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Three-dimensional quasi-linear electromagnetic 
inversion 

Michael S. Zhdnov Sheng Fng 
Department of Geology and Geophysics, University of Utah, Salt Lake City 

Abstract. One of the most challenging problems of electromagnetic (EM) geophysical 
methods is developing three-dimensional (3-D) EM inversion techniques. This problem is 
of utmost importance in practical applications because of the 3-D nature of the geological 
structures. The main difficulties in 3-D inversion are related to (1) limitations of 3-D 
forward modeling codes available and (2) ill-posedness of the inversion procedures in 
general. The multidimensional EM inversion techniques existing today can handle only 
simple models and typically are very time consuming. We developed a new approach 
to a rapid 3-D EM inversion. The forward scattering problem is solved using a new 
quasi linear (QL) approximation of the existing integral equation algorithms, developed 
for various sources of excitation. The QL approximation for forward modeling is based 
on the assumption that the anomalous field is linearly related to the normal field in the 
inhomogeneous domain by an electrical reflectivity tensor. We introduce also a modified 
material property tensor which is linearly proportional to the reflectivity tensor and the 
complex anomalous conductivity. The QL approximation generates a linear equation with 
respect to the modified material property tensor. The solution of this equation is called 
"a quasi-Born inversion". We apply the Tikhonov regularization for the stable solution of 
this problem. The next step of the inversion includes correction of the results of the quasi 
Born inversion: after determining a modified material property tensor, we use the electrical 
reflectivity tensor to evaluate the anomalous conductivity. Thus the developed inversion 
scheme reduces the original nonlinear inverse problem to a set of linear inverse problems, 
which is why we call this approach "a QL inversion". Synthetic examples (with and without 
random noise) of inversion demonstrate that the algorithm for inverting 3-D EM data is 
fast and stable. 

Introduction 

During the past decade, considerable advances have 
been made in the forward modeling of electromag- 
netic (EM) fields [Tripp, 1990; Wannamaker, 1991; 
Xiong, 1992; Xiong and Tripp, 1993; Druskin and 
Knizhnerman, 1994]. 

In contrast to the rapid developments in forward 
modeling, progress in solving the EM inverse problem 
in multiple dimensions has been much slower. This 
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is due to the fact that inverse algorithms in general 
require more effort both in their theoretical develop- 
ment as well as in computational resources. The lit- 
erature on EM inversion deals primarily with one- or 
two-dimensional inversions. Three.dimensional (3- 
D) EM inversion is only a recent adventure which 
has attracted relatively few workers [Eaton, 1989; 
Madden and Mackie, 1989; Smith and Booker, 1991; 
Xiont7 and Kirsh, 1992; Tripp and Hohmann, 1993; 
Torres-Verdin and Habash•l, 1994]. However, the de. 
mand for the development of three-dimensional in- 
verse algorithms continues to be strong enough, as 
one could see, for example, at the Progress in Elec- 
tromagnetic Research Symposium (PIERS) in July 
1995 [Torres-Verdin and Habash•l, 1995b; Xie and 
Lee, 1995; Newman and Alumbaugh, 1995]. 
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There exist several good examples of the appli- 
cation of linearization methods to two-dimensional 

EM inverse problems [Weidelt, 1975; Jupp and Vo- 
zoff, 1977; Oristaglio and Worthington, 1980; Zh- 
danov and Golubev, 1983]. For example, Zhdanov 
and Varentsov [1983] introduced a method of tight- 
ening contours, or tightening surfaces for the. deter- 
mination of the shape of an inhomogeneity (see also 
Berdichevsky and Zhdanov [1984]). However, as de- 
termined by Maxwell's equations, the scattered fields 
are non-linearly related to the conductivity of the 
subsurface. Therefore EM inverse problems are char- 
acterized first of all by their nonlinearity. 

Another major difficulty in inversion is related to 
its ill-posedness, which means that the existence, 
uniqueness, and/or stability of solutions are in ques- 
tion. The inherent nonlinearity of EM problems 
makes the ill-posedness more severe. To overcome 
this difficulty, we have to apply regularization theory 
to obtain a stable solution of ill-posed inverse prob- 
lems [Tikhonov and Arsenin, 1977; Zhdanov, 1993; 
Zhdanov and Keller, 1994]. This approach gives a 
solid basis upon which to construct effective inver- 
sion algorithms for the 3-D EM problem. 

It is important to emphasize that regularization 
does not necessarily mean "smoothing" the solution. 
The primary purpose of the regularization is to im- 
plement a priori information in the inversion pro- 
cedure. The more information we have about the 

geoelectric model, the more stable is the inversion. 
This information is used to construct the "regular- 
izing family" of well-posed problems, which approxi- 
mate the original ill-posed inverse problem [Zhdanov 
and Keller, 1994]. 

