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Quasi-linear series in three-dimensional electromagnetic 
modeling 

Michael S. Zhdanov and Sheng Fang 
Department of Geology and Geophysics, University of Utah, Salt Lake City 

Abstract. We have recently introduced a quasi-linear (QL) approximation for the solution 
of the three-dimensional (3-D) electromagnetic modeling problem. In this paper we discuss 
an approach to improving its accuracy by considering the QL approximations of the higher- 
order. This approach can be considered the natural generalization of the Born series. We 
use the modified Green's operator with the norm less than I to ensure the convergence of 
the higher orders QL approximations to the true solution. This new approach produces the 
converged QL series, which makes it possible to estimate the accuracy of the original QL 
approximation without direct comparison with the rigorous full integral equation solution. 
It also opens principally new possibilities for fast and accurate 3-D EM modeling and 
inversion. 

1. Introduction 

In our recent publications [Zhdanov and Fang, 
1996a, b] we developed a novel approach to three- 
dimensional (3-D) electromagnetic (EM) modeling 
based on linearization of the integral equations for 
scattered EM fields. We called this approach a quasi- 
linear (QL) approximation. It is based on the as- 
sumption that the anomalous field E • is linearly re- 
lated to the background (normal) field E * in the in- 
homogeneous domain E a = XE b, where • is an elec- 
trical reflectivity tensor. The reflectivity tensor in- 
side inhomogeneities is approximated by slowly vary- 
ing functions which are determined numerically by a 
simple optimization technique. 

The results of numerical calculations have demon- 

strated that QL approximation gives an accurate es- 
timate of the 3-D EM response for a much stronger 
conductivity contrast (up to 100 times) than conven- 
tional Born approximation and for a wide range of 
frequencies. It has also been shown that this method 
is much faster than the computer codes based on the 
full integral equation (IE) solution. 

There is a possibility, however, of increasing the ac- 
curacy of the QL approximation by constructing QL 
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approximations of a higher order. It is well known, 
for example, that conventional Born approximation 
can be applied iteratively, generating the Nth or- 
der Born approximations. This approximation can 
be treated as the sum of N terms of Born (or Neu- 
mann) series. However, the convergence of the Born 
series is questionable and depends on the norm of 
integral equation (Green's) operator. 

It seems to be attractive to construct similar series 

on the basis of QL approximation. In this paper we 
present a solution of this problem. It is based on a 
new method of constructing the converged Born se- 
ries developed recently by Pankratov et al. [1995]. 
This method can be considered as the generalization 
of iterative dissipative method (IDM) developed by 
Singer and Fainberg [1995]. It transforms the con- 
ventional EM Green's integral operator Gb of for- 
ward modeling in inhomogeneous media into mod- 
ified Green's operator G• with the norm smaller 
than 1' II G?11 _< 1. Using this method, Pankratov 
et al. [1995] have constructed new Born series which 
are almost always converged. 

We use this method to generate QL series and cal- 
culate the accuracy of QL approximation. The im- 
portant theoretical result is that the developed QL 
series are always converged for any lossy background 
medium. A new method of QL series opens the pos- 
sibility for fast and accurate solution of 3-D EM scat- 
tering problems. 
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To make the presentation clearer, we feel it is nec- 
essary to begin our paper with a short review of the 
methods of constructing the classical and always con- 
verged Born series. In the subsequent sections we in- 
troduce QL series based on QL approximation. The 
QL series make it possible to estimate the accuracy of 
the original QL approximation [Zhdanov and Fang, 
1996a] without direct comparison with the rigorous 
full integral equation (IE) solution and to construct 
a fast and accurate iterative method for 3-D forward 

modeling. The last section presents numerical results 
illustrating the efficiency of the new forward model- 
ing approach. 

2. Born Series in Forward Modeling 
Consider a 3-D geoelectric model with the back- 

ground (normal) complex conductivity •0 and local 
inhomogeneity D with an arbitrarily varying com- 
plex conductivity • = •0 q- A•, which can be, in 
general case, frequency dependent. We assume that 
/• - /•0 - 4•r x 10-7H/m, where /•0 is the free- 
space magnetic permeability. The model is excited 
by an electromagnetic field generated by an arbitrary- 
source. This field is time harmonic as e -i•t. Com- 

plex conductivity includes the effect of displacement 
currents • -cr- iwe, where cr and • are electrical 
conductivity and dielectric permittivity, respectively. 
The electromagnetic fields in this model can be pre- 
sented as a sum of background (normal) and anoma- 
lous fields' 

E- E b q- E a, H- H b q- H a, 

where the background field is a field generated by 
the given sources in the model with the background 
distribution of conductivity •0, and the anomalous 
field is produced by the anomalous conductivity dis- 
tribution A•. 

