
Hardware Prediction of OS Run-Length For
Fine-Grained Resource Customization

 Kshitij Sudan, David Nellans, Rajeev Balasubramonian and Erik Brunvand

Background

➢ Computing moving from emphasizing
single thread performance to an energy
efficient, throughput oriented chip-
multiprocessor (CMP) based model.

➢ Several studies suggest offloading OS
execution to one of the CMP cores.

➢ To be effective, must balance the cost of
offloading versus the benefits.

➢ Offloading typically implemented by
manually instrumenting a few OS routines
(out of hundreds).

➢ Such an effort not sustainable across
several operating systems and hardware
configurations.

Hardware Based Decision Making

I. Predicting OS Run-Length

Results

Conclusion

➢ Averaged across all benchmarks, the predictor,
while requiring only 2 KB of storage, is able to
precisely predict the run length of 73.6% of all
privileged instruction invocations.

➢ It is also able to predict within ±5% the actual
run length an additional 24.8% of the time.

➢ Minimal software instrumentation consumes at
least 16 instructions for a single fixed parameter
offloading decision.

➢Complex instrumentation, similar to what we
implement in hardware, would take 250 instructions
or more. Our hardware decision engine is able
to make this decision in just a single cycle.

For more details:
Hardware Prediction of OS Run-Length For Fine-
Grained Resource Customization

David Nellans, Kshitij Sudan, Erik Brunvand, Rajeev
Balasubramonian, ISPASS, March 2010

Motivation

➢ Improve system performance by
selectively offloading OS execution.

➢ Offloading improves performance
because:

I. User threads don't compete with the OS
for cache/ CPU/ branch predictor
resources.

II. OS invocations from different threads
interact constructively at the shared OS
core to yield better cache and branch
predictor hit rates.

Proposal

Making offloading decisions in software
often sub-optimal because it's expensive in

terms of run-time overhead and
applications vary in their use of OS features.

We propose offloading decision
mechanisms should be supported
through a hardware based OS run-

length predictor.

XOR

Registers

PSTATE

G0

G1

I0

I1

AState

Run
Length Confidence

Last 3 OS
Invocation Lengths

1 32if(confidence = 0):
average(last 3)

else:
predicted

Predicted
Run

Length

Actual OS
Run

Length

Predicted
Within 5% Actual?

Yes – Increment

No – Decrement

Always Update With Actual

II. When to Offload?

➢ Hardware predictor above provides a discrete
prediction of OS run-length.

➢ The offloading decision making mechanism is
distilled into a binary prediction : if run-length
exceeds N instructions, then offload OS execution.

➢ Estimation of N can be tuned for optimal
behavior - either performance or energy-delay
product (EDP).

➢ If the hardware is responsible for selecting the
value of N at run-time, then sample behavior at the
start of every program phase and employ the optimal
configuration until the next program phase change is
detected.

➢ In example experiments, using L2 cache hit-rate as
the feedback metric to estimate N, hardware predictor
had an average runtime overhead of <1% when
instrumenting all possible OS entry points.

➢ If offloading occurs only on OS invocation run
lengths >500 instructions, then the predictor makes
correct off-loading decision 94.8%, 93.4%, 96.8%,
and 99.6% of the time for Apache, SPECjbb2005,
Derby and the average of all compute benchmarks,
respectively.