In this paper we develop a new approach to a rapid 
3-D EM inversion. The forward scattering problem 
is solved using a quasi-linear (QL) modification [Zh- 
danov and Fang, 1996] of the existing integral equa- 
tion algorithms, developed for various sources of ex- 
citation, including plane waves, horizontal bipoles, 
vertical bipoles, horizontal rectangular loops, vertical 
magnetic dipoles, and the loop-loop system [Xiong, 
1992; Xiong and Tripp, 1993]. The QL approxima- 
tion for forward modeling is based on the assumption 
that the anomalous field E a is linearly related to the 
normal field E • in the inhomogeneous domain by' 
E a - •E n, where • is an electrical reflectivity ten- 
sor. We introduce a modified material property ten- 
sor •t, linearly proportional to the reflectivity tensor 
and the complex anomalous conductivity AY. In this 
case the QL approximation generates a linear equa- 

tion with respect to the modified material property 
tensor •t. The solution of this equation is called "a 
quasi-Born inversion". We apply the Tikhonov regu- 
larization for the stable solution of this problem. Af- 
ter deteffmining •t, we use the electrical reflectivity 
tensor A to evaluate the complex anomalous conduc- 
tivity AY (correction of the result of the quasi-Born 
inversion). 

Note that there is some formal similarity between 
our approach and the inversion scheme developed by 
Hahashy et al [1993] and Torres-Verdin and Hahashy 
[1994, 1995a,b] and based on the extended Born ap- 
proximation. However, our scheme differs principally 
from theirs in the following. 

1. The QL approximation and the extended Born 
approximation have similar formal expressions but 
are completely different in nature. This fact is mainly 
reflected in the difference of determination of the 

scattering tensor [ Torres- Vetdin and Hahashy, 1994] 
and the electrical reflectivity tensor [Zhdanov and 
Fang, 1996]. 

The extended Born approximation is based on the 
calculation of the internal field as the projection 
of the normal electric field onto a scattering tensor 
r (r) ß E (r) - r (r) E • (r). The scattering tensor 
r (r) is obtained under the assumption that the total 
field inside the inhomogeneity is a smoothly varying 
function such that its gradient can be neglected to 
zero order regardless of the medium properties (so 
called "localized approximation"). That is why in 
Torres-Verdin and Habashy's method the total elec- 
tric field can be taken outside the integral in the in- 
tegral equation, which has given rise to the explicit 
analytical expression for r (r). It is shown that the 
scattering tensor is a nonlinear functional of the ma- 
terial property distribution and does not depend on 
the illuminating sources. This saves some computa- 
tional time for multiple source calculation. However, 
the accuracy of the extended Born approximation is 
limited by the accuracy of the localized approxima- 
tion. 

In the QL approximation the electrical reflectivity 
tensor is obtained by numerical optimization tech- 
nique. It is not based on the assumption that the to- 
tal field is locally constant within the inhomogeneity 
(it does not use "localized approximation"). It is a 
function of anomalous material property and, in the 
general case, is source dependent. This increases the 
computational time for multiple source calculation 
slightly, but not too much because the most time- 
consuming part of the calculations is computing the 
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Green's function, which are the same for different 
source locations. The accuracy of QL approximation 
depends only on the degree of discretization of the 
anomalous structure in the process of A determina- 
tion and, in principle, can be made arbitrarily high 
(it tends asymptotically to the accuracy of the full 
integral equation solution, if discretization is chosen 
to be fine enough). 

The QL approximation can be treated as the ex- 
tension of the Born approximation and the extended 
Born approximation. The Born approximation ap- 
pears as a special case of•QL approximation if elec- 
trical reflectivity tensor A is set to be equal to zero. 
The extended Born approxi•matjon•can be obtained 
from QL approximation if A :r-I. 

2. The two-step linear inversion approach devel- 
oped by Torres-Vetdin and Hahashy [1995a] is based 
on an analytical expression for the scattering ten- 
sor r, that depends explicitly on the selected model 
of material pro•perty distribution. We do not s]•ec- 
ify the tensor A before inversion and determine A as 
the result of linear inversion. That is why our scheme 
consists of three steps: (1) determination of the mod- 
ified material property tensor •, (2) evaluation of 
the electrical reflectivity tensor A, and (3) extraction 
of the information about the material property from 
• and A. 

3. We solve a full vector 3-D EM problem, while 
Torres-Verdin and Hahashy [1994, 1995a,b] consider 
a scalar problem. This does not mean that Torres- 
Verdin and Habashy's [1995a,b] approach could not 
be extended to deal with the full 3-D inversion prob- 
lem, but this would be a completely different method 
from the 3-D QL inversion scheme described below 
in this paper. 

