Transfer Function Design based on User Selected Samples for Intuitive
Multivariate Volume Exploration

Liang Zhou*
SCl Institute and the School of Computing,
University of Utah

Charles Hansen'
SCl Institute and the School of Computing,
University of Utah

Multivariate
Volume
Dataset

Az
(1) Multi-Panel View

(C) Feature Refinement

(2) Volume Rendering View

(3) Projection View

Output

-

Extracted
Features

(B) Qualitative

~ = = Analysis
==y == 'y

(4) High-Dimensional Transfer Function View

Figure 1: The user interface and the work flow of the system implementing our proposed method. Four closely linked views are shown and
labeled, namely: (1) multi-panel view, (2) volume rendering view, (3) projection view and (4) high-dimensional transfer function view. Three
stages: (A) data probing, (B) qualitative analysis and (C) optional feature refinement comprise our work flow. With the proposed method and
user interface, domain users are able to explore and extract meaningful features in highly complex multivariate dataset, e.g. the 3D seismic

survey shown above.

ABSTRACT

Multivariate volumetric datasets are important to both science and
medicine. We propose a transfer function (TF) design approach
based on user selected samples in the spatial domain to make mul-
tivariate volumetric data visualization more accessible for domain
users. Specifically, the user starts the visualization by probing fea-
tures of interest on slices and the data values are instantly queried
by user selection. The queried sample values are then used to au-
tomatically and robustly generate high dimensional transfer func-
tions (HDTFs) via kernel density estimation (KDE). Alternatively,
2D Gaussian TFs can be automatically generated in the dimension-
ality reduced space using these samples. With the extracted features
rendered in the volume rendering view, the user can further refine
these features using segmentation brushes. Interactivity is achieved
in our system and different views are tightly linked. Use cases show
that our system has been successfully applied for simulation and
complicated seismic data sets.

Index Terms: Computer Graphics [1.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and tex-
ture; Image Processing and Computer Vision [1.4.10]: Image
Representation—Volumetric

1 INTRODUCTION

Multivariate dataset visualization has been an active research area
for the past decade and is still a challenging topic. A linked-view
visualization system that enables the users to explore the datasets
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in both the transfer function domain and the spatial domain may
boost their understanding of the data. In recent years, visualization
researchers have been studying this topic and some solutions have
been proposed [6, 1, 4, 10]. These linked-view systems provide
users the ability to explore the dataset with closely linked scientific
visualization views, e.g., volume rendering or isosurface rendering,
and information visualization views, e.g., scatter plots, parallel co-
ordinate plots (PCP) or dimensionality reduction views. Typically,
the user explores and extracts features of interest by interactively
designing transfer functions (TFs) in the value domain over the
information visualization contexts and examining classified result
in the spatial domain from the scientific visualization view. Suc-
cessful examples using these systems are clearly shown for sim-
ulation datasets. However, extracting meaningful features in real
world measurement datasets, e.g., multi-variate 3D seismic survey,
via these systems is not trivial. Features inside the seismic dataset
have to be recognized in the spatial domain by a geology expert,
and the features have complicated combinations of attribute val-
ues and subtle differences from their surroundings. Therefore, it
is too laborious to extract features by iterating between TF design
in the value domain and getting feedback from the results rendered
in the spatial domain, especially when the dimensionality is high.
Our geophysicists collaborators have found extracting features with
only the value domain TF widgets, e.g. on a PCP to be cumber-
some, and specifically asked for more automated methods.

In this paper, we propose a TF design approach based on user
selected samples from the spatial domain represented as slices for
more intuitive exploration of multivariate volume datasets. Specifi-
cally, the user starts the visualization by probing features of interest
in a panel view, which simultaneously displays associated data at-
tributes in slices. Then, the data values of these features can be
instantly and conveniently queried by drawing lassos around the
features or, more easily, by applying “magic wand” strokes. High
dimensional transfer functions (HDTFs) can then be automatically
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and robustly generated from the queried data samples via the ker-
nel density estimation (KDE) [26] method. The TFs are represented
by parallel coordinate plots (PCPs) and can be interactively mod-
ified in a HDTF editor. Automatically generated Gaussian TFs in
dimensionality reduced 2D view can also be utilized to extract fea-
tures. The extracted features are rendered in the volume render-
ing view using directional occlusion shading to overcome artifacts
from Phong shading in multivariate case. To further refine features,
which share similar data value ranges, direct volume selection tools
on the volume rendering view or the panel view can be applied.

The contributions of this work are the followings: we propose a
transfer function design method for multivariate volume visualiza-
tion based on user selected samples, specifically: a HDTF gener-
ation method based on KDE and a Gaussian mixture model based
2D Gaussian TF generation method. Second, an interactive multi-
variate volume visualization system based on the proposed method
that has been implemented to allow domain users to extract refined
features in very complicated multivariate volume datasets more in-
tuitively.

