusion

• Programming model needs to change
• For any heterogeneous memory hierarchy.

• Architecture, OS, compiler and application developer should work together
• Significant performance gains can be achieved.
• Without increasing system complexity.

• As complexity of memory hierarchy grows, optimizations like these will be critical.

• Dynamic NUCA is proven to be complex
•Bandwidth and power hungry.

• Static NUCA
• Physical address determines what bank data resides.
• Virtual to physical address mapping has to be done smartly.

• Page coloring
• First touch based coloring is proven to be not accurate.

• Coupling with migration
• Again power and bandwidth hungry.
• High overheads.

• We need simple and effective solutions
• Use of programmer or compiler hints.
• Get initial placement correct.

Solutions

• Using thread-private storage of stack and local, dynamically allocated data.
• Partitioning global shared objects into separate pages.
• Explicitly marking migratory data.
• Affinity scheduling of parallel tasks.
• Programmer guided pragmas or compiler hints

• Categorize data structures

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

