
emulab

Motivation

A new model for encapsulating 
disk contents to provide greater
flexibility and control of the client
environment

Efficient and Flexible Storage
  - Server-side de-duplication
  - Versioned images
  - Dynamic image creation
  - Greater user accessibility
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  A Unified Storage and Deployment Model for the
                     Emulab Network Testbed

          Raghuveer Pullakandam, Mike Hibler and Eric Eide

Scalable Deployment
  - Reduced network traffic  
  - Reduced image redundancy
  - Leverage client-side storage
  - Flexible image specification
  - User-contributed delta images
  - Support dynamic client
    setup

Frisbee efficiently distributes disk images and configures nodes 
in the Emulab Network Testbed
   - Server partitions a disk image into independent chunks
   - Server multicasts chunks to the clients
 
Issues & Limitations
   - Designed for image
     distribution, not
     image management
   - Redundant image    
     content

Applications

It is difficult for Emulab users to customize disk images for realistic 
network experiments 
   - Monolithic disk images                - Multiple imaging mechanisms                                                  
   - Lack of variety                             - Lack of flexibility

   - Provide flexibility and variety using a unified, efficient and 
     scalable mechanism
   - Flexibility for creating custom client environments
   - Variety of OSes and apps to promote realism

  - Dynamic tracking of disk chunks at client side
  - Storing and caching golden/delta images
  - Fast data transmission between Back end Storage, Cache, VM Pool
    and Frisbee Server
  - VM Pool management and fast turn around time for server requests
  - Tracking dependencies between images
  - Is a block-level representation of data the best choice?
  - Security concerns
 

Delta Image
 - Usually corresponds to a 
   package/patch or a OS revision
 - Applied on top of a golden
   image

Contextualization
    - Fast setup of a distributed system by imparting contextual  
      information into the data chunks thus avoiding the need for
      client-side agent scripts
    - Single chunk dispatched to multiple clients thus saving bandwidth

Fast reimaging of client nodes in a testbed
   - Reimaging client nodes requires replacing only modified chunks
   - Less data transmitted over the network
  

New Proposed Frisbee Model

            Flux Research Group, School of Computing
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- No support for dynamic image
  creation
- Emphasis on keeping clients busy,
  not server-side optimization
- Scalable in number of hosts,
  not number of images
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Frisbee Server
  - Queries backend storage for
    requested environment
  - Fetches chunk map if present
  - Forwards request to the VM
    pool if not present
  - Identifies chunks to
    multicast

Container
  - Abstraction
    associated with
    an application
 

Golden Image
  - An immutable
    disk image
  - Typically
    a base OS

VM Pool
- A pool of pre-configured virtual machines
- Dynamic VM allocation
- Loads disk image that is closest to 
  requested configuration
- Installs required environment
- Sends updated chunk map to 
  Frisbee server 

Chunk Map
  - Description of chunks
    in a disk image

Diff Map
  - Description of chunks
    that need to be multicast

A chunk is an independent data entity. It is 
processed as soon as it reaches the client
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