2 RELATED WORK

Transfer Function Design

Volume datasets can be explored using transfer functions. A 1D
TF that uses scalar values of the volume or a 2D TF that has the
gradient magnitude of the volume as a second property for better
classification [15] are most frequently used. The TFs can be inter-
actively defined by 1D TF widgets or 2D TF widgets proposed by
Kniss ef al. [16]. However, to design a good TF, the user has to
manipulate the TF widgets in the value space and check result in
the volume rendering view which is laborious and time consuming.
To address this issue, researchers have proposed to automate the TF
generation process. Maciejewski et al. [19] utilize KDE to structure
the data value space to generate initial TFs. Note that instead of per-
forming KDE over a 2D value space of the whole data as in [19],
our proposed approach applies KDE over samples selected by the
user to robustly generate HDTFs. Also focusing on the value space,
Wang et al. [28] initialize TFs by modeling the data value space us-
ing Gaussian mixture model and render the extracted volume with
pre-integrated volume rendering. Our automated Gaussian TFs are
similar to their work, however, our working space is created from
multidimensional reduction while theirs is traditional 2D TF space.
Alternatively, the volume exploration system proposed by Guo et
al. [9] allows the user to directly manipulate on the volume ren-
dering view with intuitive screen space stroking tools similar to 2D
photo processing applications. In contrast to our work, all methods
mentioned above work on volumes with only one or two attributes.

Multidimensional Data Visualization

Visualizing and understanding multidimensional datasets has
been an active research topic in information visualization. Scat-
ter plot matrices, parallel coordinate plots [13] and star-glyphs [29]
are common approaches for discrete multidimensional data visu-
alization. An efficient rendering [21] method has been proposed
to make meaningful and interactive visualization of large multidi-
mensional datasets possible. Dimensional reduction and projec-
tion are other techniques for multidimensional data visualization.
These techniques provide a similarity based overview for multidi-
mensional data. Numerous research efforts have been focused on
this topic, and popular methods include: principal component anal-
ysis (PCA) [14], multidimensional scaling (MDS), isomap [27],
and Fastmap [7]. We employ Fastmap due to its speed, stability
and simplicity.

Linked View Systems

Multivariate volume datasets can be explored using linked view
systems which have shown to be useful for multivariate simulation
data exploration. The SimVis system [6, 24] allows the user to inter-
act with several 2D scatter plot views using linked brushes to select

features of interest in particle simulations rendered as polygons and
particles. Akiba and Ma [1] propose a tri-space exploration tech-
nique involving PCPs together with time histograms to help the
design of HDTFs for time-varying multivariate volume datasets.
Blaas et al. [4] extent parallel coordinates for interactive explo-
ration of large multi-time point datasets rendered as isosurfaces.
More recently, Zhao and Kaufman [30] combine multi-dimensional
reduction and TF design using parallel coordinates but, their system
is only able to handle very small datasets. Guo et al. [10] propose
an interactive HDTF design framework using both continuous PCPs
and multidimensional scaling technique accelerated by employing
an octree structure. However, we have observed two limitations in
the above systems: 1) the user has to explore the data via interac-
tions on the TF view which may be unintuitive for domain users
and moreover makes exploration for real-world datasets difficult,
and 2) the visualization is merely produced with TFs and it is dif-
ficult to achieve a more refined result. As such, we have imple-
mented a linked view system that improves on these two issues to
allow the domain user to explore complex real-world datasets more
intuitively with more refined results.

3 METHOD OVERVIEW

The work flow of our proposed method as shown in Figure 1 is
comprised of three major stages: (A) data probing, (B) qualitative
analysis and (C) optional feature refinement. Data probing is the
process where the user discovers regions of interest by examining
multivariate data slices. The regions of interest can be conveniently
selected using lasso tool or “magic wand” tool. Once the regions
of interest are selected, a simple, yet efficient, voxel query oper-
ation that inquires the multivariate data values is performed. The
user then performs a qualitative analysis, i.e., extracting and ren-
dering volumetric features by means of designing HDTFs or 2D
TFs on dimensionality reduced spaces. KDE is utilized to automat-
ically generate the HDTFs and to robustly discard outliers from the
queried samples. In addition, automated 2D Gaussian TFs on the
projection view offers a simpler alternative for more distinct fea-
tures. The HDTFs can then be fine-tuned directly in a PCP based
HDTF editor while the 2D Gaussian TFs can be manipulated by
2D Gaussian TF widgets. On many occasions, however, different
features share similar data values and thus an optional feature re-
finement stage is introduced to refine the features classified by the
TFs. Features are refined by the user via segmentation brushes or
lassos which are applied directly on the volume rendering view or
the multi-panel view.