It is important to emphasize also that we apply 
the Tikhonov regularization method [Tikhonov and 
Arsenin, 1977; Zhdanov, 1993] for stable 3-D EM in- 
version. The quasi-linear inverse problem is solved 
by a regularized gradient type method which ensures 
stability and rapid convergence. Synthetic exam- 
ples (with and without random noise ) of inversion 
demonstrate that the algorithm for inverting 3-D EM 
data is fast and stable. 

A Quasi-Linear Approximation 

Consider a 3-D geoelectrical model with the nor- 
mal (background) complex conductivity Yn and local 
inhomogeneity D with an arbitrarily varying com- 

plex conductivity Y - Yn + Ay, that can be, in 
the general case, frequency dependent. We will con- 
fine ourselves to consideration of nonmagnetic media 
and hence assume that /z - /z0 - 4•r x 10-?H/m, 
where /z0 is the free-space magnetic permeability. 
The model is excited by an electromagnetic field gen- 
erated by an arbitrary source. This field is time har- 
monic as e -i•t. Complex conductivity includes the 
effect of displacement currents: Y - a-iwe, where a 
and e are electrical conductivity and dielectric per- 
mittivity. The electromagnetic fields in this model 
can be presented as a sum of normal and anomalous 
fields: 

E-E •+E •, H-H "+H •, (1) 

where the normal field is a field generated by the 
given sources in the model with the normal distribu- 
tion of conductivity Yn, and the anomalous field is 
produced by the anomalous conductivity distribution 

It is well known that in this model the anomalous 

field can be presented as an integral over the excess 
currents in the inhomogeneous domain D [Hohmann, 
1975; Weidelt, 1975]' 

Ea (r•) - 

I/It •' (ri I r)AY (r)[E ' (r)+ E' (r)] dr, (2) 
where (3 n (rj Jr) is the electromagnetic Green's ten- 
sor defined for an unbounded conductive medium 

with the normal conductivity Yn . 
The conventional Born approximation E B (rj) for 

the anomalous field can be obtained from (2) if we 
assume that the anomalous field is negligibly small 
inside D in comparison with the normal field. In this 
case it can be ignored in comparison with the normal 
field [Born, 1933]' 

EB (rj ) -- ] ] ]D •n (r j ] r) AY (r) En (r) dv. (3) 
Hahashy et al. [1993] and Torres-Verdin and Haha- 

shy [1994] developed the so called extended Born ap- 
proximation, which is based on the calculation of the 
internal field as the projection of the normal electric 
field (i.e., the electric field excited in the absence of 
conductivity inhomogeneity) onto a scattering tensor 

r. - r r.- (4) 
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It is shown that the scattering tensor does not de- 
pend on the illuminating sources and is a nonlin- 
ear functional of the anomalous conductivity dis- 
tribution [ Hahashy et al, 1993; Torres-Verdin and 
Hahashy, 1994 ]. 

In the paper by Zhdanov and Fang [1996] we pre- 
sented a different approach to the solution of the EM 
scattering problem, which is based, however, on sim- 
ilar ideas and can be considered as an extension of 

Torres-Verdin and Habashy's method. We separate 
the total electric field into normal and anomalous 

parts and introduce an electrical reflectivity tensor 
which linearly transforms the normal field into an in- 
ternal anomalous one. The electrical reflectivity ten- 
sor inside inhomogeneities can be approximated by 
slowly varying spatial functions and can be deter- 
mined numerically by a simple optimization tech- 
nique. We describe here this technique for complete- 
ness. 

Expression (2) can be rewritten using operator no- 
tations: 

r? = c it?l, (5) 

where C [E a] is an integra] operator of the anomalous 
field E •, C [E •] = A [E'•] + A [E•], and A is a linear 
scattering operator 

A[E]-f/fD •n (rj , r) AY (r) E (r) dv. (6) 
Equation (5) can be treated as an integral equation 

with respect to the anomalous field E a. The solution 
of this integral equation has to be a fixed point of 
the operator C. This solution can be derived with the 
method of successive iterations, which is governed by 
the equations: 

E a(N) - C [E a(N-•)], N - 1, 2, 3... (7) 

It is well known that successive iterations converge, 
provided that the operator C is a contraction oper- 
ator, that is if I[AII < 1. The Born approximation is 
simply the first iteration of this method, if the initial 
approximation E a(ø) (zero order iteration) is selected 
to be equal to zero (E a(ø) - 0): 

r.- - c [0]- x it.-]. (s) 

We will obtain a more accurate approximation if 
we assume that the anomalous field E a inside the 

inhomogeneous domain is not equal to zero, but is 

l•nearly related to the normal field E n by some tensor 

r? x 

which we call "an electrical reflectivity tensor". 
Therefore, we use expression (9) as the zero-order 

approximation for the scattered field inside the in- 
homogeneity (E •(ø) - •E n) and calculate the first 
approximation as follows: 

= A [(•+•)E •] -E:,. (10) 
We call this approximation "a qu•i linear (QL) ap- 
proximation" E• for the anomalous field. 