The EM field in this model satisfies Maxwell's 

equations, which can be written separately for back- 
ground field E 

VX H b--•bEb+j • 

•7 x E b -- iw/•H ø, 

(where j• is the density of extraneous electric cur- 
rents) and for anomalous field E a, H a' 

where 

ja _ A•E =A• (E ø + E a) (2) 
is the density of excess electric currents within inho- 
mogeneity D . 

It is well known that the anomalous field can be 

presented as an integral over the excess currents in 
the inhomogeneous domain D [tlohmann, 1975]; 
[ Weidelt, 1975]: 

Ea(rj)--///D •ø(rj [r)jadv--Gø(Ja)' (3) 
where •0 (rj Jr) is the electromagnetic Green's ten- 
sor defined for an unbounded conductive medium 
with the background conductivity Y0, Go is a cor- 
responding Green's linear operator, and excess cur- 
rents ja are determined by equation (2). 

We can combine equations (3) and (2)in another 
operator form: 

E a = A [E a] , (4) 

where operator A is determined by the formula 

A [E a] - Go [APE ø] q- Go [APE a] (5) 

The operator equation (4) can be solved by the 
method of successive iterations: 

ß •a(N) __ h Ira(N-I)] , N -- 1, 2, 3... (6) 
It is well known that successive iterations converge if 
operator A is a contraction operator (Banach theo- 
rem), that is, 

where II...ll is L2 norm, k < 1, and r a(1) and Ea(2) 
are any two different solutions. Substituting (5) into 
(7), we obtain 

(8) 
So condition (7) holds if 

IIG1111ZX11 < 1. (9) 

Under this condition 

V x H a - 5oEa+j a 

V x E" - i•/•H", (1) 

E a(N) -• E a when N -• c•. (10) 

The conventional Born approximation E s arises if 
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one takes the initial approximation (zero-order iter- 
ation) to be equal to zero' 

E a(ø) - 0 

In this case 

(11) 

The second iteration is equal to 

(GbMa;) [E b] + 
where we use an operator Ma7 of multiplication by 
the function AS. The Nth iteration is represented 
as the sum of N terms of the Born series' 

Ea(•v)_ (GbMa;) [E •] + 

(G•Ma•)2 [E b] + ... + (G•Ma•) •v levi. 
(12) 

The Born series could be a powerful tool for EM 
modeling if they would converge [ Torres- Vetdin and 
Habashy, 1994]. However, in practice, the condition 
(9) does not hold, because in a general case the L2 
norm of the Grccn's operator is bigger than 1. That 
is why the Born series did not find a wide application 
in EM modeling. 

3. Modified Born Series 

Following Pankratov et al. [1995], we apply some 
linear transformations to the Grccn's operator to ob- 
tain a modified Grccn's operator G• with the norm 
less than 1. The specific form of this linear transfor- 
mation is motivated by energy inequality (Ag), intro- 
duced by Singer [1995] and Pankratov et al. [1995], 
and described in Appendix A. Actually, we construct 
a new linear operator G•, which transforms the in- 
tegrand from the right part of energy inequality (Ag) 
into its left part: 

a 

v/ReY• G b [2 v/Re5• ja (2•--•eYb) 
a 

2v/Re5• 
ja G• (2x/ZpTe5•) ' 

q- 

(13) 

Operator G• 
tion 

can be applied to any vector rune- 

G•' (x)- v/ReY•G• (2v/ReY•x) + x 
x (r) e L• (D), where L• (D)is the Hilbert space of 
the vector functions determined in the domain D and 
integrable in D with the norm 

2dv. (14) 

The remarkable property of this operator, estab- 
lished by Singer [1995] and Pankratov et al. [1995], 
is that according to inequality (Ag), 

[IG (x)ll Ilxll 

for any x (r) e L2 (D). In other words, the La norm 
of modified Green's operator is always less than or 
equal to one' 

IIO711 1. (15) 

Equation (13) can be simplified by taking into ac- 
count (2)' 

ar a q- bE b -- G? [b (r a q- rb)] , (16) 

where 

2ReYb + AY AY 
a- , b-•. (17) 

2v/Re•b 2 v/Re•b 

Equation (16) can be treated as an integral equa- 
tion with respect to the product aE a: 

aE a - C (aE a) , (18) 

where C (aE a) is an integral operator of the anoma- 
lous field 

C (aE a) -- G• n (/•aE a) q- G• n (/•aE b) -/•aE b, (19) 
b 

The solution of this integral equation is similar 
to equation (4) and also can be obtained using the 
method of successive iterations which is governed by 
the equations 

ar a(N) --C [aE a(N-1)] N-12 3. (20) • • • .. 
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These iterations are always converged, because the 
operator C is a contraction operator. To prove this 
result, consider the following inequality: 

]IC [aE a(1) _ aEa(2)] ]]- ]]G• n [• (aE a(1) _ aEa(2))] ]] 

_< ]]•]]co IIG•11 ]]aE a(1) -aEa(•)]], 
where 

co r6 D a(r) 
IzXl 

red [2ReYb q- 

Taking into account (15), we can conclude that C is 
a contraction operator if 

IIllo < 1. (21) 

Simple calculations show that 

• [AY[ 2 4ReYReYb = =1 - <1, 
[2Re + = = + 4ReSRe• 

(22) 
under the natural condition that 

0 < ReSmin _< ReY < ReSmax < c•, 

0 < ReS• min <_ ReS• < ReS• max < C•. 