4 VOXEL QUERY AND PCP GENERATION

Our proposed method is based on user selected multivariate voxel
samples through interactive selection which requires efficient voxel
query. The multivariate values of the queried samples should be
immediately presented to the user by means of PCPs, and as such a
fast PCP generation method is needed.

4.1 GPU-based Voxel Query via Conditional Histogram
Computation

Voxel query can be accelerated by spatial hierarchy structures that
group similar neighboring voxels into nodes, e.g., an octree struc-
ture adopted by Guo et al. [10]. However, Knoll et al. [17] report
that, “Conversely, volumes with uniformly high variance yield lit-
tle consolidation; due to the overhead of the octree hierarchy they
could potentially occupy greater space than the original 3D array.”
Our initial experiment on the seismic data with the code from [17]
agrees with this statement. As such, we propose to efficiently con-
duct the voxel query by computing sets of joint conditional his-
tograms via a simple GPU-based volume traversal. A joint condi-
tional histogram jch(a,b)s of two attributes a and b is a 2D his-
togram showing the joint distribution of attribute values Y, and Y},



of voxels,V whose evaluated result from a certain boolean func-
tion f(Y(V)) (Y(V) being the attribute values of V) is true. If f is
always true, the joint conditional histogram degenerates to an un-
conditional joint histogram. Note that the values of user selected
samples are queried via an unconditional joint histogram computa-
tion over the user selected region on the given slice.

For a multivariate volume of N attributes, given an N-
dimensional TF as the condition, a set of N — 1 joint conditional
histograms can be computed to record the query results. The values
of the joint conditional histograms are accumulated by first evalu-
ating the N-dimensional TF for all voxels in the volume, and then
transforming the voxels that have positive opacities from the TF
into bins in the conditional histogram space, and finally increment-
ing the joint conditional histogram count at those bins. Specifically,
given a voxel vy of N attributes Y1,Y>, ..., Yy (to be concise, we use
yi to denote the attribute value Y;(vx)) located at 3D position X in
the spatial domain, and an N-dimensional TF TF.

vx = {1,32),(v2,53), -, ON-1,9N) }
where TF(y1,y2,...,yn).a >0 1)

1,2),(2,¥3), -, (hn—1,yn) being the bins of joint conditional
histograms jch(Y1,Y2), jch(Y2,Y3),..., jch(Yn_1,Yn) respectively.

Equation 1 and the accumulation of the conditional histograms,
which are stored aggregately as a 2D texture array of N — 1 slices,
can be easily implemented on the GPU via geometry shader and
ADD blending or read-write textures with atomic operations that are
supported on recent GPUs.

4.2 Parallel Coordinate Plots Generation

As proposed in [21], Figure 2 shows that each non-zero pixel P(i, j)
in the joint histogram of attribute x and y yields a quad starting at
the position of i on PC axis x and ending at the position of j on
PC axis y. The highly parallel process can be implemented on the

y, X, y
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Figure 2: Generating a PCP from a joint histogram.

GPU using geometry shader and transform feedback buffers. The
algorithm loops through all pairs of conditional histograms after
setting up the transform feedback buffer for recording the resulting
geometry. In each iteration, a regular grid of the same size of a
slice of the input conditional histogram texture fex,, is drawn and
a geometry shader generates a colored quad for each vertex whose
texconq value is not 0. The dynamic range of the data values is
usually high and thus the ratio of natural logarithm of the data value
versus natural logarithm of the total voxel number is computed and
then modulated with the input color Cy (i, j) at grid position (i, j) to
give the final color C(i, ).

log(v(i, /))
log(¥v)
Finally, all quads are stored in the transform feedback buffer, and

they can be rendered directly from the transform feedback buffer
without being read back to the CPU.

C(i,j) = Co(i, ) @

5 TRANSFER FUNCTION GENERATION FROM USER SE-
LECTED SAMPLES

In this section, the actual TF generation method will be explained.
Section 5.1 introduces the method for interactive voxel sample se-
lection, Section 5.2 discusses the KDE based HDTF generation
method and Section 5.3 details on the automated 2D Gaussian TF
on the dimensionality reduced space.

5.1 Sample Selection in the Multi-panel View

The user can interactively select arbitrary a region of interest in any
attribute by either drawing a lasso or using the magic wand tool.
The lasso tool is a simple free hand drawing tool which allows the
user to select regions by manually drawing over the boundary of
a feature. Although very flexible, the user has to be very careful
when drawing on the boundary using the lasso tool.

To alleviate the difficulty of perfectly drawing over the boundary
of a feature, a more intuitive and easier to use magic wand tool is
introduced. The magic wand tool is essentially a 2D segmentation
tool based on Perona and Malik anisotropic diffusion [23]. Equa-
tion 3 describes the diffusion equation where S(#,x,y) is the number
of seeds at position (x,y) at time ¢, V(¢,x,y) being the intensity of
the chosen attribute at the same point, |[VV (,x,y)| is its gradient
magnitude, and g(s) being a conductivity term.