Let us rewrite equation (10) for the points inside 
domain D, taking into account (9): 

a[(I + 

(11) 
This l•t equation provides the b•is for deter- 

mining A. It should hold for any internal point of 
the domain D. In reality, of course, it holds only 
approximately. Also, we •sume that the electrical 
reflectivity tensor inside inhomogeneties can be ap- 
proximated by a relatively slowly varying function 
[Zhdanov and Fang, 1996]. Therefore we can use the 
minimum norm condition to determine A' 

= min. (12) 

After A is found, the QL approximation is calcu- 
lated using expression (11). Note that the electri- 
cal reflectivity tensor A can be formally related to 
the scattering tensor F, introduced by Hab•hy et al 
[1993], by the simple formula 

(13) 

However, despite this formal similarity between the 
QL approximation and the extended Born approxi- 
mation, they are completely different in nature. This 
fact is mainly reflected in the difference of determi- 
nation of the scattering tensor [Torres-Vetdin and 
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Hahashy, 1994] and the electrical reflectivity ten- 
sor [Zhdanov and Fang, 1996]' Torres-Verdin and 
•abashy use an analytical expression to determine 
r , while we find the electrical reflectivity tensor by 
solving minimization problem (12). The analytical 
expression for the scattering tensor r (r) is obtained 
by Torres-Verdin and Hubashy [1994] under the as- 
sumption that the total field inside the inhomogene- 
ity is a smoothly varying function such that its gra- 
dient can be neglected to zero order regardless of 
the medium properties (so called "localized approx- 
imation"). Therefore the accuracy of the extended 
Born approximation is limited by the accuracy of 
the localized approximation. In the QL approxima- 
tion the electrical reflectivity tensor is obtained by a 
numerical optimization technique that is not based 
on "localized approximation". This numerical ap- 
proach opens a way to impose additional restrictions 
on the reflectivity tensor and improves the accuracy 
of the QL ..approximation through the appropriate se- 
lection of A [Zhdanov and Fang, 1996]. The accuracy 
of QL linear approximation depends only on the de- 
gree of discretization of the anomalous structure in 
the process of A determination and, in principle, can 
be made arbitrarily high. 

According to equations (2) and (10), the anoma- 
lous electromagnetic field E a, H a , i• linearly related 
to the electrical reflectivity tensor A and the normal 
field E n inside the inhomogeneous domain D by the 
integral formula 

(14) 
where Fa stands for E a or H a observed on the sur- 

face of the Earth, E n is a field generated by the 
given sources in the model with the normal distri- 
bution of conductivity Y•, and •r (ri It) stands for 
the electric or magnetic Green's tensor defined for 
an unbounded conductive medium with the normal 

conductivity Ya. However, this•equation is nonlinear 
with respect to AY (because A is, in general case, 
a nonlinear function of AY). In the next section we 
will discuss the method of transforming this equation 
into a system of linear equations. 

• (r) -- AE (r) [•+• (r)] , (15) 
which we will call "a modified material property ten- 
sor". In this case, equation (14) takes the form 

F a (rj)--///v •F (rj , r)•(r)E' (r)dv. (16) 
Equation (16) is a linear one with respect to • (r) 
(while the original equation (14) was nonlinear with 
respect to AY). Its structure is similar to that of the 
Born approximation for the anomalous field, if we re- 
place the modified material property tensor • (r) by 
the anomalous conductivity AY (r). That is why we 
will call equation (16) "a quasi Born approximation". 
The solution of the linear equation (16) with respect 
to the modified material property tensor • (r) will 
be called "a quasi-Born inversion". 

There are many different techniques for a so]u- 
tion of linear integral equation. We apply the ap- 
proach based on the Tikhonov regu]arization method 
[Tikhonov and Arsenin, 1977] (see Appendices A and 
B). 

The reflectivity tensor A can also be determined 
from the following linear equation inside the inho- 
mogeneous domain D, as soon as we know •' 

E' ///V 5r (rj ] r)•(r)E" (r)dv 
• A (rj) E" (rj). (17) 

Once • and A are determined, it is possible to 
evaluate the anomalous conductivity AY from equa- 
tion (15). 

This inversion scheme reduces the original nonlin- 
ear inverse problem to three linear inverse problems' 
the first (the quasi Born inversion) for the param- 
eter • , another one for the parameter •, and the 
third one (correction of the result of the quasi Born 
inversion) for the conductivity AY. This approach is 
based on a QL approximation, so we call it "a QL 
inversion". 

