
emulab

Motivation

A new model for encapsulating
disk contents to provide greater
flexibility and control of the client
environment

Efficient and Flexible Storage
 - Server-side de-duplication
 - Versioned images
 - Dynamic image creation
 - Greater user accessibility

Current Frisbee Model

Approach

Challenges

Client-1

Client-3

Client-2

 LINUX

 Image Library

Frisbee Server

NFS

Empty
Container

BSD 7.2Redhat Ubuntu

 Java XEN

 ZFS JBOSSECLIPSE

 SQL

 LAMP

 Content Addressable Storage VM Pool

VM-0

VM-1

VM-2

VM-3

Frisbee
Server
Thread

Frisbee
Server
Thread

Frisbee
Server
Thread

Client

High Speed Interconnect

Request
OS + Pkgs

Multicast Chunks
 to Clients

 Fetch Chunk Map

Send Client
Chunk Map

Compute diff-map

Request chunk Map

 chunk

bch: A client-side block device
 driver (1) to dynamically
 track changes to chunks
 and (2) compute chunk
 map

 A Unified Storage and Deployment Model for the
 Emulab Network Testbed

 Raghuveer Pullakandam, Mike Hibler and Eric Eide

Scalable Deployment
 - Reduced network traffic
 - Reduced image redundancy
 - Leverage client-side storage
 - Flexible image specification
 - User-contributed delta images
 - Support dynamic client
 setup

Frisbee efficiently distributes disk images and configures nodes
in the Emulab Network Testbed
 - Server partitions a disk image into independent chunks
 - Server multicasts chunks to the clients

Issues & Limitations
 - Designed for image
 distribution, not
 image management
 - Redundant image
 content

Applications

It is difficult for Emulab users to customize disk images for realistic
network experiments
 - Monolithic disk images - Multiple imaging mechanisms
 - Lack of variety - Lack of flexibility

 - Provide flexibility and variety using a unified, efficient and
 scalable mechanism
 - Flexibility for creating custom client environments
 - Variety of OSes and apps to promote realism

 - Dynamic tracking of disk chunks at client side
 - Storing and caching golden/delta images
 - Fast data transmission between Back end Storage, Cache, VM Pool
 and Frisbee Server
 - VM Pool management and fast turn around time for server requests
 - Tracking dependencies between images
 - Is a block-level representation of data the best choice?
 - Security concerns

Delta Image
 - Usually corresponds to a
 package/patch or a OS revision
 - Applied on top of a golden
 image

Contextualization
 - Fast setup of a distributed system by imparting contextual
 information into the data chunks thus avoiding the need for
 client-side agent scripts
 - Single chunk dispatched to multiple clients thus saving bandwidth

Fast reimaging of client nodes in a testbed
 - Reimaging client nodes requires replacing only modified chunks
 - Less data transmitted over the network

New Proposed Frisbee Model

 Flux Research Group, School of Computing

 BSD

 BSD
+Java

 LINUX
+Java

 BSD+Java
+LAMP

 LINUX+Java
+LAMP

Frisbee Server

Frisbee Server

Multicast

- No support for dynamic image
 creation
- Emphasis on keeping clients busy,
 not server-side optimization
- Scalable in number of hosts,
 not number of images

This material is based upon work supported by National Science Foundation under Grant No. 0709427. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation

 Windows Windows
+MSOffice

Windows

 LVM

EXT4

Problem

Goals

 Disk

<start,
size,
data>

Container Cache

Client Client Client Client Client Client Client

Frisbee Server
 - Queries backend storage for
 requested environment
 - Fetches chunk map if present
 - Forwards request to the VM
 pool if not present
 - Identifies chunks to
 multicast

Container
 - Abstraction
 associated with
 an application

Golden Image
 - An immutable
 disk image
 - Typically
 a base OS

VM Pool
- A pool of pre-configured virtual machines
- Dynamic VM allocation
- Loads disk image that is closest to
 requested configuration
- Installs required environment
- Sends updated chunk map to
 Frisbee server

Chunk Map
 - Description of chunks
 in a disk image

Diff Map
 - Description of chunks
 that need to be multicast

A chunk is an independent data entity. It is
processed as soon as it reaches the client

Chunk
Golden Image

Delta
Image

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276282064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