98(t,x,y)

S —div(g(VV (k) VS(xy) )

2
where g(s) = v-exp k¥

Parameter K governs how fast g(s) goes to zero for high gradients,
regular term v is chosen as 1 and normalization term £ is set to
# for numerical stability, n being the number of neighbors of a
pixel which is 8 in our case. Equation 3 can be solved numerically
using the finite difference method with a given iteration number 7.
The iteration number 7, parameter K and seeding brush size are
user controllable. Figure 3 shows the panel view of a six-attribute
seismic volume dataset where attributes are co-rendered with the
seismic amplitude volume. Note that a user drawn magic wand in
dark blue highlights a potential salt dome structure.

Figure 3: The user draws on a salt dome (stroke shown in light
blue) over the fifth attribute in the panel view resulting in the dark
blue region of selection.

5.2 Kernel Density Estimation based Transfer Function
Generation

We would like to generate HDTFs from the samples selected us-
ing method described in Section 5.1. To reduce the computational
complexity, we separate the N-dimensional value space into N — 1
2D value spaces, i.e. a 2D+2D+---42D (N — 1 of 2D) space.
A naive approach is to generate a TF by taking the convex hull of
these 2D sample points. Although useful when the user intents to
select exact sample points, it is conceivable that the outliers in the
samples can greatly bias the generated TF and result in unwanted
regions selected in the value space.

Figure 4(a) clearly demonstrates such a situation where a red 2D
TF widget is generated as the convex hull of the sample points with
the red boundary. Also notable is that the color gradient of the TF
widget is arbitrarily defined by the user that may not follow the
underlying distribution of data.

Kernel density estimation (KDE) [26] seen in Equation 4 is a
non-parametric method for estimating the density function fj,(x) at
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Figure 4: User selected sample points (shown in green) over a joint
histogram. TF widget generated from the samples as (a) convex
hull and (b) KDE. In (c): a point cloud (left) and its KDE result
color coded with a ’jet’ color map.

location x of an arbitrary dimensional domain Q with given samples
{xi},ie{1,2,3,...,n}.

X — X

1 & 1 & ;
fh(x):E;Kh(x_xi):E;K( W )X, €Q  (4)

where K(x) being the kernel function and 4 is the bandwidth.
Thanks to the separation of the value space, instead of computing
the KDE for Q of N dimension, we compute N — 1 KDE for Q in
2D spaces. In our case, each Q is set to the same size of the 2D
joint histogram which is typically 256 x 256. An empirical optimal
bandwidth estimator is suggested in [26], which can be extended to
2D:

h=1.06Vdetx-n"3 (5)

where detX is the determinant of the 2D covariance matrix X of
current attribute pairs. The kernel function K (x) we used is the 2D
Gaussian kernel:

K(x)=——e" 2 (6)

With the Gaussian kernel, each sample x; contributes to the estimate
in accordance with its distance from x. Therefore, in the region near
the intended samples more short distanced samples are contributing
to f5(x) compared to the region near outliers. As a result, the den-
sity value f},(x) around the outliers is lower than that of the intended
samples.

Figure 4(c) shows the density function generated by the KDE
method of the given samples with the above settings. It verifies our
expectation that the outliers have lower density than the intended
sample regions. As such, we can discard the outliers by setting a
threshold for the density value f},(x). Figure 4(b) shows the yellow
TF widget generated by KDE with a density threshold of 0.15. No-
ticeable is that the outliers are excluded from the TF widget and the
smooth color gradient that actually follows the underlying density.
The resulting TF can be represented by a set of 2D TFs or a PCP
created using the method described in Section 4.2.

In the presence of multiple HDTFs, ambiguity could arise: dif-
ferent HDTFs can cover the same regions of certain 2D attribute
pairs. To differentiate the HDTFs, a unique ID is specified to each
HDTF and an ID map of the same size of the N — 1 2D TF space
is created by conducting bitwise OR for all HDTFs on each 2D at-
tribute pair. The ID map is later decoded in the volume rendering
shader to correctly select voxels.

5.3 Automated Gaussian Transfer Functions on Dimen-
sionality Reduced Space

Dimensional reduction is another popular method for visualizing
high dimensional data due to its ability to intrinsically generate vi-
sual representations that are easy to understand and interact with.
Instances in an m-dimensional Cartesian space are projected into a
lower p-dimensional visual space with preservation of the distances

between instances as much as possible. In other words, voxels with
similar m-dimensional attribute values are projected to be near each
other in the p-dimensional space. With a projected visual space
of p =2, the user is able to better identify features by doing vi-
sual classification using a 2D TF widget, and moreover, automated
clustering methods can be applied for classification. In our pro-
posed method, the high-dimensional value space is projected into a
2D space using Fastmap [7] and then Gaussian TFs are generated
via expectation maximization optimization with Gaussian mixture
model. The user can choose to use either the 2D Gaussian TF or the
HDTF for each feature by switching a button on the user interface.
The 2D Gaussian TFs are preferred for more convenient extraction
of several distinct features at the same time, while the HDTFs are
better for features that have subtle differences in the HD value do-
main.