A Quasi-Linear (QL) Inversion 
A Quasi-Born Inversion 

Equation (14) can be treated as a linear equation 
if we introduce a new tensor function, 

Numerical Scheme of QL Inversion 

In practice, it is convenient to use some simplifica- 
tion, based on the division of the domain D into sub- 
structures (subdomains) D- U•=•,KD• and the as- 
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sumption that relationship (9) holds inside any sub- 
structure D•' 

E a (r) - • (r)E" (r), r • D•, (18) 

where the reflectivity tensor • depends only on the 
substructure's number k (note that • is still a func- 
tion of frequency). Substituting (18)into (2), we 
have 

Fa(rJ)-- • ///D •F(rj'r)•'(r)F"(r)dv' k=l,N • 

(19) 
where 

•x • (r)- AY(r)[•+•t (r)] (20) 
is a modified material property tensor depending 

only on the substructure's number k and frequency. 
For the numerical calculation it is more convenient 

to rewrite equation (19) using tensor notation: 

F2%)- 

f fro I (21) k=l,N • 

o•, •, 7 - z, y, z. 

In (21), F•(r), E•(r) (a,7 - x,y,z) are the 
Cartesian components of the electromagnetic field 
vectors, G•5 (rslr) (a,•- z, y, z) are the Carte- 
sian components of the electromagnetic Green's ten- 
sor, and m), (r) (•, 7 - x, y,z) are the Cartesian 
components of the modified material property ten- 
sor. In all equations with summations we use 
the Einstein convention' the twice recurring index 
indicates summation over this index (for example, 
•-z,y,z). 

Let us •sume now that inside each substructure 

(subdomain) Ot, the conductivity is constant &a (r) 
= &a• and the reflectivity tensor is constant X• (r) 
= X}, (note that X}, is still a function of frequency). 
Therefore parameter m• (r) also depends only on 
the substructure's number k and frequency' 

m•(r)--m}•--AY•[5•+X•], r•D•. (22) 

Substituting equation (22) into (21), we obtain 

Fa a (rj)- • m•v fffD <'"(rj I r)E• (r)dv. 
k = l ,N •: 

(•a) 

Equation (17) will take the form: 

E• (rj) -- E m•v f f fo Gaz• (rjl r)E• (r)dv k--l,N 

= Xa.•E'.• (rj) (24) 

a, fi, 7 - z, y, z. 

Equation (22) will be reduced to 

m•7 (wt) - &Y• (wt)[5•7 + X•7 (wt)] , (25) 
ß . 

if we outline the dependence of m• , •Y•, and 
on frequency wt, I - 1, 2, ..L. We have to notice that 
equation (25) should hold for any frequency. In real- 
ity, of course, it holds only approximately. Therefore 
we can use the le•t squares method to determine 
the •Yj that optimally fits (25). Hence we wish to 
minimize 

L N 

1=1 j=l fl,7=x,y,z 

= min, (2•) 
where the •terisk denotes the complex conjugate 
value. 

The solution of the minimization proble• (26) 
(unde the umption that 
are already determined) is described in Appendix 
Real and imaginary parts of this solution give us the 
distribution of anomalous electrical conductivity 
and anomalous dielectric permittivity •e, which can 
be, in general, frequency dependent: 

(•7) 
Regularized Solution of Linear Equations 

Let us rewrite equations (23) using a matrix nota- 
tion: 

• - O• m. (aS) 
Here • is the matrix of modified material property 
tensor • , • is the vector column of the data, and 
the matrix O•is defined by the formula 

j-I,2,...M, k-l,2,..-N, 

1- 1,2,...L, a,•,7- x,y,z. 
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In the same way we can get from (24) 

•F, '• -- GEm, (30) 
where_A is a block-diagonal matrix of reflectivity ten- 
sors for different subdomains D• and different fre- 
quencies, E_fi is the vector column of normal field 
for different subdomains D• and different frequen- 
cies, and __G E is determined by expression (29) for 
the electric Green's tensor. 

The solution of the inverse problem is reduced to 
the inversion of (28) with respect to m and then to 
the inversion of (30) with respect to A_. After that, 
we solve the minimization problem (26) and obtain 

There are many different approaches to the solu- 
tion of the linear inverse problem. We have chosen 
the regularized steepest descent method to invert EM 
data (see Appendices A and B), taking into account 
that the 3-D EM inversion is an ill-posed problem 
[Zhdanov and Keller, 1994]. This approach is based 
on the introduction of the parametric functional 

Pa(m) - •(m) + a S(m), (31) 

where 

is a misfit functional and 

S(m__) -[[ m___- Illap r [[2_ (In- m___apr)* (in- m___apr) 
(33) 

is a stabilizing functional. The a priori model Inapr 
is some reference model, selected on the basis of 
all available geological and geophysical information 
about the area under investigation. The scalar multi- 
plier c• is a regularization parameter, and the asterisk 
indicates the transposed complex conjugate matrix. 

The misfit functional provides the solution that 
best fits the observed data F__, while the stabilizing 
functional ties the solution with the a priori model 
m___ap r and in this way keeps the solution stable. 

