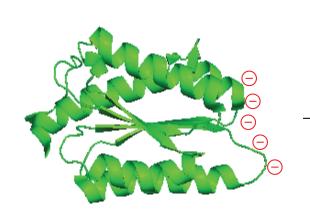

Construction of a Protein-based Nanoreactor Using Charge Complementarity Seung-Ook Yang and Kenneth Woycechowsky* Department of Chemistry, University of Utah 315 South 1400 East, Salt Lake City, UT 84112 *e-mail: kwoycech@chem.utah.edu THE UNIVERSITY OF UTAH

1. Introduction

Figure 1. Schematic For Nanoreactor

Protein capsids can be formed by noncovalent assembly of multiple identical subunits


In nature, encapsulation is used to regulate the activities of some enzymes

- Examples include carbon fixation, propanediol utilization and ethanolamine utilization
- We have developed a nanoreactor using charge complementarity to study how enzyme encapsulation influences catalysis

2. Engineering The Capsid (AaLS-13)

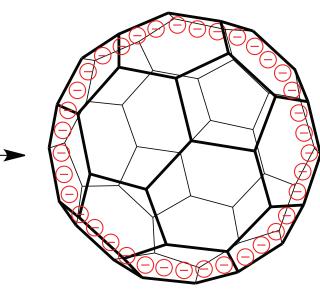
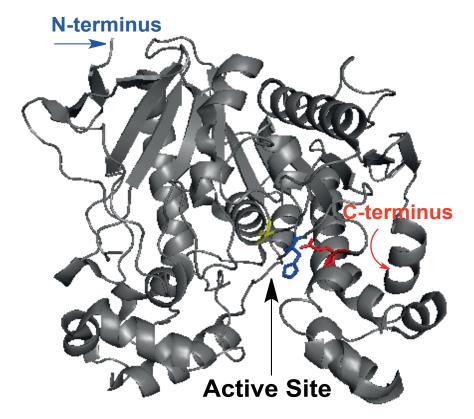

- Lumazine synthase (AaLS) is a non-viral capsid protein from Aquifex aeolicus
- An engineered variant of AaLS (AaLS-13) that possesses a negatively charged inner surface has been previously generated by rational design and directed evolution
- **Previous experiments have shown that AaLS-13 can encapsulate R₁₀** tagged guest proteins (GFP and HIV-protease) upon coproduction in E. coli

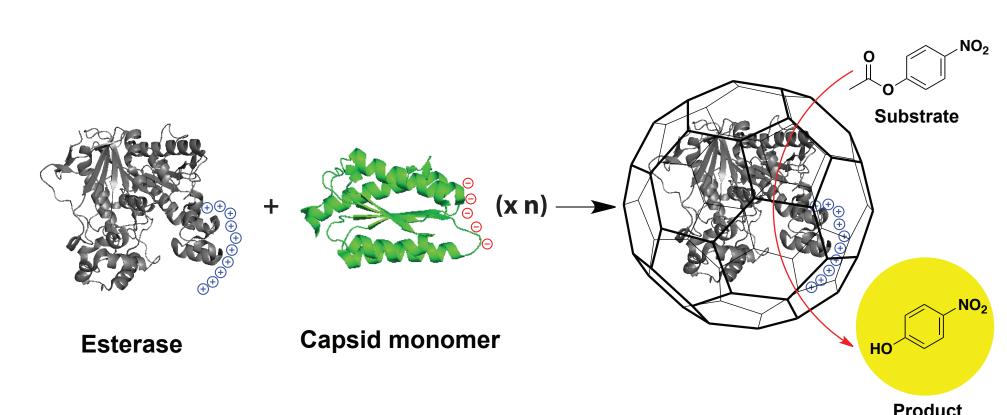
Figure 2. Assembly of AaLS-13

Capsid Monomer


x n

AaLS-13 Capsid

3. Guest Enzyme (Est55-R₁₀)


Figure 3. Carboxylesterase (Est55)

- **Est55** is a carboxylesterase from Geobacillus stearothermophilus
- Maximum activity at pH 8, which is compatible with the capsid
- Broad substrate specificity
- To promote encapsulation by AaLS-13, a deca arginine (R_{10}) tag has been fused with C-terminus of Est55 (Est55-R₁₀)

