

Background

Computing moving from emphasizing single thread performance to an energy efficient, throughput oriented chipmultiprocessor (CMP) based model.

Several studies suggest offloading OS execution to one of the CMP cores.

 \succ To be effective, must balance the cost of offloading versus the benefits.

> Offloading typically implemented by manually instrumenting a few OS routines (out of hundreds).

Such an effort not sustainable across several operating systems and hardware configurations.

Motivation

Improve system performance by selectively offloading OS execution.

> Offloading improves performance because:

I. User threads don't compete with the OS for cache/ CPU/ branch predictor resources.

II. OS invocations from different threads interact constructively at the shared OS core to yield better cache and branch predictor hit rates.

Proposal

Making offloading decisions in software often sub-optimal because it's expensive in terms of run-time overhead and applications vary in their use of OS features.

We propose offloading decision mechanisms should be supported through a hardware based OS runlength predictor.

Fine-Grained Resource Customization

instrumenting all possible OS entry points.