The regularization parameter c• describes the trade- 
off between the best fitting and reasonable stabiliza- 
tion. In a case when a is selected to be too small, the 
minimization of the parametric functional Pa(m___) is 
equivalent to the minimization of the misfit func- 
tional •b(m___), and therefore we have no regularization, 
which can result in unstable, incorrect solution. In a 
case when a is selected to be too large, the minimiza- 

tion of the parametric functional Pa(in) is equiva- 
lent to the minimization of the stabilizing functional 
S(m___), which will force the solution to be brought 
closer to the a priori model. Ultimately, we would 
expect the final model to be exactly like the a priori 
model, while the observed data are totally ignored in 
the inversion. Thus the critical question in the reg- 
ularized solution of the inverse problem is the selec- 
tion of the optimal regularization parameter a. We 
discuss this question in detail in Appendix B, fol- 
lowing the basic principles of regularization theory 
developed by Tikhonov and Arsenin [1977]. 

Now the inversion is reduced to the solution of the 

minimization problem for the parametric functional: 

Pa (in) -- min. (34) 

It is shown in the regularization theory [Tikhonov 
and Arsenin, 1977; Zhdanov and Keller, 1994] that 
the solution m___ a of the problem (34) is a continuous 
function of the data (so it is stable) and uniformly 
tends to the actual solution of the original inverse 
problem when a -• 0. 

We will discuss below several problems arising in 
the numerical realization of the inversion method. 

The determination of the a priori model 

Inapr. We know that In is equal to zero in the area 
outside the inhomogeneous structure, because it is 
proportional to the anomalous conductivity (see equa- 
tion (25)). In general, if we do not know the value 
of In and the size of the anomalous body, the best 
choice for m___ap r is zero function. In other words, we 
take the background model as the a priori model. 
However, if there is a priori information available 
(from other geological or geophysical data) about the 
possible model parameter AY, we can use this infor- 
mation to determine A_ 0 and m___ 0 in the first step of 
the inversion. The parameter • is used thereafter 
as an a priori model m___ap r -- m___ 0 in regularized inver- 
sion. 

The criterion for ending the iteration for a 
fixed a. We use the so-called misfit condition as the 

criterion for ending the iteration for a fixed regular- 
ization parameter a. It is 

where • is a misfit functional, m___, is the nth iteration 
in the solution of minimization problem (34) by a 
gradient type method (see Appendix A), and 5 is a 
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relative error (in the numerical example we set 5 = 
0.01). 

Determination of the quasi-optimum regu- 
larization parameter •. The basic principles used 
for determining the regul•riz•tion p•r•meter • •re 
discussed in Appendix B. In order to •void diver- 
gence, we begin •n iteration from • l•rge wlue of 
a (e.g., a0 = 100.), then reduce a (a = a0/10) on 
each iteration and continuously iterate until the mis- 
fit condition is reached (see Appendix B). 

Note in the conclusion of this section that in prin- 
ciple, the regularized solution should be applied only 
to the first step of the QL inversion because it can 
be shown that the second and the third steps involve 
a solution of well-posed problems. 

Numerical Results 

(a) 

In order to test the algorithm, we have computed 
an EM field for two rectangular structures in a homo- 
geneous half space (one conductive and one resistive), 
excited by a plane wave (Figure l a). The observed 
data on the surface were simulated by forward model- 
ing using a full integral equation code [Xiong, 1992]. 
Figure 2 shows the comparison of the full integral 
equation solutions (solid line) and QL approximation 
(dashed line) for apparent resistivities computed for 
the H-polarization (TM) mode (py•) at frequencies 
10 Hz, I Hz, 0.5 Hz, and 0.2 Hz. Calculations are 
done for receivers located along the Y axes on the 
surface. Figures 3a and 3b present the amplitude 
and the phase of the apparent resistivity distribu- 
tion [Zhdanov and Keller, 1994], calculated from the 
observed EM field on the surface of the Earth for fre- 

quency of 1 Hz. For 3-D EM inversion we used EM 
data collected along 15 profiles on the surface of the 
Earth for four frequencies: 10 Hz, I Hz, 0.5 Hz, and 
0.2 Hz. In the given frequency range the displace- 
ment currents are negligibly smaller than the con- 
ductive currents, so the inversion was applied only 
for the conductivity distribution. In the numerical 
test we have selected 144 substructures for inversion, 
shown in Figure lb, and we have used the additional 
simplification that the reflectivity tensor A is scalar 
and constant within every substructure. The results 
of inversion for different data (with and without 5% 
random noise) are shown in the following figures. 