Thus we have proved that C is a contraction operator 
for any lossy background medium (where ReYb min • 
0). 

Therefore the Nth iteration approaches the actual 
anomalous field 

E•(N) _• E • 

when N 

We obtain the first iteration in the solution of op- 
erator equation (18), assuming that the initial ap- 
proximation E © (zero-order iteration) is selected 
to be equal to zero (E © -0)' 

aE © = C [0]- G•M• (aE b) - •aE b, (23) 

where we use an operator M• of multiplication by 
the function/•. By analogy with the classical Born 
approximation, we will call expression (23) a modi- 
fied Born approximation E Bin' 

E a(1) -- EBm - 1G?M• (aE •) -/•E •. (24) 
a 

The second iteration is equal to 

aE a(2) -- C (aE ©) -- G•nM• (aE Bin) + aE Bin. 
The third iteration is equal to 

aE•(3) = C (aEa(•)) = GrM , (aE•(•)) + aE "m = 

(G•n•) 2 (aE "m) + G•M• (aE "m) + aE "m. 
Finally, the Nth iteration can be treated as the 

sum of N terms of the Born (or Neumann) series: 

aE•(N) - aE"m + GrM• (aE "m) + 

+ (aZ ... + 
(25) 

The remarkable result is that these series are always 
converged for any lossy medium with ReS• min > 0• 

Note that converged Born series have been ob- 
tained by Pankratov et al. [1995]. for auxiliary vector 
fields. Our result differs from Pankratov et al. [1995] 
in the way that we construct the always converged 
Born series directly for the anomalous field. 

Let us analyze more carefully the modified Born 
approximation introduced by formula (24). Simple 
calculations show that 

a a 

where E s - G• [ASE •] is a conventional Born ap- 
proximation [Born, 1933]. Therefore we obtain 

EB • = 2R. eY• EB (27) 
From equation (27) we can see that the modified 
Born approximation is equal to the conventional Born 
approximation outside inhomogeneous domain D: 

E s•=E s, ifr•D. 
However, inside D they are different. Actually, this 
difference makes the new Born series to be converged. 

Taking into account formula (26)• we can obtain 
the following expression for the modified Nth order 
Born approximation as the sum of N terms of the 
Born (or Neumann) series• which helps to understand 
better the internal structure of new series: 

These series unconditionally converge to the anoma- 
lous field 
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Figure 1. (a) Three-dimensional (3-D) model of rectangular conductive structure in a 
homogeneous half space, excited by a rectangular loop, and (b) 3-D borehole model of cube 
resistive structure in a three-layer background model, excited by a vertical magnetic dipole. 

k--0 

because operator (G• M•) is a contraction operator: 

IIGpMI[ _< 11G11 I111oo -< 1. 

We can estimate the accuracy •B of the Nth itera- 
tion: 

,•B--laEa-aEa(N)]]-- 

• (G rM•)• v/R.e•E • 

(GrM•) N • (GrM•) • v/Re'bE s) 
k--0 

(28) 
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Figure 2. Numerical comparison of full integral equation (IE) solution (solid line), QL 
approximation (short-dashed line), Born approximation (dotted line), second-order modi- 
fied Born approximation (long-dashed line), and third-order modified Born approximation 
(dash-dotted line) computed for model 1 (Figure la) at frequency 1000 Hz. Calculations 
are done for receivers located along the Y axes on the surface. 

Taking into account that 11311• < 1, we conclude 
that (5 progressively goes to zero with the number of 
iterations N. 

equal to zero, as it was supposed in the previous sec- 
tion, but is linearly related to the background field 
E b by some tensor • [Zhdanov and Fang, 1996a]: 

4. Quasi-linear Approximation of the 
Modified Green's Operator 

We will obtain a more accurate approximation 
even on the first step if we assume that the anoma- 
lous field E • inside the inhomogeneous domain is not 

E a (r) • • (r) E b (r). (29) 
Subsequently, we use expression (29) as the zero- 

order approximation for the scattered field inside the 
inhomogeneity 

E•(0) = •E • 
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Figure 3. Numerical comparison of full IE solution (solid line), qL approximation (dashed 
line), second-order QL approximation (dash-dotted line), and third-order QL approximation 
(dotted line) computed for model 1 (Figure la) at frequency 1000 Hz. Calculations are done 
for receivers located along the Y axes on the surface. 

and calculate the first approximation as follows: 

aE •(•) - C [a•E •] - 

(30) 

We call this approximation a quasi-linear approx- 
imation of the first order •,.a(•) -•q• for anomalous field 

Ea(•) 1 (b(1 X) (31 ql -- •G• q- E b) -/3E b. ) 
Note that original QL approximation is given by the 
formula [Zhdanov and Fang, 1996a] 
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Figure 4. Numerical comparison of full IE solution (solid line), Born approximation 
(dashed line), second-order modified Born approximation (dash-dotted line), and third- 
order modified Born approximation (dotted line) computed for model 2 (Figure lb) at 
frequencies 1 and 10 kHz. Calculations are done for receivers moved along the borehole. 