4. Enzyme Activity

Figure 4. Characterization of Encapsulated Enzyme

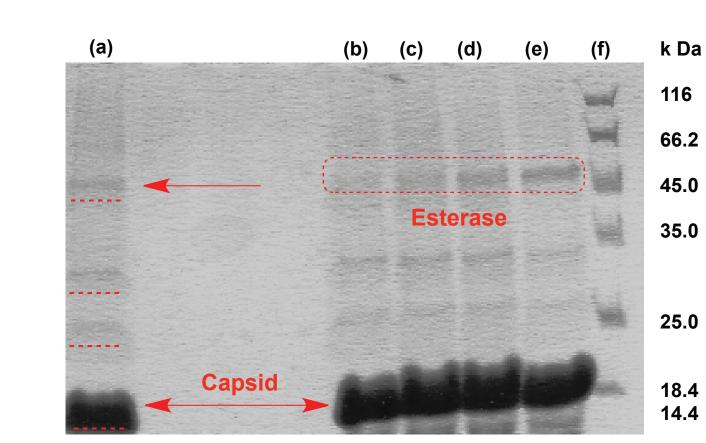

₋oaded esterase

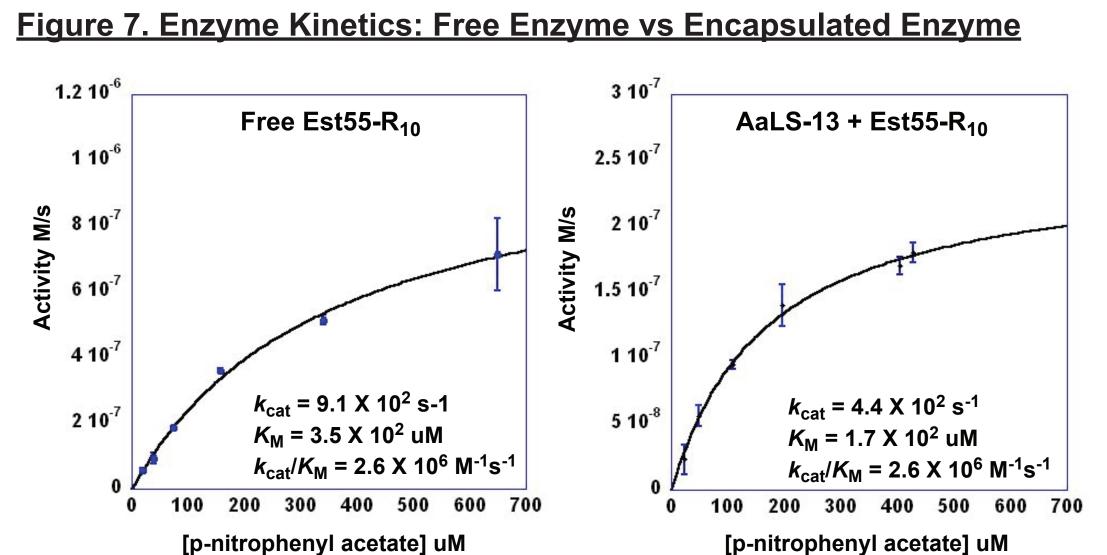
Figure 5. Specific Activity: Empty vs Loaded Capsids

AaLS-13 AaLS-13 + Est55-R₁₀ [Activity (M/s)] [Activity (M/s)] [Protein (mg/ml)] [Protein (mg/ml)] 0.25 0.01 0.25 **(A)** 0.008 0.2 0.008 0.2 0.006 0.15 0.15 0.006 0.004 0.004 0.1 0.1 0.002 0.002 0.05 0.05 20 25 30 35 10 15 15 20 10 25 30 35 0 Fraction Fraction AaLS-13 + Est55-R₁₀ AaLS-13 **Specific Activity 4.0 x 10**⁻³ **2.6 x 10**⁻¹ ± 1.9 x 10⁻³ ± 1.3 x 10⁻¹ (µmol of product/min/ mg of total protein)

5. Guest Enzyme Detection

Figure 6. SDS-PAGE Detection of Encapsulated Est55-R₁₀

6	(a): AaLS-13 co-produced with Est55-R $_{10}$ (27 μ g)
2	(b) ~ (e) : AaLS-13 and Est55-R ₁₀ were purified separately and then mixed
.0	(b): AaLS-13 (43 μg), Est55-R ₁₀ (12 ng)
.0	(c): AaLS-13 (43 µg), Est55-R ₁₀ (23 ng)
.0	(d): AaLS-13 (43 µg), Est55-R ₁₀ (45 ng)
	(e): AaLS-13 (43 µg), Est55-R ₁₀ (90 ng)
4	(f): Molecular weight standards
.4	


6. Enzyme Loading Efficiency

Protein Pair	AaLS-13 + Est55-R ₁₀	AaLS-13 + Est55	AaLS-wt Est55-R
Loading Estimation by	Activity and SDS-PAGE	Activity	Activity
Number of Esterase per Capsid	1 / 11	1 / 76	1 / 144

In case of AaLS-13 + Est55-R₁₀, SDS-PAGE analysis and activity gave similar loading estimation

Charge complementarity between esterase and capsid contributes significantly enhanced loading efficiency

7. Michaelis-Menten Kinetics

• Upon encapsulation, k_{cat}/K_{M} of Est55- R_{10} is not changed, but k_{cat} and $K_{\rm M}$ both decrease by about two-fold

8. Conclusion and Future Directions

- Free Est55-R₁₀ has high enzymatic activity with p-nitrophenyl acetate
- An encapsulated Est55-R₁₀ is also highly active with the small model substrate and confers a 64-fold higher specific esterase activity relative to the empty capsid
- Positively supercharged Est55 variants may improve capsid loading
- Activity of different packing densities with encapsulated supercharged Est55 will be measured
- Varying molecular weights of substrates will determine porosity of the capsid