5.3.1

We employ Fastmap [7] as the dimensional reduction technique
since it is fast, stable and easy to implement. Fastmap is a recur-
sive algorithm for multidimensional projection with an O(N) time
complexity. Given target dimension k, a distance function D() and
object array O contains N objects of m dimension, the algorithm
FastMap computes the k dimensional projected image X from the
N objects. The algorithm can be summarized as the following:

Dimensional Reduction using Fastmap

FastMap(k,D(),0)

if £ < 0 then
return
else
col = col + 1 (col is initialized to 0)
end if
Choose and record the pair of pivot objects O, Oj,.

Project objects on line (O,, Op) using the cosine law:

32 2_ 2
X[i,col] = x; = D(0a.0;) +§L[)(():)f(b);) D(0p,0;)

Call FastMap(k — 1,D/(), 0).
Where
D/(0},0,)2 = D(0;,0,)* - (xi —x;)%.i,j € {0,1,2,. . N — 1}

i€{0,1,2,..N—1}

5.3.2 Gaussian Mixture Model with Expectation Maximiza-
tion

Assuming that all attributes we are handling are continuous mea-
surements, the dimensionality reduced 2D value space can therefore
be modeled by a Gaussian mixture model (GMM). GMM models
point clouds by assigning each cluster a Gaussian distribution. For
a point x in the 2D value space, a Gaussian distribution is shown
in Equation 7 with mean value pt being a 2D vector and covariance
matrix X as a 2 X 2 matrix.

1 1 Ty-1
N(x|u,X) = e 2 (=) 27 (x—p) 7
(lu2) = 5 ™
Therefore, for a GMM with k components, the distribution of the
2D value space can be written as

p(x6) =) o/N(x|u’,x7) ®)

j=1
where 6 is the parameter set of the k-component GMM
{o/, 7, %) }’;:l, and o is the prior probability of the jth Gaus-
sian distribution. The optimal 6 can be found as 0 that maximizes
the likelihood of p(X|6)

A n :

6 = argmax p(X|0) = argmax [ [ p(x'|0) )
i=1



where 7 is the number of input points. Equation 9 can be solved by
the expectation maximization (EM) algorithm [3]. Given an initial
setup of 0, the EM algorithm iterates between two steps: expec-
tation step (E step) and maximization step (M step) until the log
likelihood

n

Inp(X|0) = 10g(Hp(xi\9)) =

i=1 i

™=

{ ) o/N(x'|u/,2)}
1 j=1

converges.

We initialize the EM algorithm using the K-means algo-
rithm [12] which quickly gives a reasonable estimation of 6. With
an initialization of k mean values {u/ }’;:1, K-means algorithm iter-

atively refines {/,Lj}lj‘.:1 until convergence through assignment and
update steps. The assignment step assigns each sample to the clus-
ter with the closest mean, and the update step calculates the new
means to be the centroid of each cluster. In our case, the initial
means are k random samples in the input dimensional reduced 2D
point cloud. Once the K-means algorithm terminates, {/ }’;:1 can
be easily computed with the result means, and prior probabilities
{af }’;:1 is given by the proportion of total samples inside each
cluster.

5.3.3 Automated 2D Gaussian Transfer Functions

We use a modified TF generation scheme as in [28] but ours differs
in 1) the value space we use is the 2D dimensionality reduced space
of high-dimensional attribute compared to the 2D intensity versus
gradient magnitude space as in [28], and 2) we use the user selected
samples as the input point clouds while they use all voxels in a
volume.

Given some user provided sample data points and a class num-
ber k (which is set to 3 by default from our experiments), the EM
algorithm computes the Gaussian distribution parameters 6. Each
Gaussian distribution is managed by a Gaussian TF widget with a
user defined color C and opacity function & of location x:

o= amaxe*%(x*H)TY](x*H) (10)

The Gaussian TF widget is centered at the mean value u of the
Gaussian distribution and its boundary is generated by transforming

a unit circle with the square root matrix x!/2
. 212 is calculated via eigen decomposition of X:

of covariance matrix

r=vpv~! (11)
/2 —ypl/2y-1 (12)

where D is a diagonal matrix holding the eigen values and V con-
tains the eigen vectors as columns. V is an orthogonal matrix, i.e.
V=L = VT since ¥ is symmetric. The eigen values 6}, 0, are the
radii of the principal axes of the ellipse, while the eigen vectors a, b
are the unit vectors of the principal axes.