E;,- G• (A• (1-F •)E•). (32) 
Obviously, outside inhomogeneities, where AY - 0, 
the QL approximation of the first order is identically 
equal to the original QL approximation' 

•(•) • (33) Eqt -- Eqt , ifr• D. 

However, inside inhomogeneities (AY • 0) they are 
different. In particular, inside domain D we obtain 

•(•) 
the following approximate formula for E ql ß 

.(z) •E• ZG• (b(1-F•)E •') -/•E •'- Eqt • • •. -- 
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•igure 5. Numerical comparison of full IE solution (solid line), QL approximation (dashed 
line), second-order QL approximation (dash-dotted line), and third-order QL approximation 
(dotted line) computed for model 2 (Figure lb) at frequencies 1 and 10 kHz. Calculations 
are done for receivers moved along the borehole. 

We estimate the accuracy of the first-order QL ap- 
proximation using the following formula derived in 
Appendix B: 

ila (•,_•;,)11 < II•110o - 1-II•110o ½ (X), (34) 
where ½ (X) is determined by formula 

½ (x) ax,,11- 

I1,=• (•, (1 + •)E •,) -bE •'- 
Formula (34)shows that the minimum of 

determines the accuracy of the QL approximation. 
This criterion is used to find the electrical reflectivity 
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Figure 6. Three-dimensional geoelectric model con- 
taining one conductive body in a homogeneous half 
space with a plane wave excitation (model 3). 

tensor 

a complete analog of Born series. For example, the 
second-order QL approximation is equal to 

'•(2) - C t' E•(•)) - a•ql •a ql 

= + + 
The third-order QL approximation is given by the 
formula 

a.,-,ql 

+ (Gin/J) • (aE Bin) + G[n (aE Bin) + aE •B'r'. 
Finally, the Nth order QL approximation can be 

treated as the sum of N terms of the QL series 

N-1 

a I•.a( N) = E 
k=0 

-- aE a(N) + (Gr•) N (aXES) , (38) 
where according to (25), E a(•) is Nth- order modi- 
fied Born approximation. Let us compare the Nth- 
order Born approximation with the Nth-order QL 
approximation: 

+ 
(35) 

Note that the minimization problem (35) is equiva- 
lent to the minimization problem which we have used 
in determining electrical reflectivity tensor for origi- 
nal QL approximation [Zhdanov and Fang, 19963]. 
This means that we can use exactly the same reflec- 
tivity tensor in both cases. 

5. QL Series 
We have noticed that the background of the mod- 

ified Born approximation and the new first-order QL 
approximation is the same. The main difference is 
that in the case of the Born approximation, the start- 
ing point (zero-order approximation) for the itera- 
tion process is the zero anomalous field, while in QL 
approach we start with the anomalous field propor- 
tional to the background field: 

Ea(0)_ XE •. (36) ql 

In principle, we can extend our approach to comput- 
ing all iterations by (30). In this case we will obtain 

Ea(N) _ Ea(N) I (a (•E b . ql : • (Gin/51) N )) (39) 

From the last formula we can see that QL approx- 
imations of the higher orders take into account an 
additional term in the series in comparison with the 
modified Born approximation of the higher orders, 
which makes them more accurate. We will illustrate 

this theoretical fact by the results of numerical mod- 
eling presented in the next section. 

The accuracy of the QL approximation of the Nth- 
order is estimated in Appendix B and can be deter- 
mined by the formula 

Note that in the framework of the QL method 
the reflectivity tensor X is computed by minimization 

99 (X). In turn, the 99 (X) minimum value according 
to (40) determines the accuracy of QL approxima- 
tions of any order N. 

Formula (40) also shows that QL series converge 
with the rate proportional to the power function of 
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Figure 7. Numerical comparison of full IE solution (solid line), the modified Born approx- 
imations of the first order (dashed line), the third order (dash-dotted line), and the fifth 
order (dotted line) computed for model 3 (Figure 6) at frequency I Hz. Calculations are 
done for receivers located along the Y axes on the surface. 

/9. So the convergence rate of QL series directly de- 
pends on the value of parameter/9: If it is small, the 
convergence rate is fast, and if it is close to one, the 
QL series converges slowly to exact solution. 

