
Extensible type systems
Syntax Semantics

Type system

Type system design choices

Dynamic

Nominal

Structural

Monomorphic

Polymorphic

Inferrence

Programming
environment

What type system works best? Which type systems do
programmers want to use?

Macros are compile time
user defined functions

(define-syntax (for-loop syntax)
 (syntax-case syntax (in)
 [(_ iterator in values body ...)
 #'(let loop ([rest values])
 (cond
 [(null? rest) (void)]
 [else (let ([iterator (car rest)])
 body ... (loop (cdr rest)))]))]))

Define the typing rules for a given expression
along with a macro.

#lang VHDL

library ieee;
use ieee.std_logic_1164.all;

entity NOR_ent is
port(x: in std_logic;
 y: in std_logic;
 F: out std_logic
);
end NOR_ent;

#lang honu

obj add1(x){
 x + 1
}

(int -> int) get(){
 add1
}

Domain specific languages can be embedded inside a host
language. Designers of new languages should have the
ability to make different design choices than the host
language. The most common form of extensibility in modern
languages is syntactic extension but we claim that
extensible type systems play another key role in the design
space.

Languages can be defined almost entirely
with macros. PLT Scheme macros are
powerful enough to let the programmer
define his own type system.

Jon Rafkind

Matthew Flatt

(for i in (list 1 2 3)
 (do-work (+ i 1))

(let loop ([rest (list 1 2 3)])
 (cond
 [(null? rest) (void)]
 [else (let ([i (car rest)])
 (do-work (+ i 1))
 (loop (cdr rest)))]))

(define-syntax/type (for-loop syntax)
 (syntax-case syntax (in)
 [(_ iterator in values body ...)
 (values
 (type-constraint (element-type
 iterator
 values))
 #'(let loop ([rest values])
 (cond
 [(null? rest) (void)]
 [else (let ([iterator (car rest)])
 body ... (loop (cdr rest))))]))]))

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