Transformations of the Gaussian widgets, i.e. translation, rota-
tion and scaling, can be achieved using the eigen values and eigen
vectors. The translation is done by shifting the u with an offset Ay
given by user dragging. The rotation of the widget is achieved by
rotating the eigen vectors in V with an angle f3. Finally, multiplying
the eigen values 61,0, with a scaling factor (s,,sp) results in the
scaling of the widget.

6 FEATURE REFINEMENT IN THE SPATIAL DOMAIN

The feature refinement stage is introduced to allow the user to di-
rectly manipulate the features in the spatial domain. Various refine-
ment tools have been implemented to handle different situations.
All tools support three refinement modes: new, add and remove.

Figure 5: Feature refinement tools: (a) 3D brush, (b) 3D lasso and
(c) 2D brush.

Screen Space Brush in the 3D View. The tool as seen in Fig-
ure 5(a) allows the user to draw strokes on the 3D view screen to
set seeds in the visualization results, and then a GPU based region
growing is conducted to set the connected voxels to a given tag
number. The seeding location is determined by casting rays from
brush strokes on the image plane to the volume extracted by current
TFs. A voxel along the ray is seeded when its opacity is greater
than a user defined threshold.

Screen Space Lasso in the 3D View. Alternatively, the user can
directly indicate features of interest on the 3D view using a lasso as
shown in Figure 5(b). A lasso is a simple tool that selects all voxels
from the TF extracted volume that are inside the back projected
volume of the screen space lasso covered area.

Refinement Brush in the Panel View. The refinement can also
be done by seeding on the panel view via drawing strokes (Fig-
ure 5(c)), and this is useful when the features of interest are oc-
cluded in the 3D view or readily visible in a slice.

A morphological closing, i.e. dilate the volume by one voxel and
then erode the volume by one voxel, is performed after refinement
in order to fill small holes and bridge tiny gaps. Note that all refined
feature groups are managed in the group manager in the HDTF ed-
itor introduced in section 8.2, and thus similar to TF groups, their
colors can be changed, they can be deleted and their visibility can
be toggled.

7 RENDERING

We employ the directional occlusion shading (DOS) [25], which
is an efficient approximation to ambient occlusion as the render-
ing technique because that the DOS is gradient-free and provides
the user more insights into the dataset than local shading models as
shown on seismic datasets [22]. A user study conducted by Linde-
mann and Ropinski [18] shows that DOS outperforms other state-
of-the-art shading techniques in relative depth and size perception
correctness. Hardware supported trilinear interpolation cannot be
used for tag volume rendering because false tag values will be
generated. Instead, nearest neighbor sampling has to be used to
correctly render the tag volume. However, a simple use of near-
est neighbor sampling yields blocky looking results because of the
voxel level filtering. Instead, using a manual trilinear O-1 interpo-
lation gives pixel level filtering. From our observations, the cases
where multiple tags appear in a single 8 voxel neighborhood rarely
occur and as such a simplified method of [11] is utilized. The
largest tag value in the eight neighboring voxels around current
pixel is mapped to 1 and all others to 0 and then a trilinear inter-
polation is conducted on these 0/1 values. The interpolated result is
then compared against 0.5, if greater, the final tag value of the pixel
is set to the pixel’s nearest neighboring voxel’s tag value, otherwise
the tag value is set to 0.

8 USER INTERFACE

The user interface of our system is seen in Figure 1 where a multi-
panel slice view for data probing is shown to the left (1), an interac-
tive 3D view that shows volume rendering results and allows post
feature manipulation is seen in the middle (2), a projection view

77



78

shown to the upper right (3) and a high dimensional transfer func-
tion view appears to its bottom (4). These four views are tightly
linked and as such any updates in one view will be reflected in oth-
ers.

8.1 Multi-panel Viewer

We have developed a multi-panel view which shows all attributes
of a slice by placing attributes into individual panels as seen in the
left part of Figure 1 as well as in Figure 3. The multi-panel viewer
synchronizes user interactions across all attribute views including:
mouse positioning, panning, zooming, scrolling and aspect chang-
ing. To enhance the perception of attributes, each attribute can have
a specifically designed color map that highlights features of interest.
In order to better use the dynamic range of the color maps, the con-
trast of the attributes can be conveniently changed using the mouse
wheel. Furthermore, a background volume can be co-rendered with
the current attribute volume using transparency. This is especially
helpful for seismic volumes as our collaborating geologists suggest
that it provides more insight into the attributes when the seismic
amplitude volume is co-rendered as a context.