Figure 4 presents a vertical slice along the line 
x = 0 of the results of inversion of the noise free 

data. One can clearly see the cross sections of con- 

Figure 1. (a) Three-dimensional model of rectan- 
gular conductive and resistive structures in a homo- 
geneous half space, excited by the plane wave (b) 
Scheme of the division of the model on substructures 
used for inversion. 

ductive and resistive bodies on this picture, however, 
the upper parts of the anomalous bodies are resolved 
slightly better than the lower parts, as can be ex- 
plained by the fact that EM field is less sensitive 
to the lower parts of anomalous structures. Figure 5 
shows the vertical slice along the line x - 300 m that 
passes outside the bodies with anomalous conductiv- 
ities. We can see now only background conductivity 
on this cross section with a very weak variation that 
corresponds very well to the original model. Figure 
6 presents the volume image of the inverted model. 
The result clearly shows the anomalous bodies with 
the low and high resistivities. The relationship be- 
tween the misfit functional and the number of iter- 

ations is shown in Figure 7. Figure 8 presents the 
results of the inversion of the same data, but with 
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Figure 2. Numerical comparison of the full integral equation solution (solid line ) and 
the QL approximation (dashed line) computed for the model shown in Figure I at the 
frequencies 10 Hz, I Hz, 0.5Hz, and 0.2 Hz. Calculations are done for the receivers, located 
along the axes Y on the surface. Plots present apparent resistivities computed for the TM 
mode (Pyz). 

5% noise added to the real and imaginary parts of 
the apparent resistivity. One can see that the noise 
practically did not affect the result. This can be ex- 
plained simply by using a regularized solution. 

In inverting these models, we have used 5400 cells 
for forward modeling. For such a large number of 
cells the forward modeling using a full integral equa- 
tion code [Xiong, 1992; Xiong and Kirsh, 1992] takes 
several hours on a SPARC-10 workstation for one 

iteration. In this example we used about 50 itera- 
tions in the inversion scheme, so it would take sev- 
eral days on a SPARC-10 workstation to solve this 
inverse problem. However, the quasi-linear inversion 
takes only about I hour. 

These results demonstrate that the quasi-linear in- 
verse algorithm is a fast and powerful tool for 3-D 
EM inversion. 

Conclusion 

We have developed a rapid 3-D electromagnetic 
inversion algorithm based on the QL approximation 
of the forward modeling. The method can be ap- 
plied for models with various sources of excitation, 
including plane waves for magnetotellurics, horizon- 
tal bipoles, vertical bipoles, horizontal rectangular 
loops, vertical magnetic dipoles, and the loop-loop 
system for airborne electromagnetics. 
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Figure 3. (a) Apparent resistivity amplitude distribution for the model shown in Figure 
1, calculated on the surface of the Earth for frequency of 1 Hz. (b) Impedance phase 
distribution for the mode] shown in Figure 1, calculated for frequency of 1 Hz. 

The main advantage of the method is that we re- 
duce the original nonlinear inverse problem to a set of 
linear inverse problems to obtain a rapid 3-D conduc- 
tivity inversion. The QL inverse problem is solved 
by a regu]arized gradient type method which ensures 
stability and rapid convergence. Synthetic examples 
(with random noise or without) of inversion demon- 
strate that the algorithm for inverting 3-D EM data 
is fast and stable. 

Appendix A: Regularized Steepest 
Descent Method for Solving Linear 
Inverse Problem 

In order to obtain a stable solution of equations (28) 
and (30), we introduced the parametric functional 

P(m) -- + S(m), 

where functionMs •(m___) and S(m___) were determined 
by equations (32) and (33). 

To solve the minimization problem (34), we calcu- 
late the first variation of the parametric functional: 

200 

400 

600 

800 

1000 

1200 
-lOOO -5oo o 500 lOOO 

Y (m) 

2 42 82 120160200240280320360400 
Ohm*m 

Figure 4. The vertical slice along the line x = 0 of 
the results of inversion of the noise free data for the 

model shown in Figure 1. 
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depth--400m 
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Figure 5. The vertical slice along the line x - 300 
m of the results of inversion of the noise free data for 

the model shown in Figure 1. 

•pa(m) - 

2 Re {•m* [ (•.__F, ((•F m- •__) -[- • (m___- m___apr) ] }. 
Let us select •m as 

2 42 82 120 160 200 240 280 320 360 400 
Ohm*m 

Figure 6. The volume image of the inverted model 
computed from EM data collected along 15 profiles 
on the surface of the Earth for frequencies of 10 Hz, 
1 Hz, 0.5 Hz, and 0.2 Hz, for the model shown in 
Figure 1. 

where 

&m--k •l •(m) , O<k •<oo, (A1) 

1_ a (m) - O._ r* (G r m___ - F_) + a (m - m___apr). 
This selection makes 

(A2) 

•P"(m) - -2 k"Re{l_"*(m)!"(m)} < 0. 

That means that the parametric functional is re- 
duced if we apply perturbation (A1) to the model 
parameters. 