Equation (22) demonstrates that parameter/9 can 
be close to one in two cases: (1) for a lossless back- 
ground medium when Re•bmin • 0 and (2) for a 

model with a strong conductivity anomalies when 
IA•l >> ReSb. These two extreme models can be 
considered the difficult cases for QL series applica- 
tion. 

Comparison of the inequalities (28) and (40) clearly 
demonstrates that the accuracy of the Born approx- 
imation depends only on the order N, while the ac- 
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Figure 8. Numerical comparison of full IE solution (solid line), the modified Born approx- 
imations of the seventh order (dashed line), and the ninth order (dotted line) computed for 
model 3 (Figure 6) at frequency 1 Hz. Calculations are done for receivers located along the 
Y axes on the surface. 

curacy of QL approximation of the same order can 
be increased by a proper selection of •. This circum- 
stance makes the QL approximation a more efficient 
tool for EM modeling than conventional or modified 
Born series. 

At the same time, we can use the inequality (40) to 
prove that QL series determined by these equations 

are always converged. This result comes from the 
fact that II/•ll• • 1 for any geoelectrical model with 
the lossy background medium Re•b min > O. There- 
fore 
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Figure 9. Numerical comparison of full IE solution (solid line), the QL approximations 
of the first order (dashed line), and the third order (dotted line), computed for model 3 
(Figure 6) at frequency 1 Hz. Calculations are done for receivers located along the Y axes 
on the surface. 

Moreover, based on inequality (B12) developed in 
Appendix B, we can estimate the accuracy of the 
QL approximation of the Nth-order by comparing it 
with the QL approximation of the (N- 1)th-order: 

r•v, (41) 

where •,.a(o) _ •E b and r•v is the relative conver- '""ql , 

gence rate of •he QL approximations: 
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Table 1. Comparison of CPU Time for Electromagnetic Modeling 
Using Different Methods (Model 3) 

Cells' Number in Anomalous Domain 250 Cells 400 Cells 800 Cells 

Full integral equation solution 
QL approximation 
Second-order QL approximation 
Third-order QL approximation 
Born approximation 
Fifth-order Born approximation 
Ninth-order Born approximation 

1064.6 4785.3 18370.3 

221.6 504.5 778.4 

243.4 556.4 1016.3 

284.7 666.7 1348.1 

191.5 356.5 393.0 

285.8 632.7 1249.1 

361.4 840.4 2210.8 

Values are given in seconds. QL, quasi-linear. 

In particular, the accuracy of the original QL approx- 
imation E qt can be estimated by computing using 
formula 

ß (43) 
1 -II•llo• [la%ll ' 

which can be also obtained from equation (40). 
The important result is that formulae (41) and 

(43) make it possible to obtain a quantitative esti- 
mation of the QL approximation accuracy without 
direct comparison with the rigorous full IE forward 
modeling solution. 

6. Numerical Modeling Results 
In this section we present the numerical results of 

comparison between the Born approximation, QL ap- 
proximation, modified Born series, and QL series for 
simple 3-D geoelectrical models, presented in Figures 
I and 6. 

Model I shown in Figure l a consists of a homoge- 
neous half space (with resistivity 100 Ohm-m) and a 
conductive rectangular inclusion with the resistivity 
I Ohm-to. The electromagnetic field in the model 
is excited by a horizontal rectangular loop, located 
50 m to the left of the model, with the loop 10 m 
on a side and the current at I A. We have used 

the integral equation program SYSEM for computing 
the frequency domain response of the complex con- 
ductivity structure [Xiong, 1992]. Figure 2 shows 
the comparison of the different solutions for real and 
imaginary parts of the anomalous electrical field E• 
and the anomalous magnetic field H• computed for 

the model 1 at the frequency 1 kHz. Calculations 
are done for receivers located along the axes Y on 
the surface. In the case of QL approximation we 
have used the simplest scalar reflectivity tensor. One 
can see that the full integral equation solution (solid 
line) and the QL approximations (short-dashed line) 
produce very similar results, while the conventional 
Born approximation (dotted line) produces the cor- 

-20 Km 0 20 Km 
0Km > X 

lO Km 

30 Km 

10 Ohm*m 10hm*m 100 Ohm*m 10 Ohm*m 

100 Ohm*m 

10 Ohm*m 

O. 10hm*m 

-20 Km 

40 Km 

10hm*m 

-40 Km 

20 Km 

100 Ohm*m 

-20 Km 

20 Km 

10 Ohm*m 

• X 

Figure 10. Three-dimensional geoelectric model 
containing one conductive body and one resistive 
body in a three-layer background resistivity cross sec- 
tion with resistivities 10, 100, and 0.10hm-m and 
with a plane wave excitation (model 4). 
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Figure 11. Numerical comparison of full IE solution (solid line), the modified Born ap- 
proximations of the first order (dashed line), the third order (dash-dotted line), and the fifth 
order (dotted line) computed for model 4 (Figure 10) at frequency 0.01 Hz. Calculations 
are done for receivers located along the Y axes on the surface. 

rect shape but incorrect magnitude. The second- 
order (long-dashed line) and the third-order (dash- 
dotted line) modified Born approximations go closer 
to the true solution (solid line) but still have the 
wrong magnitude. Figure 3 presents the QL approx- 
imations of the different orders. One can see that 

the QL approximation of the third order lies close to 
the integral equation solution. There is a very small 

difference only for the ReHz component, which has 
the smallest magnitude among all analyzed curves. 