8.2 HDTF Editor

The user can interact with the HDTF editor to manually modify
the HDTFs. Figure 6 shows the HDTF editor where the PCP axes
reorder button and attribute-wise control panel can be seen on the
top, the PCP TF editor is seen in the upper left, a group manager is
shown to its right while the pair-wise TF editor is shown in the
lower part. The attribute-wise control buttons allow the user to
specify a color map, toggle sampling between linear and nearest
neighbor, and toggle lock/unlock for each attribute. A locked at-
tribute is essentially an attribute with its entire value range used in
TFs, in other words, it can be visualized in the panel view but is
not contributing to classification. This is useful since not all at-
tributes provide positive assistance in the extraction of specific fea-
tures and this knowledge is usually not known before hand. Also,
there are cases when one needs an attribute to provide only con-
text for data probing, e.g. the seismic amplitude attribute which
will be discussed in Section 9. The group manager manages all TF
and segment groups. One is able to toggle the visibility or remove
individual or a batch of groups conveniently.

Figure 6: The HDTF editor. Note that the first attribute, seismic
amplitude, is locked.

As seen in Figure 6, the PCP axes are co-rendered with the 1D
histograms of attributes shown to the right and color map to the
left. Since the color map is synchronized with the one that appears
in the panel view, the user is able to instantly know how to set the
TF widgets. The user interacts directly with the parallel coordinate
axes to design an HDTF using one of the three interaction widgets,
namely: brush widget, tent widget and Gaussian widget. The brush
widget enables the user to arbitrarily interact with the TF domain.

Tent and Gaussian widgets are essentially sets of 1D TF widgets
residing on each attribute axis of the HDTF domain, and they differ
only in their shape of opacity gradient.

In addition to the PCP TF editor, a pair-wise 2D TF editor is used
to aid the exploration of pair-wise features. The pair-wise 2D TF
editor allows the user to interact with N — 1 2D TF space to fine
tune the HDTFs to match irregular shaped features in specific pairs
of attributes using 2D rectangle, triangle or lasso widgets.

8.3 Projection Viewer

A projection viewer has been implemented in our proposed system
by combining the Fastmap dimensional reduction technique with
GMM 2D Gaussian TFs. The projection viewer extends the tradi-
tional 2D TF editor with Gaussian TF widgets, but preserves famil-
iar 2D TF widgets: rectangle, triangle and lasso. Closely linked
with the panel view and the HDTF editor, the projection viewer
shows the dimensional reduction view of user selected samples.

9 UsE CASES

Two use cases from different application domains will be shown to
demonstrate the usefulness of our proposed method. The first case
is a commonly used hurricane simulation data set and the second
case is a 3D seismic survey data with several derived attributes,
which will be used to extract geological features that are important
in the petroleum industry since they indicate potential oil and gas
TESErVOirs.

9.1 Hurricane Isabel Simulation

We have experimented with the proposed system on the simula-
tion dataset: hurricane Isabel. The hurricane Isabel dataset, intro-
duced by IEEE visualization contest 2004, is a multivariate multi-
ple time step atmospheric simulation data. Eight attributes of time
step 25 are used to generate the result in Figure 7, namely the pres-
sure, the temperature, the total precipitation mixing ratio (PRECIP),
the graupel mixing ratio (QGRAUP), the water vapor mixing ratio
(QVAPOR), the total cloud moisture mixing ratio(CLOUD), and
the speed. The simulation dataset contains no noise and since each

(@) (b)

(©)

Figure 7: The extracted features shown in (a) the top view and (b)
the bottom view. Seen in (c) is the corresponding projection view
with automated Gaussian TFs that produce the classification result.

attribute represents a clear physical meaning, it is relatively easy to
classify. A good classification can be achieved by HDTFs or alter-
natively by automated 2D Gaussian TFs on the projection view as
seen in Figure 7. Joint histograms could be generated with contin-
uous scatter plots [2]. The user can generate the result in Figure 7
by placing several large lassos on slices in the axial view (slices



indexed by the z axis) on the multi-panel viewer in the data prob-
ing stage. The GMM-EM algorithm explained in section 5.3 then
automatically generates the TFs for classification in the qualitative
analysis stage. The hurricane eye, spiral arms and the top of the
atmosphere are clearly seen in Figure 7. Due to the nature of this
data, no feature refinement is required.

The results are similar compared to previous methods. With pre-
vious methods [6, 1, 4, 10], one has to carefully design the TFs one
by one for each feature, either by editing pairs of histograms [6],
or PCP-based HDTF [1, 4] or high-dimensional Gaussian TF and
MDS-based TF [10]. Our method, however, allows the user to ex-
tract the same features by simply drawing several large lassos across
the features on the multi-panel viewer, which is significantly eas-
ier.

9.2 3D Seismic Dataset

3D seismic imaging has been the standard for oil and gas explo-
ration for decades, and more recently, multi-attribute volumes de-
rived from the seismic amplitude volume have been used to aid the
understanding of the seismic surveys [5]. However, these derived
volumes are visualized individually in current seismic data analy-
sis tools and as such the relationships between attributes are lost.
With the proposed methods and our system, our collaborating geo-
physicists successfully extract refined geological features from the
dataset and can export the results as a labeled volume for further
processing.