We construct an iteration process as follows: 

m•+l -- m• + •m- m• - kn _ (ran). (A3) 

The coefficient k• can be determined from the con- 
dition 

•-_=.+•) - P•(m• - k• l_•(m.)) - f(k. •) - min. 

Solution of this minimization problem gives the 
following best estimation for the length of the step: 

1-•* (m"•)F(m"•) . (A4) k"• = l_ •* (m__. •)(__G r* O__ r + c•I_)l" (m•) 
According to equations (A2), (A3) and (A4), we can 
obtain m by iterations. 

Appendix B: Determination of the 
Quasi-Optimum Regularization 
Parameter 

The key component of the regularizing algorithm 
construction is the determination of the optimum 
value of the regularization parameter. This problem 
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Figure 7. The plot of the misfit functional as a func- 
tion of the number of iterations, calculated during 
inversion of the data for the model shown in Figure 
1. 

depth=200m 

can be solved on the basis of a priori information 
about the accuracy of the observed data. 

Suppose that the data F_ z were observed with some 
noise F_ z = F_ t + •F__, where F_ t is the true solution of 
the problem and the level of the errors in the ob- 
served data is equal to •: 

]]•---•- P--•]I _< & (B1) 
ß 

Then the regularization parameter can be determined 
by the misfit condition 

where m__ • is the solution of minimization problem 
($4) for the given value of a. 

We introduce the following notations: 

Figure 8. The results of the inversion of the same 
EM data (shown in Figure 3) collected along 15 pro- 
files on the surface of the Earth for frequencies of 10 
Hz, I Hz, 0.5 Hz, and 0.• Hz, for the model shown 
in Figure 1, but with 5% noise added. 

functions (if the element m___ a is unique). Note also 
that 

p(a)--•O for c•--•0, 

and 

p(0) -- 0, i(0) -- 0. (BS) 

Thus we have the following result: if i(a) is a one- 
to-one function, then for any positive number • < 
50 =l[ Gr • is some a priori _ r_ II (where m___ap r 
model) there exists a(•) such that 

p(a) = Pa(m___a); 

= 

Let us examine some properties of the functions 
p(a), i(a), s(a). First of all, it is known that func- 
tions p(c0, i(c0, and s(c 0 are monotone functions: 
p(c 0 and i(c•) are nondecreasing, and s(c 0 is nonin- 
creasing [Tikhonov and Arsenin, 1977; Zhdanov and 
Keller, 1994]. It is important to notice that the func- 
tions p(a), i(a), s(a) can be proved to be continuous 

(B4) 

Note that i(a) is a one-to-one function when the 
element m___a is unique. It happens, for example, in 
the case under consideration when we have a linear 

inverse problem, and s(m___) is a quadratic functional 
[Tikhonov and A rsenin, 1977]. 

Let us consider one simple numerical method to 
determine the parameter c•. Consider for example 
the progression of numbers 

c• - c•0q•; k - 0, 1, 2, ..., n; q > 0. (B5) 
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For any number a• we can find an element m___•k , min- 
imizing pak (m___), and calculate the misfit II G-- • m--- a• - 
F_F_ II 2. The optimal value of the parameter a is the 
number a}0, for which we have 

(B6) 

Equality (B6) is called the "misfit condition". 
Note, in conclusion, that introducing the misfit 

functional and misfit condition in the solution of the 

inverse problem is the direct way to use a priori geo- 
logic and geophysical information about the Earth's 
structure and the quality of the observed data to re- 
duce the ambiguity and increase the stability of the 
solution. 

Appendix C- Calculation of the 
Anomalous Conductivity 

The anomalous conductivity AYican be obtained 
by solvirig the minimization problem (26). 

Let us calculate the first variation of the functional 

•(•) ' 

N L 

j=l /=1 •7=x,y,z 

The minimum of (26)is reached when 
5•Yj) • 0 for any 5•Yj. Therefore 

•=x,y,z 

where•,7-x,y,z, j-i,2,...,N. 
Thus we have 

(c2) 

j97=x ,y ,z 

l•7=x ,y ,z 

+ (Im,•.), (wt)) 2 ] }. (C3) 
In practical applications anomalous electrical con- 

ductivity Art and anomalous dielectric permittivity 
As usually do not depend on frequency w. In this 
case AYj (w•) -- Atrj- iw•Aej, and condition (C2) 
should be rewritten as 

L 

/=1 197=x ,y ,z 

L 

/=1 •y=x,y,z 

L 

1=1 By=x,y,z 

From (C4) we find immediately the expressions for 
anomalous conductivity 

L 

ReE E 
/=1 197=x ,y ,z 

L 

/=1 l•'7=x,y,z 

+ (ImAm, (w,)) • ] }-I 
and for anomalous dielectric permittivity 

Aej -- 

L 

/=1 197=x,y,z 

/=1 l•'7=x,y,z 

-1 

(C5) 

(C6) 
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