Figure lb shows a 3-D borehole model which con- 
sists of a three-layer background resistivity cross sec- 
tion (with resistivities 1, 10, and I Ohm-m) and 
a resistive rectangular inclusion with the resistivity 
100 Ohm-m in the middle layer. We have numeri- 
cally simulated the borehole EM observations in this 
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Figure 12. Numerical comparison of full IE solution (solid line), the modified Born ap- 
proximations of the seventh order (dashed line), and the ninth order (dotted line) computed 
for model 4 (Figure 10) at frequency 0.01 Hz. Calculations are done for receivers located 
along the Y axes on the surface. 

model with the moving dipole-dipole array' consist- 
ing of the vertical magnetic dipole transmitter and 
receiver vertically separated by 1 m. 

The comparisons of the magnetic field component 
H• for model 2 are shown in Figures 4 and 5. Figure 4 
presents the plots of the vertical magnetic field com- 
ponent H• (real and imaginary parts) computed for 
model 2 at frequencies 1 and 10 kHz using full IE so- 
lution (solid line), conventional Born approximation 

(dashed line), the second-order modified Born ap- 
proximation (dash-dotted line), and the third-order 
modified Born approximation (dotted line). Calcu- 
lations are done for vertical magnetic dipole-dipole 
array distributed at the different depths along the 
borehole. Figure 5 shows similar plots computed 
using original QL approximation (dashed line), the 
second-order QL approximation (dash-dotted line), 
and the third-order QL approximation (dotted line). 
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Figure 13. Numerical comparison of full IE solution (solid line), the QL approximations 
of the first order (dashed line), and the third order (dotted line), computed for model 4 
(Figure 10) at frequency 0.01 Hz. Calculations are done for receivers located along the Y 
axes on the surface. 

One can see that the QL approximations converge ReEa•, ReEay at a frequency of 1 Hz. Figure 8 
more rapidly to the full IE solution than modified shows the modified Born approximations of tl•e sew 
Born approximations. enth and ninth orders. We can see that these approx- 

Next, model 3 is shown in Figure 6. This model imations, in full compliance with the theory, con- 
presents one conductive body in a homogeneous half verge to the full IE solution (solid line), but this 
space excited by the vertically propagating plane convergence is rather slow. One can notice a signifi- 
wave. Figure 7 compares the modified Born ap- cant 'overshooting' of ReEaa, at distance zero, which 
proximations of the first, third, and fifth orders for shows that even a modified Born approximation pro- 
the normalized anomalous fields ReHab, ReH•,y and duces too strong an anomaly. Figure 9 demonstrates 
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Table 2. Comparison of the Relative Convergence Rate Computed 
by Equation (42) for Models 1 - 4 

QL Second-Order QL Third-Order QL 
Model 1 (1000 Hz) 0.0071 0.0036 0.0023 
Model 2 (1000 Hz) 0.746 0.301 0.209 
Model 3 (1 Hz) 0.0037 0.0021 0.0015 
Model 4 (0.01 Hz) 0.094 0.050 0.034 

the results of QL series calculation for the same 
model. The QL approximation of the first-order pro- 
duces a more accurate result than the modified Born 

of the ninth-order. The third-order QL approxima- 
tion has an accuracy of 1% in the extremum of the 
anomalous curves. 

It is important to compare the time of numerical 
modeling needed for full IE solution, modified Born 
series, and QL series. The results of a comparison 
obtained for model 3 are presented in Table 1. 

One can see from this table that CPU time in- 

creases exponentially with the number of cells for full 
IE solution, while it increases only linearly for QL ap- 
proximation and Born approximation. In the models 
with 800 cells in anomalous domain, the QL approx- 
imation is an order of magnitude faster than the full 
IE solution. It takes only about twice as much time 
to compute the QL approximation than the Born ap- 
proximation. The third-order QL approximation re- 
quires 15 times less CPU time than full IE modeling 
but produces practically the same result. The mod- 
ified Born approximation of the ninth order requires 
more CPU time and still cannot reach the same ac- 

curacy. 

