Fast Shape-Based Nearest-Neighbor Search for Brain MRIs using Hierarchical Feature Matching

Peihong Zhu, Suyash P. Awate, Samuel Gerber, and Ross Whitaker
Scientific Computing and Imaging Institute, University of Utah

CONTRIBUTIONS

- Proposed a fast spatial pyramid matching (SPM)[1] based method for quantifying shape similarities/differences between pairs of brain MR Images.
- Demonstrated the effectiveness of the proposed method, by comparing with the registration based distance metrics, in k nearest neighbor ($k-N N$) search for brain MR Images.
- Applied this method to multiatlases based brain tissue segmentation.

METHODOLOGY

- Image pre-processing: intensity and spatial normalization, edge-preserving filtering.
- Feature extraction: collect orientation+curvature feature vectors on canny edges
- Codebook generation: apply k-mean clustering in feature space, the clustering centers consist of the codebook.
- Label assignment: assign hard/soft labels to feature vectors
- SPM similarity computation.

SPATIAL PYRAMID MATCHING (SPM)

Each labeled feature map is represented as a multilevel histogram called spatial pyramid Features in two different pyramids are 'matched' if they lie in the same bin at a specific level in the pyramid.

Given two images A and B, if denote their spatial pyramid at level l as h_{A}^{l} and h_{B}^{l}, the number of matches is given by the histogram intersection:
$I\left(h_{A}^{l}, h_{B}^{l}\right)=\sum_{i=1}^{M_{l}} \min \left(h_{A}^{l}(i), h_{B}^{l}(i)\right)$
The number of new matches occuring at level $l<L$ is $N_{l}=I\left(h_{A}^{l}, h_{B}^{l}\right)-I\left(h_{A}^{l+1}, h_{B}^{l+1}\right)$, and for level L, is $N_{L}=I\left(h_{A}^{L}, h_{B}^{L}\right)$

Similarity between A and B is then measured using pyramid matching kernel (PMK):
$\kappa(A, B)=\sum_{l=1}^{L} w_{l} N_{l}=I\left(h_{A}^{L}, h_{B}^{L}\right)+\sum_{l=0}^{L-1} \frac{1}{2^{L-l}}\left(I\left(h_{A}^{l}, h_{B}^{l}\right)-I\left(h_{A}^{l+1}, h_{B}^{l+1}\right)\right)$,
where $w_{l}=1 /\left(2^{L-l}\right)$ decreases exponentially with level coarseness, for the finest level, $w_{L}=1$

To ensure a maximum PMK similarity, it is normalized as: $\widetilde{\kappa}(A, B)=\kappa(A, B) / \sqrt{\kappa(A, A) \kappa(B, B)}$

PERFORMANCE EVALUATION

- Effectiveness

SPM is compared to elastic registration[2] and diffeomorphic registration (LDDMM)[3] for k-NN selection of brain MRIs. Considering a training set of brain images $\mathcal{B}=\left\{B_{1}, \cdots, B_{M}\right\}$ and a test set $\mathcal{A}=\left\{A_{1}, \cdots, A_{N}\right\}$. For image A_{i}, let the k-NN found by SPM and reference method (elastic registration or diffeomorphic registration) be $\eta_{S}\left(A_{i}, k\right)$ and $\eta_{R}\left(A_{i}, k\right)$, the evaluation metrics are:

1. Accuracy: $\pi=(1 / N) \sum_{i=1}^{N}\left|\eta_{R}\left(A_{i}, k\right) \cap \eta_{S}\left(A_{i}, k\right)\right| /\left|\eta_{R}\left(A_{i}, k\right)\right|$
2. ϵ-ball radius ratio: $\gamma=(1 / N) \sum_{i=1}^{N}\left[\max _{B \in \eta_{S}\left(A_{i}, k^{*}\right)} d_{R}\left(A_{i}, B\right)\right] /\left[\max _{B \in \eta_{R}\left(A_{i}, k\right)} d_{R}\left(A_{i}, B\right)\right]$
3. Dice Overlap: Dice $=(2|A \cap G|) /(|A|+|G|)$

- Computational complexity
linear in the point-set cardinality, number of pyramid levels, and number of codes

RESULTS

Plots of linear regression

REFERENCES

1. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: IEEE Conf. CVPR. vol. 2, pp. 2169-2178 (2006)
2. Gerber, S., Tasdizen, T., Fletcher, P., Joshi, S., Whitaker, R., ADNI: Manifold modeling for brain population analysis. Med. Imag. Analysis 14(5), 643-653 (2010)
3. Beg, F., Miller, M., Trouve, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comp. Vis. 61(2) (2005)

ACKNOWLEDGEMENTS

This work is supported by the NIH/NCRR Center for Integrative Biomedical Computing-2P41 RR0112553-12, and the NIH/NCBC National Alliance for Medical Image Computing - U54-EB005149.