The data used is a part of the public 3D seismic survey dataset
“New Zealand” of size 213 x 276 x 426, in which different geo-
logical features exist, including channels, faults, and a salt dome,
that can be potential reservoirs of oil and gas. Five attributes have
been derived from the original seismic amplitude data (Amp). Us-
ing the six attributes, namely Amp, Seg_MedFilter, Inst_Amp,
Inst_Phase_Entropy, Semb and Semb_Thick, geophysicists
are able to clearly extract meaningful features as shown in Fig-
ure 8. Note that for all features, Amp provides only context and is

Figure 8: Extracted geological features: a shallow channel com-
plex in red, a salt dome shown in yellow, a deeper channel shown
in purple and the largest fault in green.

not clamped in order to select complete geological structures. The
geophysicist starts the exploration by scrolling through the slices
in the inline direction (slices indexed by the x axis) and finds a
shallow channel complex in the Amp. In the data probing stage,
a lasso around the channel complex is drawn on the Amp attribute
seen in Figure 9(a), from this an HDTF is generated with the KDE
method described and fine tuned in the qualitative analysis stage as
shown in Figure 9(c). The main connected component as shown in
Figure 9(b) is extracted in the feature refinement via segmentation
brushing in the 3D view.

The salt dome appears to be a distinct feature on slices in the
cross line direction (slices indexed by the y axis) and as such the

automated Gaussian TFs in the projection view are utilized. By
drawing a lasso around the salt dome on the Inst_Amp attribute,
as shown in Figure 9(d), Gaussian TFs are automatically gener-
ated in the projection view. The visualization of the isolated salt
dome seen in Figure 9(e) is created by enlarging the Gaussian wid-
get (Figure 9(f)) that highlights the salt dome and drawing a region
growing brush stroke on the salt dome.

Scrolling down through the time direction (slices indexed by z
axis), a smaller channel is discovered at the bottom of the volume.
The lower channel is clearly visible in the Inst_Amp and Semb
attributes. Using the magic wand tool inside the channel on the
Inst_Amp attribute (Figure 9(g)), and fine tuning the HDTF as
seen in Figure 9(i), the channel can be extracted. Due to its connec-
tion to the surroundings, we use the lasso tool to manually extract
only the channel as shown in Figure 9(h).

Finally, when the geophysicist switches back to the inline direc-
tion, the faults are easily recognized in the Semb_Thick attribute
and are partly extracted via magic wand brushing (Figure 9(j)).
Since that the faults depend only on the Semb_Thick attribute,
it is fine tuned to cover the entirety of the faults (Figure 9(1)). The
largest fault as seen in Figure 9(k) is extracted via region growing
brushing in the 3D view. In theory, previous methods that use only
the value domain TF widgets are able to extract the features. How-
ever, our collaborating geophysicists have found that in practice, it
becomes overwhelmingly laborious.

)] (k) 0]

Figure 9: Refined features shown in the middle column with the
user’s selection of regions of interest shown in the left column, and
their TFs shown to the right. Note that the color of the refined
features are independent of their TF colors.

10 IMPLEMENTATION

The system is implemented in C++ with OpenGL and Qt. The
magic wand tool, conditional histogram generation, PCP cre-
ation and region growing based segmentation are accelerated us-
ing GLSL shaders. Directional occlusion for volume rendering
and PCP rendering are implemented on the GPU as well. The
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figtree package [20] is utilized for efficient kernel density es-
timation. The linear algebra operations are aided by the Eigen
library [8].

11 CONCLUSION AND FUTURE WORK

We have presented a TF design method to provide a more intuitive
multivariate volume exploration experience with refined feature ex-
traction results. An interactive system is built to realize these pro-
posed methods. Results from the multi-attribute hurricane simula-
tion and 3D seismic survey data sets demonstrate that the system is
able to extract features in both commonly used simulation data and
highly complicated real-world data. The applications are domain
dependent and require domain knowledge, thus our tool is interac-
tive and empirical, and our collaborating geophysicists found merit
in the system.

For future work, we would like to further develop our system in
three ways: 1) improve the scalability, 2) further reduce the user’s
workload using advanced machine learning methods, and 3) sup-
port time varying datasets. GPU-based out-of-core methods for
volume rendering, conditional histogram computation and PCP ren-
dering could support full size 3D seismic data. The user interaction
of the system is intuitive as reported by the geophysicists, but is still
time consuming for very complicated data sets. By introducing ad-
vanced machine learning methods, we hope to make the interaction
more automated, e.g. an appropriate slice that captures useful fea-
tures can be automatically found for the user. Our work can now be
applied only to one time step of a simulation. However, thanks to
the temporal coherence between the simulation steps, and the user
defined TFs on one time step can be propagated to other time steps
with incremental update methods.
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