Figure 10 presents the geoelectrical model from 
the set developed in the framework of the Interna- 
tional CO MMEMI (Comparison of the Methods of 
Electromagnetic Modeling International) project on 
the comparison of the different numerical modeling 
methods [Zhdanov et al., 1990]. This model contains 
prismatic conductive (with resistivity 1 Ohm-m) and 
resistive (with resistivity 100 Ohm-m) inserts in the 
first layer of the three-layer background resistivity 
cross section (with resistivities 10, 100, and 0.1 Ohm- 
m). Figure 10 shows its vertical section in the plane 

y = 0 (upper panel) and a plan view of the model 
(lower panel). 

Figure 11 presents the results of the forward mod- 
eling based on the full IE solution (solid lines) and 
the modified Born approximations of the first, third, 
and fifth orders for the normalized anomalous fields 

ReHax, ReHay and ReE•x, ReEdy at a frequency 
of 0.01 Hz. The modified Born approximations of the 
seventh and ninth orders are shown in Figure 12. 
Once again we observe a successive convergence to 
the full IE solution (solid line). The ninth-order mod- 
ified Born approximation produces a reasonable es- 
timation of the IE solution. Figure 13 demonstrates 
the results of computing the QL approximations of 
the first and third orders. The third-order QL ap- 
proximation practically coincides with the IE solu- 
tion. However, for this model the CPU time for com- 
puting the third-order QL approximation is equal 
to 1569.4 s, while the CPU time for computing the 
ninth-order modified Born approximation is equal to 
2725.4 s (with 1500 cells in anomalous domain). 

Table 2 shows the relative convergence rate rs for 
all four models. This parameter, multiplied by co- 
efficient [lll/(1 - determines the upper 
bound of the accuracy z•v of the QL series. 

Table 3 presents the results of the accuracy esti-- 
mation z•v computed for models 1, 3, and 4 using 
formula (41). Note that for models 1 and 3, param- 
eter a is a constant within the domain D, so the 
estimation (41) is simplified to 

(44) 

Table 3. Comparison of the Accuracy Estimation Computed 
by Equation (41) for Models 1, 3, and 4 

QL Second-Order QL Third-Order QL 
Model 1 (1000 Hz) 0.35 0.18 0.11 
Model 3 (1 Hz) 0.09 0.05 0.04 
Model 4 (0.01 Hz) 0.43 0.23 0.16 
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Table 4. Comparison of the Accuracy Estimation Computed by Equation 
(41) for Model 2 

Fifth-Order QL Seventh-Order QL Ninth-Order QL 
Convergence rate 0.119 0.067 0.039 
Epsilon 0.54 0.31 0.18 

We can see from this table that expression (41) 
produces rather conservative estimation of the accu- 
racy, which practically can be much higher, as we 
could see by direct comparison with the full IE so- 
lution. In this connection we also should notice that 

formulae (41) and (44) actually give the accuracy es- 
timation of the integral equation (18) solution within 
the inhomogeneous domain D. The approximation 
errors of the anomalous field computing outside do- 
main D are usually much smaller due to the contrac- 
tion properties of the integral operator G•. 

At the same time, expression (41) can be used as 
a tool to control the order of the QL approximations 
which would satisfy to the required accuracy. For 
example, calculations show that it takes nine itera- 
tions for Model 2 to reach the accuracy estimation 
•N = 0.18 (see Table 4). Thus we can guarantee that 
the ninth-order QL approximation for model 2 pro- 
duces the forward modeling solution with the given 
accuracy. In practice, however, the accurate model- 
ing result can be reached even by the QL approxima- 
tions of the lower orders, as we could see in Figures 
4 and 5. 

7. Conclusion 

In this paper we have developed a new approach 
to fast EM modeling by considering the QL approx- 
imations of the higher orders. We have proved that 
the corresponding QL series are always converged for 
the models with the lossy background medium. On 
the basis of the analytical and numerical comparisons 
between modified Born series and QL series we can 
conclude the following: 

1. Both the modified Born series and QL series are 
converged. 

2. The modified Born series work reasonably well 
for resistive bodies. 

3. The QL series provide accurate approximation 
for both conductive and resistive structures. 

4. The QL series have superior convergence for all' 
models. 

5. It is possible to calculate a quantitative esti- 
mation of the QL approximation accuracy without 

direct comparison with the rigorous full IE forward 
modeling solution. 

6. Calculation of the individual modified Born ap- 
proximations of the different orders requires less time 
than the computing QL series of the same orders. 
However, to reach the same accuracy, one typically 
should generate the modified Born approximations 
of the higher order than in the case of the QL ap- 
proximation. 

These facts make the QL series a more efficient tool 
for EM modeling than full IE solution or modified 
Born series. We believe that always converged QL 
series open principally new possibilities for fast and 
accurate 3-D EM modeling and inversion. 

Appendix A' EM Energy Inequality 
Fundamental energy inequality for the anomalous 

EM field has been derived by Singer [1995] and 
Pankratov et al. [1995]. We demonstrate this in- 
equality here for completeness. 

One can calculate the average per period energy 
flow of anomalous EM field through the surface of 
the Earth E as 

Q- Re P. nds= •Re (E•xH •*) .nds, 
(A1) 

where n is the unit vector of normal to the surface Z, 
directed to the upper half space (assuming that the 
sources of the anomalous field are located in the lower 

half space) and P is the Poynting vector [Stratton, 
1941], introduced by the following formula: 

p-1E• H • ' --2 X * 
where the asterisk indicates complex conjugate value. 

Expression (A1) can be rewritten using the Gauss 
formula 

Q - Re ///o+ V'Pdv - l•Re //r ( E" 
where O + is the lower half space. 

xH"*) .nds, 

(A2) 
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Following a conventional approach [Stratton, 1941] 
we can obtain the Poynting's theorem for anomalous 
field by scalar multiplication of the first equation in 
formula (1) by E a* and the complex conjugate second 
equation in formula (1) by H a and subtracting one 
from another: 

2V.P - V.(EaxH a*) 
= H a.17xE a*-E a*.VxH a 

_ _•, lEVi 2 _ E•,. ja _ i•/t IH•I 2 . 

Thus the total energy flow Q of the anomalous field 
through the surface of observation E can be calcu- 
lated using the formula 

I Ea 2 q_ 7Ea, . ja } dv. 
(A3) 

Pankratov et al. [1995] have proved an important 
theorem, according to which the energy flow Q of 
the anomalous field is nonnegative' 

Q _> 0. (A4) 

This result can be obtained from the equations 
(A2) and (A3) applied to the upper half space O- 

Q- •Re (EaxH a*) .nds= 

•///o_Re•,l:• av _>0. 
On the basis of this theorem, they have derived an 

energy inequality, which can be obtained after some 
algebraic transformations from (A4)and (A3): 

Re///o+ {•* 'Ea" + Ea, . ja } dv - 

///o+{ ReS* a 
E a + 

2Re•b 4ReYb dv_-q O. 
(A5) 

From the last formula we have 

//o+ ReYb 
a 

Ea + 2ReYb dv•///o + IJ•12 dv. 4•• 
(A6) 

Appendix B' Accuracy Estimation of 
QL Approximation of the First and 
Higher Orders 

Let us estimate the accuracy of the QL approxima- 
tion. According to (19) and (18), the actual anoma- 
lous field E a can be determined by the equation 

- c? (E + E*)) (B1) 

Comparing aE a with the corresponding formula for 
modified QL approximation (31), we can obtain ac- 
curacy criteria for a QL solution 

where 

(B2) 

•(•) 
•(•) 

(Ba) -- max . 

red 12ReY, + A• I 

Using equation (31), we can express II•-•X•*II 
as follows: 

where 

From inequalities (B2) and (B4) we have 

According to inequalities (15) and (21), 

(B4) 

(B5) 

(B6) 

11/311oo IlCPll < 1. 

Under this condition we can rewrite inequality (B6) 
as 
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Now let us estimate the accuracy of the QL ap- 
proximation of the Nth-order: 

[IaEa - ,•17. a(N) 

k----N 

II((•?]•)y-1 [aE a- aE Bm- G• (a•Eb)] II 
• II(G•)N-111 ]•aE a - 

a(N) 1 

(Bll) 

The last inequality provides an important practical 
tool to estimate the accuracy of the QL approxima- 
tions of the different orders without direct compar- 
ison with the rigorous full IE solution. However, to 
estimate the accuracy of the Nth-order QL approx- 
imation, we have to compute the (N 4- 1)-th order 
QL approximation. It would be useful to find the 
accuracy estimation of the highest-order QL approx- 
imation. We can solve this problem by substituting 
expression (Bll) back in the inequality (B10): 

IIll . [•F?-aF•;•N+ 1) [[ < 1_[[ • [ [ 
(B12) 

Thus we have 

Comparison of inequalities (28) and (B8) clearly 
demonstrates that the accuracy of the Born approx- 
imation depends only on the order N, while the ac- 
curacy of QL approximation of the same order can 
be increased by a proper selection of ,X. 

Note that it is possible to obtain a more accurate 
estimation of the accuracy of the higher-order QL ap- 
proximations by comparison the (N + 1)th and Nth 
QL iterations. According to equations (18), (20), and 
(19), we can obtain the following inequalities for the 
difference between exact solution and QL approxi- 
mation of the Nth-order: 

f,.[•.a(N) _ •a(N-[- 1) 
_ _ a•ql 

4- [[ .•-•a(N4-1) r,-•.a(N) tt-t•ql --'•"-'ql [[, (B9) 
and 

[[aEa_-'ma(N+I) [Ea(N+I) tt'mql 11- [IC(aE a) - C ka ql )1[- 

(B10) 

Substituting (B10) into (B9), we can write 
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